gdbserver: special case target_write_memory len==0
The next patch in this series adds a common helper routine for both memory reads and writes, like this: static int proc_xfer_memory (CORE_ADDR memaddr, unsigned char *readbuf, const gdb_byte *writebuf, int len) { gdb_assert ((readbuf == nullptr) != (writebuf == nullptr)); ... } int linux_process_target::read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len) { return proc_xfer_memory (memaddr, myaddr, nullptr, len); } linux_process_target::write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len) { return proc_xfer_memory (memaddr, nullptr, myaddr, len); } Surprisingly, the assertion fails. That happens because it can happen that target_write_memory is called with LEN==0, due to this in gdb/remote.c: /* Determine whether the remote target supports binary downloading. This is accomplished by sending a no-op memory write of zero length to the target at the specified address. (...) */ void remote_target::check_binary_download (CORE_ADDR addr) { ... p = rs->buf.data (); *p++ = 'X'; p += hexnumstr (p, (ULONGEST) addr); *p++ = ','; p += hexnumstr (p, (ULONGEST) 0); *p++ = ':'; *p = '\0'; In this scenario, in gdbserver's target_write_memory, the "myaddr" argument of the_target->write_memory is passed the data() of a local gdb::byte_vector (which is a specialized std::vector). It's valid for std::vector::data() to return NULL when the vector is empty. This commit adds an early return to target_write_memory to avoid target backends having to care about this. For good measure, do the same on the read side, in read_inferior_memory. Change-Id: Iac8f04fcf99014c624ef4036bd318ca1771ad491
Loading
Please register or sign in to comment