Merge the lockless page table walk rework into next
This merges the lockless page table walk rework series from Aneesh. Because it touches powerpc KVM code we are sharing it with the kvm-ppc tree in our topic/ppc-kvm branch. This is the cover letter from Aneesh: Avoid IPI while updating page table entries. Problem Summary: Slow termination of KVM guest with large guest RAM config due to a large number of IPIs that were caused by clearing level 1 PTE entries (THP) entries. This is shown in the stack trace below. - qemu-system-ppc [kernel.vmlinux] [k] smp_call_function_many - smp_call_function_many - 36.09% smp_call_function_many serialize_against_pte_lookup radix__pmdp_huge_get_and_clear zap_huge_pmd unmap_page_range unmap_vmas unmap_region __do_munmap __vm_munmap sys_munmap system_call __munmap qemu_ram_munmap qemu_anon_ram_free reclaim_ramblock call_rcu_thread qemu_thread_start start_thread __clone Why we need to do IPI when clearing PMD entries: This was added as part of commit: 13bd817b ("powerpc/thp: Serialize pmd clear against a linux page table walk") serialize_against_pte_lookup makes sure that all parallel lockless page table walk completes before we convert a PMD pte entry to regular pmd entry. We end up doing that conversion in the below scenarios 1) __split_huge_zero_page_pmd 2) do_huge_pmd_wp_page_fallback 3) MADV_DONTNEED running parallel to page faults. local_irq_disable and lockless page table walk: The lockless page table walk work with the assumption that we can dereference the page table contents without holding a lock. For this to work, we need to make sure we read the page table contents atomically and page table pages are not going to be freed/released while we are walking the table pages. We can achieve by using a rcu based freeing for page table pages or if the architecture implements broadcast tlbie, we can block the IPI as we walk the page table pages. To support both the above framework, lockless page table walk is done with irq disabled instead of rcu_read_lock() We do have two interface for lockless page table walk, gup fast and __find_linux_pte. This patch series makes __find_linux_pte table walk safe against the conversion of PMD PTE to regular PMD. gup fast: gup fast is already safe against THP split because kernel now differentiate between a pmd split and a compound page split. gup fast can run parallel to a pmd split and we prevent a parallel gup fast to a hugepage split, by freezing the page refcount and failing the speculative page ref increment. Similar to how gup is safe against parallel pmd split, this patch series updates the __find_linux_pte callers to be safe against a parallel pmd split. We do that by enforcing the following rules. 1) Don't reload the pte value, because that can be updated in parallel. 2) Code should be able to work with a stale PTE value and not the recent one. ie, the pte value that we are looking at may not be the latest value in the page table. 3) Before looking at pte value check for _PAGE_PTE bit. We now do this as part of pte_present() check. Performance: This speeds up Qemu guest RAM del/unplug time as below 128 core, 496GB guest: Without patch: munmap start: timer = 13162 ms, PID=7684 munmap finish: timer = 95312 ms, PID=7684 - delta = 82150 ms With patch (upto removing IPI) munmap start: timer = 196449 ms, PID=6681 munmap finish: timer = 196488 ms, PID=6681 - delta = 39ms With patch (with adding the tlb invalidate in pmdp_huge_get_and_clear_full) munmap start: timer = 196345 ms, PID=6879 munmap finish: timer = 196714 ms, PID=6879 - delta = 369ms Link: https://lore.kernel.org/r/20200505071729.54912-1-aneesh.kumar@linux.ibm.com
Please register or sign in to comment