Skip to content
Commit 79dfc695 authored by Mike Kravetz's avatar Mike Kravetz Committed by Linus Torvalds
Browse files

hugetlb: add demote hugetlb page sysfs interfaces

Patch series "hugetlb: add demote/split page functionality", v4.

The concurrent use of multiple hugetlb page sizes on a single system is
becoming more common.  One of the reasons is better TLB support for
gigantic page sizes on x86 hardware.  In addition, hugetlb pages are
being used to back VMs in hosting environments.

When using hugetlb pages to back VMs, it is often desirable to
preallocate hugetlb pools.  This avoids the delay and uncertainty of
allocating hugetlb pages at VM startup.  In addition, preallocating huge
pages minimizes the issue of memory fragmentation that increases the
longer the system is up and running.

In such environments, a combination of larger and smaller hugetlb pages
are preallocated in anticipation of backing VMs of various sizes.  Over
time, the preallocated pool of smaller hugetlb pages may become depleted
while larger hugetlb pages still remain.  In such situations, it is
desirable to convert larger hugetlb pages to smaller hugetlb pages.

Converting larger to smaller hugetlb pages can be accomplished today by
first freeing the larger page to the buddy allocator and then allocating
the smaller pages.  For example, to convert 50 GB pages on x86:

  gb_pages=`cat .../hugepages-1048576kB/nr_hugepages`
  m2_pages=`cat .../hugepages-2048kB/nr_hugepages`
  echo $(($gb_pages - 50)) > .../hugepages-1048576kB/nr_hugepages
  echo $(($m2_pages + 25600)) > .../hugepages-2048kB/nr_hugepages

On an idle system this operation is fairly reliable and results are as
expected.  The number of 2MB pages is increased as expected and the time
of the operation is a second or two.

However, when there is activity on the system the following issues
arise:

1) This process can take quite some time, especially if allocation of
   the smaller pages is not immediate and requires migration/compaction.

2) There is no guarantee that the total size of smaller pages allocated
   will match the size of the larger page which was freed. This is
   because the area freed by the larger page could quickly be
   fragmented.

In a test environment with a load that continually fills the page cache
with clean pages, results such as the following can be observed:

  Unexpected number of 2MB pages allocated: Expected 25600, have 19944
  real    0m42.092s
  user    0m0.008s
  sys     0m41.467s

To address these issues, introduce the concept of hugetlb page demotion.
Demotion provides a means of 'in place' splitting of a hugetlb page to
pages of a smaller size.  This avoids freeing pages to buddy and then
trying to allocate from buddy.

Page demotion is controlled via sysfs files that reside in the per-hugetlb
page size and per node directories.

 - demote_size
        Target page size for demotion, a smaller huge page size. File
        can be written to chose a smaller huge page size if multiple are
        available.

 - demote
        Writable number of hugetlb pages to be demoted

To demote 50 GB huge pages, one would:

  cat .../hugepages-1048576kB/free_hugepages   /* optional, verify free pages */
  cat .../hugepages-1048576kB/demote_size      /* optional, verify target size */
  echo 50 > .../hugepages-1048576kB/demote

Only hugetlb pages which are free at the time of the request can be
demoted.  Demotion does not add to the complexity of surplus pages and
honors reserved huge pages.  Therefore, when a value is written to the
sysfs demote file, that value is only the maximum number of pages which
will be demoted.  It is possible fewer will actually be demoted.  The
recently introduced per-hstate mutex is used to synchronize demote
operations with other operations that modify hugetlb pools.

Real world use cases
--------------------
The above scenario describes a real world use case where hugetlb pages
are used to back VMs on x86.  Both issues of long allocation times and
not necessarily getting the expected number of smaller huge pages after
a free and allocate cycle have been experienced.  The occurrence of
these issues is dependent on other activity within the host and can not
be predicted.

This patch (of 5):

Two new sysfs files are added to demote hugtlb pages.  These files are
both per-hugetlb page size and per node.  Files are:

  demote_size - The size in Kb that pages are demoted to. (read-write)
  demote - The number of huge pages to demote. (write-only)

By default, demote_size is the next smallest huge page size.  Valid huge
page sizes less than huge page size may be written to this file.  When
huge pages are demoted, they are demoted to this size.

Writing a value to demote will result in an attempt to demote that
number of hugetlb pages to an appropriate number of demote_size pages.

NOTE: Demote interfaces are only provided for huge page sizes if there
is a smaller target demote huge page size.  For example, on x86 1GB huge
pages will have demote interfaces.  2MB huge pages will not have demote
interfaces.

This patch does not provide full demote functionality.  It only provides
the sysfs interfaces.

It also provides documentation for the new interfaces.

[mike.kravetz@oracle.com: n_mask initialization does not need to be protected by the mutex]
  Link: https://lkml.kernel.org/r/0530e4ef-2492-5186-f919-5db68edea654@oracle.com

Link: https://lkml.kernel.org/r/20211007181918.136982-2-mike.kravetz@oracle.com


Signed-off-by: default avatarMike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: default avatarOscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: David Rientjes <rientjes@google.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Nghia Le <nghialm78@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 73c54763
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment