Skip to content
Commit b50f5ca6 authored by Alan Stern's avatar Alan Stern Committed by Greg Kroah-Hartman
Browse files

USB: core: Fix hang in usb_kill_urb by adding memory barriers

commit 26fbe977

 upstream.

The syzbot fuzzer has identified a bug in which processes hang waiting
for usb_kill_urb() to return.  It turns out the issue is not unlinking
the URB; that works just fine.  Rather, the problem arises when the
wakeup notification that the URB has completed is not received.

The reason is memory-access ordering on SMP systems.  In outline form,
usb_kill_urb() and __usb_hcd_giveback_urb() operating concurrently on
different CPUs perform the following actions:

CPU 0					CPU 1
----------------------------		---------------------------------
usb_kill_urb():				__usb_hcd_giveback_urb():
  ...					  ...
  atomic_inc(&urb->reject);		  atomic_dec(&urb->use_count);
  ...					  ...
  wait_event(usb_kill_urb_queue,
	atomic_read(&urb->use_count) == 0);
					  if (atomic_read(&urb->reject))
						wake_up(&usb_kill_urb_queue);

Confining your attention to urb->reject and urb->use_count, you can
see that the overall pattern of accesses on CPU 0 is:

	write urb->reject, then read urb->use_count;

whereas the overall pattern of accesses on CPU 1 is:

	write urb->use_count, then read urb->reject.

This pattern is referred to in memory-model circles as SB (for "Store
Buffering"), and it is well known that without suitable enforcement of
the desired order of accesses -- in the form of memory barriers -- it
is entirely possible for one or both CPUs to execute their reads ahead
of their writes.  The end result will be that sometimes CPU 0 sees the
old un-decremented value of urb->use_count while CPU 1 sees the old
un-incremented value of urb->reject.  Consequently CPU 0 ends up on
the wait queue and never gets woken up, leading to the observed hang
in usb_kill_urb().

The same pattern of accesses occurs in usb_poison_urb() and the
failure pathway of usb_hcd_submit_urb().

The problem is fixed by adding suitable memory barriers.  To provide
proper memory-access ordering in the SB pattern, a full barrier is
required on both CPUs.  The atomic_inc() and atomic_dec() accesses
themselves don't provide any memory ordering, but since they are
present, we can use the optimized smp_mb__after_atomic() memory
barrier in the various routines to obtain the desired effect.

This patch adds the necessary memory barriers.

CC: <stable@vger.kernel.org>
Reported-and-tested-by: default avatar <syzbot+76629376e06e2c2ad626@syzkaller.appspotmail.com>
Signed-off-by: default avatarAlan Stern <stern@rowland.harvard.edu>
Link: https://lore.kernel.org/r/Ye8K0QYee0Q0Nna2@rowland.harvard.edu


Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent 41579b9e
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment