Skip to content
Commit d7b45615 authored by Suraj Jitindar Singh's avatar Suraj Jitindar Singh Committed by Paul Mackerras
Browse files

KVM: PPC: Book3S HV: Implement functions to access quadrants 1 & 2



The POWER9 radix mmu has the concept of quadrants. The quadrant number
is the two high bits of the effective address and determines the fully
qualified address to be used for the translation. The fully qualified
address consists of the effective lpid, the effective pid and the
effective address. This gives then 4 possible quadrants 0, 1, 2, and 3.

When accessing these quadrants the fully qualified address is obtained
as follows:

Quadrant		| Hypervisor		| Guest
--------------------------------------------------------------------------
			| EA[0:1] = 0b00	| EA[0:1] = 0b00
0			| effLPID = 0		| effLPID = LPIDR
			| effPID  = PIDR	| effPID  = PIDR
--------------------------------------------------------------------------
			| EA[0:1] = 0b01	|
1			| effLPID = LPIDR	| Invalid Access
			| effPID  = PIDR	|
--------------------------------------------------------------------------
			| EA[0:1] = 0b10	|
2			| effLPID = LPIDR	| Invalid Access
			| effPID  = 0		|
--------------------------------------------------------------------------
			| EA[0:1] = 0b11	| EA[0:1] = 0b11
3			| effLPID = 0		| effLPID = LPIDR
			| effPID  = 0		| effPID  = 0
--------------------------------------------------------------------------

In the Guest;
Quadrant 3 is normally used to address the operating system since this
uses effPID=0 and effLPID=LPIDR, meaning the PID register doesn't need to
be switched.
Quadrant 0 is normally used to address user space since the effLPID and
effPID are taken from the corresponding registers.

In the Host;
Quadrant 0 and 3 are used as above, however the effLPID is always 0 to
address the host.

Quadrants 1 and 2 can be used by the host to address guest memory using
a guest effective address. Since the effLPID comes from the LPID register,
the host loads the LPID of the guest it would like to access (and the
PID of the process) and can perform accesses to a guest effective
address.

This means quadrant 1 can be used to address the guest user space and
quadrant 2 can be used to address the guest operating system from the
hypervisor, using a guest effective address.

Access to the quadrants can cause a Hypervisor Data Storage Interrupt
(HDSI) due to being unable to perform partition scoped translation.
Previously this could only be generated from a guest and so the code
path expects us to take the KVM trampoline in the interrupt handler.
This is no longer the case so we modify the handler to call
bad_page_fault() to check if we were expecting this fault so we can
handle it gracefully and just return with an error code. In the hash mmu
case we still raise an unknown exception since quadrants aren't defined
for the hash mmu.

Signed-off-by: default avatarSuraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: default avatarPaul Mackerras <paulus@ozlabs.org>
parent d232afeb
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment