Skip to content
Commit 52017608 authored by Sean Christopherson's avatar Sean Christopherson Committed by Paolo Bonzini
Browse files

KVM: nVMX: add option to perform early consistency checks via H/W



KVM defers many VMX consistency checks to the CPU, ostensibly for
performance reasons[1], including checks that result in VMFail (as
opposed to VMExit).  This behavior may be undesirable for some users
since this means KVM detects certain classes of VMFail only after it
has processed guest state, e.g. emulated MSR load-on-entry.  Because
there is a strict ordering between checks that cause VMFail and those
that cause VMExit, i.e. all VMFail checks are performed before any
checks that cause VMExit, we can detect (almost) all VMFail conditions
via a dry run of sorts.  The almost qualifier exists because some
state in vmcs02 comes from L0, e.g. VPID, which means that hardware
will never detect an invalid VPID in vmcs12 because it never sees
said value.  Software must (continue to) explicitly check such fields.

After preparing vmcs02 with all state needed to pass the VMFail
consistency checks, optionally do a "test" VMEnter with an invalid
GUEST_RFLAGS.  If the VMEnter results in a VMExit (due to bad guest
state), then we can safely say that the nested VMEnter should not
VMFail, i.e. any VMFail encountered in nested_vmx_vmexit() must
be due to an L0 bug.  GUEST_RFLAGS is used to induce VMExit as it
is unconditionally loaded on all implementations of VMX, has an
invalid value that is writable on a 32-bit system and its consistency
check is performed relatively early in all implementations (the exact
order of consistency checks is micro-architectural).

Unfortunately, since the "passing" case causes a VMExit, KVM must
be extra diligent to ensure that host state is restored, e.g. DR7
and RFLAGS are reset on VMExit.  Failure to restore RFLAGS.IF is
particularly fatal.

And of course the extra VMEnter and VMExit impacts performance.
The raw overhead of the early consistency checks is ~6% on modern
hardware (though this could easily vary based on configuration),
while the added latency observed from the L1 VMM is ~10%.  The
early consistency checks do not occur in a vacuum, e.g. spending
more time in L0 can lead to more interrupts being serviced while
emulating VMEnter, thereby increasing the latency observed by L1.

Add a module param, early_consistency_checks, to provide control
over whether or not VMX performs the early consistency checks.
In addition to standard on/off behavior, the param accepts a value
of -1, which is essentialy an "auto" setting whereby KVM does
the early checks only when it thinks it's running on bare metal.
When running nested, doing early checks is of dubious value since
the resulting behavior is heavily dependent on L0.  In the future,
the "auto" setting could also be used to default to skipping the
early hardware checks for certain configurations/platforms if KVM
reaches a state where it has 100% coverage of VMFail conditions.

[1] To my knowledge no one has implemented and tested full software
    emulation of the VMFail consistency checks.  Until that happens,
    one can only speculate about the actual performance overhead of
    doing all VMFail consistency checks in software.  Obviously any
    code is slower than no code, but in the grand scheme of nested
    virtualization it's entirely possible the overhead is negligible.

Signed-off-by: default avatarSean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: default avatarPaolo Bonzini <pbonzini@redhat.com>
parent 5a5e8a15
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment