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Bridging Multi-Scale Context-Aware Representation
for Object Detection

Boying Wang ™, Ruyi Ji

Abstract—Feature Pyramid Network (FPN) exploits multi-
scale fusion representation to deal with scale variances in object
detection. However, it ignores the context information gap
across different levels. In this paper, we develop a plug-and-play
detector, the multi-scale context-aware feature pyramid network
to unleash the power of feature pyramid representation. Based
on the dilated feature map at the highest level of the backbone,
we propose the cross-scale context aggregation block to make
full use of context information in the feature pyramid. Moreover,
we extract discriminative features among different levels by the
adaptive context aggregation block for robust object detection.
Comprehensive experiments on MS-COCO demonstrate the
effectiveness and efficiency of the proposed network, where about
1.0 ~ 3.0 AP improvements are achieved compared with existing
FPN-based methods. In addition, we also conduct extensive exper-
iments on pixel-level prediction tasks, i.e., instance segmentation,
semantic segmentation, and panoptic segmentation, which further
verify the effectiveness of the proposed method.

Index Terms—Deep learning, object detection, multi-scale,
context-aware.

I. INTRODUCTION

BJECT detection is a practical and challenging computer

vision task, which aims at identifying the object in the
image and locating it. In recent years, it has been growing
rapidly with the help of deep learning [1], [2], [3], [4], [5], [6],
especially the convolutional neural network (CNN), which has
been widely applied in robot navigation, intelligent video sur-
veillance, industrial detection, anomaly detection, and so on.
Modern object detectors are generally categorized into two
groups: i.e., one-stage and two-stage detectors. One-stage
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detectors [7], [8], [9], [10], [11] directly process the image
to generate the detection results. By contrast, the two-stage
detectors [12], [13], [14], [15], [16], [17] first extract candidate
regions through the region proposal network, and then refine
the detection results based on the candidate regions.

Context information [18], [19], [20], [21], [22], [23] is of
vital importance in computer vision, which provides visual
clues for recognition and understanding. Generally speaking,
apart from the appearance, the context information also refers
to semantic relationships between the target object with other
objects or backgrounds for the object detection task. CNN has
an inherent hierarchical structure in which different level is
characterized by different contexts. Low-level layers maintain
a strong grasp of appearance context, e.g., color and contour
of objects, which guarantees localization accuracy. High-level
layers retain more semantic context which is responsible for
predicting the classification score. In early research, the object
detector directly uses the highest-level feature to detect the
object. But the highest-level feature is not conducive to object
detection due to its insufficient context.

To tackle this issue, some multi-scale learning technologies
are proposed. One efficient solution is to aggregate multi-scale
context from the bottom-up perspective, e.g., DenseNet [24]
and HRNet [25]. However, these methods suffer from the
computation burden due to dense connections. Another alter-
native solution derives from feature pyramid technologies,
which facilitate multi-scale contextual interactions by attach-
ing additional sub-networks on top of CNN. FPN [26] is a
typical feature pyramid technology, which propagates the high-
level semantic feature to other levels. In addition, each level
in the pyramid is responsible for objects of a specific scale
range. The mainstream work of feature pyramid technologies
is divided into two types: Neural Architecture Search (NAS)
and Non-NAS. NAS-FPN [27] is a representative of NAS-
based approaches. NAS-FPN [27] defines a search space
and exploits a reinforcement learning strategy to explore the
pyramid structure with the best performance. The NAS-based
methods [27], [28], [29] have high performance, but there are
also some obvious drawbacks. First, the structure obtained
is extremely complicated and less comprehensible. Second,
the structure is generally stacked multi-layer, so it will bring
a lot of parameters and computational burdens. Third, the
search cost of NAS is prohibitive, involving thousands of TPU
hours. In contrast, the Non-NAS feature pyramid method is
designed artificially. AugFPN [30] proposes consistent super-
vision, residual feature augmentation, and soft Rol selection to
improve the traditional FPN. DyFPN [31] adaptively performs
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the combination of convolutional layers through a learnable
gate. Although these methods [30], [31], [32], [33], [34],
[35], [36], [37], [38] have made vigorous efforts to improve
the performance of FPN, they still cannot efficiently integrate
multi-scale contexts. In short, there are three main dilemmas
existing in current improved FPN methods:

(1) Context information loss at the highest level. Before
fusion, a 1 x 1 convolutional layer is used to reduce the channel
dimension of the output feature map from the backbone.
The highest-level feature usually has thousands of channels,
which contain rich context information. Due to the reduction
of channels, the highest-level feature suffers from context
information loss.

(2) Inappropriate context aggregation strategy. During
the fusion, the high-level feature is first matched to the low-
level feature through upsampling operation and then merged
by element-wise addition. But this simple aggregation strategy
is sub-optimal, which may introduce redundant information or
extra noise, especially after multiple rounds of propagation.

(3) Semantic gaps between different levels. Considering
that the feature propagation is one-way, the low-level feature
cannot be propagated to the high level. In addition, high-
level semantic information will be diluted during propagation,
leading to semantic gaps between different levels after the
fusion.

In this paper, we propose a Multi-scale Context-aware
Feature Pyramid Network (MCFPN), which aims at progres-
sively bridging the context-aware representation for object
detection. Specifically, three modules are proposed to achieve
this goal: 1) The Dilated Residual Block (DRB) generates
an enhanced high-level feature with richer receptive fields by
stacking several residual blocks with different dilation rates,
which can alleviate context information loss of the highest-
level feature. 2) The Cross-scale Context Aggregation Block
(CCAB) adopts a multi-branch interactive fusion method to
better integrate the context information from adjacent levels
and provides an effective supplement for the current level.
3) Under the guidance of channel and spatial information,
the Adaptive Context Aggregation Block (ACAB) learns con-
text relationships between different levels, thereby forming a
balanced context to further narrow the semantic gap across
different levels. In this way, we can generate the context-aware
representation for each level. The main contributions of this
work are summarized as follows:

o This paper discusses the problems of existing methods
for FPN and proposes three modules to tackle the issues
separately.

o The proposed MCFPN can be flexibly plugged into
the existing bottom-up backbone network for generating
multi-scale features. It serves as an alternative to FPN,
aiming to improve the baseline performance of existing
mainstream detectors. In particular, our work surpasses
the NAS-FPN [27] with fewer parameters and computa-
tion costs.

« Extensive experiments are carried out on multiple visual
tasks, including object detection, instance segmentation,
semantic segmentation, panoptic segmentation, and object
classification. The experimental results show that our
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improvement is promising compared to other FPN-based
methods.

The remainder of this paper is organized as follows.
Section IT gives a short overview of the related works.
In Section III, the proposed MCFPN is presented in detail.
Extensive experimental results and analysis are presented in
Section IV and Section V. Finally, we summarize the entire
paper in Section VI.

II. RELATED WORK
A. Object Detection

In recent years, thanks to the rapid development of deep
learning techniques, remarkable progress has been achieved
in computer vision, especially object detection. Existing object
detection methods can be roughly grouped into two strands,
i.e., two-stage and one-stage.

The methods in the first research strand resort to the metrics
behind the different stages for better detection performance.
As a pioneering approach to the two-stage detection meth-
ods [12], [13], [14], [15], [16], R-CNN [39] leverages selective
search [40] to produce region proposals and applies a convolu-
tional network to refine detection results. To boost the training
and inference speed, SPP [15] and Fast R-CNN [13] use spatial
pyramid pooling and Rol pooling respectively to incorporate
the feature extraction of the whole image and region features
generation into a unified pipeline. Faster R-CNN [16] designs
the region proposal network and implements an end-to-end
trainable detector, which brings significant improvement in
both detection performance and inference speed. After that,
a large number of efforts [12], [41], [42] have emerged to
improve Faster R-CNN from different aspects.

Contrastively, One-stage detectors [7], [8], [9], [10], [11] are
proved more efficient compared with two-stage methods. For
this branch, SSD [9] is a representative method, which makes
predictions under the condition of anchor boxes placed densely
on multi-scale features. RetinaNet [8] utilizes an FPN-like
architecture to abstract feature pyramid and designs a novel
focal loss to mitigate the imbalance issue inside examples.
Recently, anchor-free methods [11], [43], [44], [45] have
emerged, which aim at getting rid of the limitation of the pre-
defined sliding windows or proposals. e.g., ExtremeNet [11]
formulates the problem of object detection as four coordi-
nates detection of the objects. The methods mentioned above
make plausible improvements in detection performance with
different considerations. In this paper, we focus on better
exploitation of multi-scale features.

B. Multi-Scale Learning

Multi-scale learning, which exploits multi-scale information
to boost performance, has attracted tremendous research atten-
tion. Some methods follow a bottom-up paradigm to form
an accurate semantic context. For example, DenseNet [24]
establishes the dense-connected pathways between each layer
in the backbone. HRNet [25] adopts a parallel multi-scale
strategy, which gradually augments the high-scale branch by
aggregating context information from the low-scale branch.
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HRNetv2 [46] further proposes to aggregate multi-scale rep-
resentation for prediction instead of the only high-scale branch
in HRNet. Even though this design concept brings significant
performance improvement, it incurs a heavy computation
burden.

Inspired by the inherent feature hierarchy of convolu-
tion networks, feature pyramid technologies are proposed.
FPN [26] builds an in-network feature pyramid and makes pre-
dictions for different scales of region proposals. PAFPN [35]
proposes a path aggregation network to improve information
flow in the proposal-based instance segmentation framework.
CARAFE [33] proposes a lightweight and highly effective
operator to implement feature upsampling. SEPC [34] designs
a modified 3-D convolution to extract scale-invariant features.
NAS-FPN [27] applies reinforcement learning to automati-
cally search a powerful FPN network. AugFPN [30] jointly
uses consistent supervision, residual feature augmentation,
and soft Rol selection to further exploit the potential of
features in different scales. DyFPN [31] adaptively executes
the combinations of the convolutional layers according to
a learnable gating operation. Motivated by imagery super-
resolution, EFPN [47] utilizes a feature texture transfer layer
to detect small objects. ImFPN [17] takes two steps to extract
superior representations: 1) Group channels of the feature
twice to enhance intra-group channel interaction. 2) Apply a
similarity-based fusion module to achieve cross-layer fusion
in the pyramid. CE-FPN [37] employs sub-pixel convolution
to enhance the original feature, and then learns the channel
weights of different levels to focus on the relevant parts by
channel attention guided module. CATFPN [36] constructs
multiple feature pyramids and fuses the context information
belonging to different pyramids through the designed scale-
wise feature concatenation module. Based on SSD, ESC-
Net [38] designs the enhanced context module and triple
attention module for enhancing the context information of the
shallow layers. MHN [48] proposes a multi-branch and high-
level semantic network by gradually splitting a base network
into multiple different branches.

Compared with the above methods, we propose a progres-
sive learning scheme to unleash the power of feature pyramid
representation. Based on the dilated contextual information,
we first adopt an interactive strategy to fuse the context
information of adjacent levels, and then narrow the semantic
gap at different levels in an adaptive learning manner.

C. Attention Mechanism

Motivated by the human visual mechanism, attention mech-
anism has played a significant role in the domain of computer
vision and is widely applied in various visual tasks, e.g., image
classification [49], [50], [51], image caption [52], [53], [54],
and visual question answering [55], [56], [57]. Specifically,
attention mechanisms are to guide the model focusing on the
most informative part of the input and suppressing irrelevant
parts. Recently, there are many efforts devoted to the study
of attention mechanisms. SENet [58] introduces the attention
mechanism from the perspective of channels, allowing for
different weights based on the contribution of each channel.
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(b) Our MCFPN

Fig. 1. The illustration of the FPN and our MCFPN.

For characterizing the discriminative presentation, the CBAM
module [59] takes attention from spatial and channel views
into account simultaneously. Similar to CBAM [59], the BAM
module [60] constructs a hierarchical attention at bottlenecks.
In method [61], the attention mechanism is introduced to
allow each neuron to adaptively adjust its receptive field size
based on multiple scales of input information. In contrast to the
aforementioned methods, we apply the attention mechanism
on features in the FPN architecture to locate the discrim-
inative regions from both spatial and channel perspectives
respectively.

III. THE PROPOSED APPROACH

In this section, we introduce a Multi-Scale Context-Aware
Feature Pyramid Network (MCFPN) to unleash the power
of feature pyramid representation. The overall framework of
MCFPN is shown in Fig. 2. MCFPN is mainly formed by three
components: Dilated Residual Block, Cross-scale Context
Aggregation Block, and Adaptive Context Aggregation Block.
We will describe them in detail in the following subsections.

A. Preliminaries

Feature Pyramid Network (FPN) is widely adopted in the
existing bottom-up framework to tackle the issue of scale
variances. In the feature extraction stage, as shown in Fig. 1(a),
FPN exploits the inherent multiscale, pyramidal hierarchy of
the convolution network to produce enhanced feature repre-
sentation through cross-scale interactions. The paradigm of
FPN mainly consists of a bottom-up pathway, a top-down
pathway, and lateral connections, which are described in the
following:

Firstly, the bottom-up pathway is a feed-forward process
of the backbone and derives a feature pyramid with diverse
scales. More formally, we denote the output of the backbone
(e.g., ResNet) at each stages as C = {Cy, C2, C3, C4} with
stride factors of {4, 8, 16, 32}.

Then, considering the parameters of the detection heads
are shared across different stages, FPN aligns the feature
dimension (number of channels) for all feature maps through
the lateral connections. Concretely, for ResNet-50, the number
of channels varies from 256 to 2048. The lateral connections
employ a 1 x 1 convolutional layer to generate features C; of
the same channel dimension.

C; = Conv(C;) (1)
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Fig. 2. The overall framework of MCFPN. CAB: Channel-guided Aggregation Block. SAB: Spatial-guided Aggregation Block. DR: Dependency Refinement.
MCFPN consists of three components: Dilated Residual Block (DRB), Cross-scale Context Aggregation Block (CCAB), and Adaptive Context Aggregation

Block (ACAB).

Finally, the high-level feature map is propagated to low-
level through a top-down pathway. The top-down pathway
includes two sub-stages: 1) Scale matching. FPN generates
high-resolution features by upsampling features from high
pyramid levels. 2) Feature fusion. The above-acquired feature
maps are further enhanced with features from low levels
through element-wise addition operation.

C, i =4,
Up(Pi1) +Cj, i <4
where Up(-) refers to the upsampling operation, + stands for
element-wise addition. In this way, we can obtain the enhanced

features P = {P;, P>, P3, P4}, thus spreading the high-level
semantic feature representation at all scales.

1

)

B. Dilated Residual Block

FPN propagates the high-level feature to other levels
through the top-down pathway and lateral connection. The
low-level features can obtain rich context information by
integrating with the semantic information from the high level.
However, the high-level feature is not fully utilized in the
current network, which limits the further improvement of
detection performance. Furthermore, the high-level feature
also suffers from context information loss due to channel
reduction (e.g., from 2048 to 256). Therefore, how to obtain
the high-level feature with rich context information is vital for
the feature pyramid.

Motivated by the above observation, we propose a Dilated
Residual Block (DRB) to integrate the context information
from different receptive fields. As shown in Fig. 2, after
obtaining the feature map, we input it into DRB to take
advantage of rich context information. Firstly, DRB uses one
1 x 1 convolution layer to reduce the number of channels,
and then adds one 3 x 3 convolution layer to refine the
semantic contexts. Finally, we feed the obtained feature map
into the stacked residual block. Each residual block contains
3 layers (two 1 x 1 convolution layers, and one 3 x 3 dilated
convolution layer). Notably, each 3 x 3 dilated convolution

layer has a different dilation rate. In this paper, we stack
4 residual blocks, of which the dilation rates are 2, 4, 6, and
8 respectively.

C. Cross-Scale Context Aggregation Block

Following the common setting in FPN, the high-level feature
is matched with the low-level feature scale by upsampling
operation. Then, the two adjacent levels are fused by an
element-wise addition operation. However, this process may
accumulate redundant information or extra noise after multiple
rounds of transmission. Inspired by the success of HRNet [25]
employing multi-scale branch interaction, we propose a Cross-
scale Context Aggregation Block (CCAB) to efficiently inte-
grate adjacent-level features. By establishing independent
branches, CCAB can separately learn the contextual represen-
tations of various scales to suppress the noise from high-level.
Fig. 3 illustrates the detail of the feature fusion strategy in
FPN and CCAB.

We denoted that the i,; CCAB is CCAB!. The input of
CCAB! is f*1 and f!. Firstly, we refine the input features
by one 3 x 3 convolution layer respectively.

f' = Conv(f")

fi+1 — Conv(fi+l) (3)

Then, the two branches are cross-fused._ Specifically, f J is
fused with f*! by downsampling, and fi*! is fused with f!
by upsampling.

h' = Conv(f') + Conv(Up(fi+1))

't = Conv(Down( f)) + Conv(fi*1h) “)

After that, the lower branch is fused with the upper branch
through the upsampling.

o' = Conv(h') + Conv(Up(hi+1)) (5)

Finally, we use the fused feature o' as supplementary infor-
mation to the low-level feature f’ through the residual con-
nection. Because the traditional 3 x 3 convolution will bring
the computation burden, we propose two cross-scale context
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aggregation blocks: light CCAB (using depth-wise separable
convolution) and CCAB (using traditional convolution). The
corresponding feature pyramid networks are MCFPN-Lite and
MCFPN.

D. Adaptive Context Aggregation Block

Although the high-level context is propagated to the low
level, the low-level context cannot be propagated to the high
level. Worsely, high-level semantic information will be diluted
during propagation. Therefore, there are still semantic gaps
between different levels. Inspired by the work of SKNet [61],
two Adaptive Context Aggregation Blocks are designed to
calculate the channel and spatial weights of different feature
maps in the pyramid, namely, Channel-guided Aggregation
Block (CAB) and Spatial-guided Aggregation Block (SAB).
In this way, the learned weight can guide the network to pay
more attention to the relevant context, forming a balanced
global context. As depicted in Fig. 2, hierarchical feature
maps are fed into CAB and SAB to produce corresponding
feature maps. Then, the two feature maps are fused to acquire
the enhanced context information. Considering that different
layers have different scales, we first unify the scales of the
hierarchical features to a fixed scale through up- or down-
sampling operation, and then feed them into the Adaptive
Context Aggregate Blocks. In this paper, we choose the
intermediate scale of the hierarchical feature by default.

1) Channel-Guided Aggregation Block: In order to explore
the correlation between channels, we propose a Channel-
guided Aggregation Block (CAB) to adaptively learn the

The overall framework of Adaptive Context Aggregation Blocks. (a): Channel-guided Aggregation Block (CAB). (b): Spatial-guided Aggregation

weights of different feature maps on the channel. As presented
in Fig. 4, it is assumed that the number of pyramid features
is 3 for simplicity. First, we can obtain their holistic seman-
tic representation X by an element-wise addition operation.
Then, a global average pooling (GAP) layer is utilized to
output the corresponding global channel information. After
that, we use a fully connected (FC) layer to squeeze the
global channel information by reducing the channel dimension
(e.g., from 256 to 128). Further, we use 3 FC layers and
softmax operation to adaptively calculate the channel weights
w; of different feature maps. Finally, the enhanced feature map
V¢ is obtained according to the channel weight of each layer,
ie, Ve = Z?: 1| Xiw;. It should be emphasized that we focus
on assessing the weight of all pyramid levels on the same
channel.

2) Spatial-Guided Aggregation Block: For pyramid fea-
tures, different layers contain diverse semantic information,
they should assign different weights for the same location.
To address this issue, we propose a Spatial-guided Aggrega-
tion Block (SAB) to learn the spatial weights of different
levels adaptively. As shown in Fig. 4, a global semantic
representation X of pyramid features is acquired by an
element-wise addition operation. Then, we exploit the average
pooling and maximum pooling operations on feature map X
along the channel dimension to generate two different spatial
context descriptors, i.e., Avg(f(), Max(f(). And, we use the
concatenation operation to fuse the two descriptors. After
that, we can obtain spatial weights w;(x,y) of each layer
by 3 convolutional (Conv) layers and softmax operations.
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TABLE I

OBJECT DETECTION MAP ON MS COCO TEST-DEV SUBSET. THE SYMBOL ‘*” MEANS OUR
RE-IMPLEMENTATION RESULTS. ‘SCH.” IS SHORT FOR THE TRAINING SCHEDULE

l Method Backbone [ Sch. [ APy AP50 APr75 APg AP AP,
Libra R-CNN [62] R50-FPN 1x 38.7 59.9 42.0 22.5 41.1 48.7
Libra R-CNN [62] R101-FPN 1x 40.3 61.3 439 22.9 43.1 51.0

PANet [63] R50-PAFPN 1x 38.0 59.0 41.3 22.1 41.2 46.9
Faster R-CNN [33] R50-CARAFE 1x 38.1 60.7 41.0 22.8 41.2 46.9
Faster R-CNN [30] R50-AugFPN 1x 38.8 61.5 42.0 23.3 42.1 47.7
Faster R-CNN [30] R101-AugFPN 1x 40.6 63.2 44.0 24.0 44.1 51.0
Faster R-CNN [31] R50-DyFPN 1x 39.0 60.7 42.2 22.4 41.8 49.0
Faster R-CNN [31] R101-DyFPN 1x 40.8 62.4 44.6 23.4 44.2 51.7
Faster R-CNN [27] R50-NAS-FPN 1x 39.0 59.5 424 224 42.6 47.8
Faster R-CNN [27] R101-NAS-FPN 1x 40.3 61.2 43.8 23.1 439 50.1

RetinaNet* R50-FPN 1x 36.9 56.2 39.3 20.5 39.9 46.3

RetinaNet(ours) R50-MCFPN 1x 39.0[+2.1] 58.9 41.7 222 423 49.2
FCOS* R50-FPN 1x 36.9 56.7 39.3 20.6 39.5 46.0
FCOS(ours) R50-MCFPN 1x 37.9[+1.0] 57.5 40.5 20.6 40.5 48.3
TOOD* R50-FPN 1x 42.7 60.3 46.5 24.7 45.5 53.0
TOOD(ours) R50-MCFPN Ix 44.0[+1.3] 61.8 47.7 25.6 47.2 54.8
DDOD* R50-FPN Ix 42.0 60.6 46.0 23.8 44.7 53.2
DDOD(ours) R50-MCFPN 1x 43.0(+1.0] 61.6 46.8 24.5 45.7 54.2
Faster R-CNN* R50-FPN 1x 37.8 58.9 41.0 22.0 40.9 46.9
Faster R-CNN(ours) R50-MCFPN-Lite 1x 39.8[+2.0] 61.1 43.2 23.2 42.8 49.8
Faster R-CNN(ours) R50-MCFPN 1x 40.6[+2.8] 61.9 44.2 23.7 43.6 50.5
Faster R-CNN* R101-FPN 1x 39.7 60.7 43.2 22.5 42.9 49.9
Faster R-CNN(ours) R101-MCFPN-Lite 1x 41.4[+1.7] 62.6 45.2 23.8 44.4 52.5
Faster R-CNN(ours) R101-MCFPN-Lite 2% 41.6[+1.9] 62.4 45.3 23.5 44.4 52.8
Faster R-CNN(ours) R101-MCFPN 1x 42.2[+2.5] 63.4 46.1 24.8 45.3 52.6
Faster R-CNN* X101-FPN 1x 42.5 63.8 46.5 25.4 46.0 533
Faster R-CNN(ours) X101-MCFPN-Lite 1x 43.6[+1.1] 65.0 47.7 26.2 46.7 55.0
Faster R-CNN(ours) X101-MCFPN 1x 44.3[+1.8] 65.4 48.4 26.5 47.7 55.6
Mask R-CNN* R50-FPN 1x 38.5 59.4 419 22.1 41.5 48.0
Mask R-CNN(ours) R50-MCFPN-Lite 1x 40.5[+2.0] 61.5 44.2 23.6 433 50.5
Mask R-CNN(ours) R50-MCFPN 1x 41.5[+3.0] 62.2 454 24.4 44.5 51.7
Mask R-CNN* R101-FPN 1x 40.4 61.2 44.1 23.1 43.5 50.8
Mask R-CNN(ours) R101-MCFPN-Lite 1x 42.2[+1.8] 63.3 46.2 24.6 45.1 53.3
Mask R-CNN(ours) R101-MCFPN-Lite 2% 42.7(+2.3] 63.3 46.6 24.8 45.8 53.9
Mask R-CNN(ours) R101-MCFPN 1x 42.9[+2.5] 63.8 47.0 25.3 46.1 53.8
Cascade Mask* R50-FPN 1x 41.4 59.7 45.2 23.3 44.1 52.7
Cascade Mask(ours) R50-MCFPN-Lite 1x 43.1[+1.7] 61.8 46.8 25.0 45.7 539
Cascade Mask(ours) R50-MCFPN 1x 43.9[+2.5] 62.5 47.8 25.8 46.6 54.4
Cascade Mask™ R101-FPN 1x 43.2 61.5 47.2 244 46.0 55.0
Cascade Mask(ours) R101-MCFPN-Lite 1x 44 .4[+1.2] 63.1 48.3 25.8 47.2 56.3
Cascade Mask(ours) R101-MCFPN 1x 45.1[+1.9] 63.7 49.0 25.9 479 56.6
Cascade Mask™* Swin-T-FPN 1x 48.5 67.8 52.6 29.6 51.2 61.9
Cascade Mask(ours) Swin-T-MCFPN 1x 49.7[+1.2] 68.7 53.9 31.3 52.5 62.8
Dynamic R-CNN* R50-FPN 1x 39.2 58.3 42.9 22.1 41.9 49.6
Dynamic R-CNN(ours) R50-MCFPN Ix 42.0[+2.8] 60.9 46.0 24.2 44.6 52.8
SABL* R50-FPN 1x 40.1 58.5 429 23.0 435 49.6
SABL(ours) R50-MCFPN 1x 42.8[+2.7] 61.3 46.0 24.7 459 53.5
Finally, feature map Vs(x,y) is produced according to IV. EXPERIMENTS

the

spatial weight

of each

layer. i.e.,

Vs(x,y)

= In this section, we first describe the experiment setups,

Z?:l X;(x,y)wi(x,y), where (x,y) indicates the index of

pixel in feature map.

3) Dependency Refinement: After aggregating features
under the channel and spatial information guidance, we use
the dependency refinement (DR) module to generate a more
discriminative feature. Experiments conducted on the existing
attention blocks (e.g.., SEBlock [58], CBAM [59], Non-
Local module [62], and GCBlock [63]), demonstrate that
both GCBlock [63] and Non-Local module [62] can work
well. Non-Local [62] brings a lot of parameters and compu-
tation burden compared with GCBlock. Thereby, we choose
GCBlock [63] as the default setting in this paper. By effec-
tively capturing the long-distance dependencies, the accuracy
is further improved.

including the dataset description, evaluation metrics, and
implementation details. Then, we report the performance of
our approach and compare it with the state-of-the-art methods.

A. Dataset and Evaluation Metrics

Our experiments are mainly conducted on the challenging
MS COCO 2017 benchmark [66], which is split into three
subsets: train2017 (118k images), val2017 (5K images), and
test-dev (20k images). Following the common consensus,
we train the models on train2017 and report the main results on
the test-dev set, which is received from the evaluation server.
In addition, we use val2017 as validation for the ablation study.

For performance evaluation, COCO Average Precision
(AP) metrics are mainly used to evaluate the detection
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TABLE III

PERFORMANCE COMPARISON BETWEEN DIFFERENT MODELS ON MS
COCO TEST-DEV SUBSET IN TERMS OF AP, PARAMETERS, AND
FLOPs. THE DEFAULT DETECTOR IS FASTER R-CNN R-50

performance of compared methods, which is calculated
under 10 Intersection-over-Union (IoU) thresholds between
0.50 and 0.95. In addition, we also calculate the AP at
TIoU=0.50 and IoU=0.75 respectively.

B. Implementation Details

In this paper, we employ the open-source MMDetection
toolkit' to implement our method, which is performed on a
machine with 4 Nvidia RTX 2080Ti GPU cards (2 images per
card). The proposed method is implemented in Pytorch [67]
framework. According to the common setting of MMDetec-
tion, we resize the input images to a maximum scale of
1333 x 800 pixels while keeping the original aspect ratio.
The Stochastic Gradient Descent (SGD) algorithm is used
to optimize the proposed model in the training stage, which
includes two training strategies (1x and 2x). By default, the
initial learning rate is set to 0.01. In 1x schedule, models are
trained for 12 epochs, in which the learning rate of the 8th
and 11th epoch decreases by a ratio of 0.1. In 2x schedule,
models are trained for 24 epochs, in which the learning rate
of the 16th and 22th epoch decreases by a ratio of 0.1. Unless
otherwise specified, all other hyper-parameters in this paper
follow the settings in MMDetection.

C. Results on Instance-Level Prediction

To verify the effectiveness of our method, we evaluate
MCEFPN on the COCO test-dev subset. As shown in Table II,
MCEFPN significantly outperforms the improved FPN methods
by a large margin. In particular, our method is superior to

1 https://github.com/open-mmlab/mmdetection

Method Backbone Neck Sch. | AP AP50 AP75
AugFPN [30] | 1x | 375 584 40.1 Model APy, GFLOPs Params
CEFPN [65] 1x |37.8 574 40.1 R50-FPN [26] 37.8 207.07 41.53
RetinalNet Rso | ImFPN[17] | 1x |381 582 409 R50-PAFPN [35] 38.0 368.13 53.86
OPA-FPN [28] | 1x |380 - - R50-CARAFE [33] 38.1 210.02 47.13
MCFPN 1x [39.0 589 41.7 R50-AugFPN [30] 38.8 220.21 43.58
EFPN [47] - 382 - - R50-DyFPN [31] 39.0 537.50 144.40
AugFPN [30] | 1x |38.8 61.5 42.0 R50-NAS-FPN [27] 39.0 666.90 68.20
CEFPN [65] 1x |38.8 605 419 R101-FPN [26] 39.7 283.14 60.52
Faster RROCNN | Rso | DYFPN[31] | 1x [39.0 60.7 422 MCFPN-Lite 398 242.30 4535
ImFPN [17] 1x 395 605 429 MCFPN 40.6 494.30 57.88
OPA-FPN [28] | 1x |40.1 - -
MCFPN 1x [40.6 619 44.2
AugFPN [30] | 1x |40.6 632 440 TABLE IV
DyFPN [31] | 1x | 408 624 446 MEAN AND STANDARD DEVIATION OF THE PROPOSED
Faster RRCNN | RI101 CEFPN [65] | 1x | 409 625 444 METHOD ON MS COCO TEST-DEV
ImFPN [17] | 1x |412 621 450
MCFPN _ | 1x |42.2 634 461 Method st 2nd  3rd _ 4th 5t | Mean St
AEEEI;I\I[‘E]OJ . ﬁg o o MCFPN-Lite | 30.8 390 39.8 398 399 | 39.84 0.049
Faster R-CNN X101 CEFPN [65] Ix | 431 647 469 MCFPN 40.7 40.7 40.7 40.6 40.7 | 40.68 0.04
MCFPN 1x | 443 654 484
AugFPN [30] | 1x |39.5 61.8 429
Mask R-CNN R30 AuMFCPl;\}I)IFS ol K Z}'g gg'g ii'g NAS-FPN [27] in performance, but with fewer parameters and
Mask RCNN | R101 | € A-%FPN 36] | 2x |423 622 436 computation. The comparisons of parameters and computation
MCFPN 1x | 429 638 470 among these methods are listed in Table III. Despite the

increased complexity, we believe that the stable performance
gain mainly derives from the proposed novel structure. e.g.,
R101-FPN outperforms R50-FPN due to its powerful feature
extraction capability. However, compared with R101-FPN,
our R50-MCFPN-Lite can achieve comparable performance
but along with fewer parameters and computation. This phe-
nomenon indicates that our novel design can bridge the gap
brought by the backbone, resulting in an obvious performance
improvement.

For a fair comparison, we re-implement the mainstream
detectors. All results are shown in Table I and V. By replacing
FPN with MCFPN-Lite, the baseline methods are improved
obviously. For Faster R-CNN using ResNet50 as the backbone,
our method achieves 39.8 AP, which is 2.0 points surpass-
ing Faster R-CNN on ResNet50-FPN. When replacing other
training strategies or more powerful backbones, our method
shows improvement consistently. For example, when replacing
the backbones with ResNet1l01 and ResNext-64 x 4d, our
method improves the 1.7 and 1.1 AP respectively. When
the training strategy is changed to 2x, Faster R-CNN on
ResNet101 improves the 1.9 AP. Furthermore, we also evaluate
our method on Mask R-CNN and Cascade Mask R-CNN. For
Mask R-CNN on ResNet50, increments of 2.0 detection AP
and 1.5 segmentation AP are observed. When the backbone is
changed to ResNet101, Mask R-CNN achieves the improve-
ments of 1.8 detection AP and 1.3 segmentation AP. When
replacing FPN with MCFPN, Faster R-CNN on ResNet50
increases the detection AP by 2.8 points. For Mask R-CNN on
ResNet50, our method achieves the improvement of 3.0 detec-
tion AP and 2.4 segmentation AP, respectively. When the
backbone is replaced with the transformer-based structure,
our method is still significantly improved. For Cascade Mask
R-CNN w/ SwinT, our method obtains the improvements
of 1.2 detection AP and 1.0 segmentation AP. In addition,
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TABLE V

INSTANCE SEGMENTATION MASK AP ON MS COCO TEST-DEV SUBSET. THE SYMBOL ‘*’ MEANS OUR
RE-IMPLEMENTATION RESULTS. ‘SCH.” IS SHORT FOR THE TRAINING SCHEDULE

[ Method [ Backbone [ Sch. ] AP, ask AP5q AP75 APg AP AP, ]
Mask R-CNN* R50-FPN 1x 34.9 56.4 37.2 18.9 37.6 45.2
Mask R-CNN(ours) R50-MCFPN-Lite 1x 36.4[+1.5] 58.4 39.0 20.0 38.9 47.2
Mask R-CNN(ours) R50-MCFPN 1x 37.3[+2.4] 59.2 40.0 20.7 39.7 48.3
Mask R-CNN* R101-FPN 1x 36.5 58.3 38.9 19.6 39.2 47.8
Mask R-CNN(ours) R101-MCFPN-Lite 1x 37.8[+1.3] 60.3 40.6 20.8 40.5 49.6
Mask R-CNN(ours) R101-MCFPN-Lite 2% 38.2[+1.7] 60.6 41.0 20.9 41.0 49.7
Mask R-CNN(ours) R101-MCFPN 1x 38.4[+1.9] 60.9 41.1 21.3 41.1 50.3
Cascade Mask* R50-FPN 1x 36.1 57.0 39.0 19.1 38.5 47.4
Cascade Mask(ours) R50-MCFPN-Lite 1x 37.6[+1.5] 59.0 40.4 20.6 39.8 48.8
Cascade Mask(ours) R50-MCFPN 1x 38.2[+2.1] 59.9 41.1 21.3 40.6 49.0
Cascade Mask* R101-FPN 1x 37.6 58.9 40.5 20.1 40.2 494
Cascade Mask(ours) R101-MCFPN-Lite 1x 38.8[+1.2] 60.6 41.9 21.2 41.1 51.0
Cascade Mask(ours) R101-MCFPN 1x 39.2[+1.6] 61.2 423 21.2 41.7 51.0
Cascade Mask™ Swin-T-FPN 1x 422 65.2 45.6 24.1 44.7 56.1
Cascade Mask(ours) Swin-T-MCFPN 1x 43.2[+1.0] 66.3 46.6 25.6 45.6 57.0
TABLE VI
SEMANTIC SEGMENTATION: PERFORMANCE COMPARISONS BETWEEN FPN AND MCFPN ON CITYSCAPES VAL SUBSET
[ Method [ Backbone [ Crop Size [ Sch. [ mloU mAcc aAcc |
FPN 74.5 81.9 95.8
MCFPN-Lite(ours) R50 512%1024 80k 785(+4.0) 85.8(+3.9) 962(+0.4)
MCFPN(ours) 80.1(+5.6) 87.2(+5.3) 96.4(+0.6)
FPN 75.8 83.4 96.0
MCFPN(ours) 80.5(+4.7) 87.8(+4.4) 96.4(+0.4)
FPN 76.5 84.1 96.0
MCFPN-LHC(OUI’S) PointRend R50 512%1024 80k 788(+2.3) 866(+2.5) 963(+0.3)
MCFPN(ours) 80.0(+3.5) 87.7(+3.6) 96.5(+0.5)
FPN 78.3 85.7 96.2
MCFPN-Lite(ours) PointRend R101 512% 1024 80k 80.3(+2.0) 87.4(+1.7) 96.5(+0.3)
MCFPN(ours) 80.7(+2.4) 87.8(+2.1) 96.5(+0.3)

we also verify our method on two one-stage detectors: anchor-
based RetinaNet and anchor-free FCOS. Our method can
bring 2.1 and 1.0 AP respectively. As shown in Table I
and Table V, our method can be well applied to all kinds of
detectors, backbones, and training strategies. This substantiates
the robustness and generalization ability of our method. Fig. 5
presents some detection examples to qualitatively compare
FPN and MCFPN. It can be seen that MCFPN can better
mine the visual features of the objects, so as to locate the
objects precisely. Moreover, our method produces satisfactory
results in different scales of object detection, compared with
traditional FPN.

In order to validate the stability of the proposed method,
we conduct additional experiments through multiple rounds
of experiments. As shown in Table IV, our method achieves
consistent performance gain and relatively low standard devi-
ation.

D. Results on Pixel-Level Prediction

Besides, we conduct experiments to demonstrate the effec-
tiveness of MCFPN on the task of pixel-level prediction.
Specifically, we evaluate MCFPN on Cityscapes [68] for
semantic segmentation and MS COCO for panoptic segmen-
tation.

Cityscapes is a large-scale dataset for the semantic under-
standing of urban street scenes. It mainly contains street

scenes from 50 different cities, and has 5000 high-quality pixel
annotation images of driving scenes in the urban environment.
Cityscapes is divided into training set, verification set and
test set, including 2975, 500 and 1525 images respectively.
MS COCO panoramic segmentation is a widely used bench-
mark, which contains 53 stuff classes and 90 thing classes.
It has 118k training images, 5K validation images, and 20k
test images.

The detailed empirical comparisons to FPN on two tasks
are shown in Table VI and VII, respectively. MCFPN obvi-
ously outperforms FPN on different scenarios of tasks. The
experimental results have the following detailed observations.

First, our method has obtained continuous performance
improvement by replacing different backbones (ResNet 50 vs
ResNet101). MCFPN improves the mloU, mAcc, and aAcc
by 5.6 points, 5.3 points and 0.6 points on Cityscapes seman-
tic segmentation. When replaced with the strong backbone
(ResNet101), MCFPN obtains performance gains of 4.7 point,
4.4 point and 0.4 point on mloU, mAcc, and aAcc, respec-
tively.

Second, MCFPN-Lite can achieve significant performance
improvement compared with FPN, while MCFPN can achieve
further performance improvement based on MCFPN-Lite.
As shown in Table VII, for PQ, PQ"* and PQ*! evaluation indi-
cators, MCFPN-Lite obtains performance gains of 1.4 points,
1.3 points, and 1.4 points respectively on the MS COCO
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TABLE VII
PANOPTIC SEGMENTATION: PERFORMANCE COMPARISONS BETWEEN FPN AND MCFPN ON MS COCO vAL2017 SUBSET
Method [ Backbone [ PQ pPQh PQst [ mloU [ APy, [ APmask |
FPN 39.4 459 29.6 41.2 37.6 34.7
MCFPN-Lite(ours) PanopticFPN R50 40.8(+1.4) 47.2(+1.3) 31.0(+1.4) 42.4(+1.2) 39.7(+2.1) 36.2(+1.5)
MCFPN(ours) 41.4(+2.0) 48.3(+2.4) 31.1(+1.5) 42.8(+1.6) 40.3(+2.7) 36.6(+1.9)

Fig. 5.
row is the result of MCFPN.

TABLE VIII
CLASSFICATION RESULTS ON CIFAR-100 DATASET

Object Detection: Visual comparison between FPN and MCFPN on MS COCO val2017 subset. The first row is the result of FPN, and the second

TABLE IX

PERFORMANCE COMPARISON OF EACH COMPONENT OF
MCFPN oN MS COCO vAL2017 SUBSET

Method Top-1 Accuracy(%) Top-5 Accuracy(%)

R50 76.39 92.96 DRB CCAB ACAB APy AP50 AP75

Ours 78.57[+2.18] 94.10[+1.14] 374 58.4 40.6

R101 76.78 93.39 v 38.9 60.0 42.0

Ours 78.82[+2.04] 94.52[+1.13] v 38.1 58.7 414

v 38.3 59.5 41.4

v v 394 59.8 43.0

. . v v 39.2 60.3 42.6

val set. When replaced with MCFPN, the performance gains v v 40.0 60.8 436
of 2.0 points, 2.4 points and 1.5 points are obtained. v v v 40.5[+3.1]  61.4[+3.0]  43.9[+3.3]

Third, MCFPN is suitable for more sophisticated mask
heads, e.g., PointRend. For the semantic segmentation task,
MCFPN obtains the performance gain of 3.5 points mloU,
3.6 points mAcc and 0.5 points aAcc compared with FPN.

E. Results on Image-Level Prediction

Finally, we conduct additional experiments to evaluate the
performance of MCFPN on the classification task. All exper-
iments are implemented on the common object classification
dataset CIFAR-100 [69]. CIFAR-100 contains a total of 60k
images in 100 classes, of which 50k are used for training
and 10k are used for testing. The experimental results are
reported in Table VIII. Considering that CIFAR-100 contains
100 classes, Top-1 and Top-5 are adopted as evaluation met-
rics. The Top-1 accuracy of R50+MCFPN is 78.57%, which
is better than the baseline by 2.18% (76.39% vs. 78.57%).
When coupled with R101, in terms of Top-1 and Top-5,
our method brings a performance improvement of 2.04%

and 1.13% respectively. This consistent accuracy gain proves
the possibility of multi-scale context-aware representation in
improving classification performance.

V. ABLATION STUDIES

In this section, we perform ablation experiments to demon-
strate the effectiveness of our modules on COCO val2017.
All the experiments are conducted on the Faster R-CNN
framework with ResNet50 as the default backbone.

A. Effectiveness of Each Module

To analyze the impact of each proposed component of
MCFPN, we report how the performance of the detector
can be improved when different modules are combined. The
default baseline method is Faster R-CNN with ResNet50-
FPN. As shown in Table IX, Dilated Residual Block (DRB)
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Fig. 6. Semantic Segmentation: Visual comparisons between FPN and MCFPN on Cityscapes validation subset. The second col is the result of FPN, and

the last col is the result of MCFPN.

Fig. 7.
the last col is the result of MCFPN.

improves the baseline methods by 1.4 AP. This is attributed to
the fact that DRB stacks multiple residual blocks to enhance
the receptive fields, which improves the ability of the network
to extract features. It also promotes the information trans-
mission of the top-down pathway. When incorporating the
Cross-scale Context Aggregation Block (CCAB), the detection
performance is improved from 37.4 to 38.1. CCAB uses an
interactive strategy to make full use of context information in
the pyramid. Moreover, Adaptive Context Aggregation Block
(ACAB) brings 0.9 detection AP gain. Under the guidance
of channel and spatial information, the network can learn
the weights of different features adaptively. By fusing the
original features, the representation capability of the network

Panoptic Segmentation: Visual comparisons between FPN and MCFPN on MS COCO validation subset. The second col is the result of FPN, and

can be increased. When different modules are combined,
the performance improvement is enhanced more obviously.
For example, when DRB and CCAB are combined, which
contributes to a 2.0 improvement. When all three modules
work at the same time, which brings 3.1 detection AP gain.
This verifies the fact that our proposed modules complement
each other.

B. Effectiveness of Dilated Residual Block

The results of the ablation study on the different dilations
are listed in Table X. In order to further evaluate the impact of
multi-scale context information, we use the different numbers
of blocks and dilation rates for the DRB module. When we
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TABLE X

OBJECT DETECTION PERFORMANCE OF THE PROPOSED DILATED RESIDUAL BLOCK WITH DIFFERENT
SETTINGS(e.g.NUM, DILATIONS) ON MS COCO VAL2017 SUBSET

Num Dilations APy APs5q APrs5 Params GFlops
0 - 37.6 58.4 40.9 42.64 208.18
1 1 37.9 58.7 41.2 42.86 208.39
2 2,4 38.6 59.3 41.9 43.07 208.61
3 2,4,6 38.8 59.9 41.9 43.28 208.82
4 2,4,6,8 38.9 60.0 42.0 43.50 209.04
4 4.8,12,16 38.4 59.4 42.0 43.50 209.04
5 2,4,6,8,10 38.8 59.9 41.8 43.71 209.25
TABLE XI

OBJECT DETECTION PERFORMANCE OF THE PROPOSED DILATED RESIDUAL BLOCK AND EXISTING
ENHANCEMENT METHODS ON MS COCO VAL2017 SUBSET

Config APy AP50 AP75 Params GFlops
baseline 37.4 58.4 40.6 41.53 207.07
+ PPM 38.2 59.5 41.3 42.64 207.92
+ ASPP 38.4 59.8 414 44.28 209.75
+ DenseASPP 38.6 60.3 42.0 46.38 211.92
+ Non-Local 38.2 59.7 41.5 42.32 207.85
+ DRB 38.9 60.0 42.0 43.50 209.04
TABLE XII

ABLATION PERFORMANCE OF ADAPTIVE CONTEXT AGGREGATION BLOCK ON MS COCO vAL2017 SUBSET

Config APy AP35 AP75 Params GFlops
baseline 374 58.4 40.6 41.53 207.07
+Aggregation 38.0 59.2 41.1 41.73 207.07
+Refinement 38.3 59.5 414 41.74 207.07

+DRB

Base

Fig. 8.
in turn.

increase the number of residual blocks in turn, the performance
improves consistently. But when the number of blocks reaches
a certain level, the performance tends to be stable. The
detection performance is saturated when the dilation ratio is 2,
4, 6, 8. We suspect that the dilations of 2, 4, 6, 8 are enough to
match most of the object scales. In addition, we also compare
the Dilated Residual Block (DRB) module with other context
modules. The results are shown in Table XI. Experimental
results demonstrate that our DRB has obvious advantages over
other context modules. Compared with PPM [70], ASPP [71],
DenseASPP [72] and Non-Local module [62], DRB improves
0.7, 0.5, 0.3 and 0.7 AP respectively.

C. Effectiveness of Adaptive Context Aggregation Block

To further narrow the semantic gap between different
levels, we introduce an adaptive context aggregation block.
The results of the Adaptive Context Aggregation Block are
reported in Table XII. When incorporating the guidance of
channel and spatial information on the baseline, it achieves

+CCAB +ACAB

Visualization of the effectiveness of our MCFPN. The first image is the default attention map. From left to right, we add DRB, CCAB, and ACAB

0.6 detection AP gain. When equipped with the Dependency
Refinement module, the detection performance is further
improved from 38.0 to 38.3. The experimental results show the
importance of channel and spatial information for multi-scale
feature fusion and explain that we can get a discriminative
context to supplement the original features.

D. Attention Visualization Analysis

In order to figure out how MCFPN works, we further
visualize the attention maps generated by MCFPN. The atten-
tion distribution can be visualized in Fig. 8. It can clearly
see that more object regions are activated when adding the
DRB. This is attributed to the fact that DRB can generate
features with multiple receptive fields, which cover the various
object scales. When we continue to add CCAB, the network
effectively suppresses the interference of backgrounds and
locates more regions of interest. Because the richer multi-scale
contextual information can be captured by interactive feature
learning. Finally, ACAB is used to further enhance the regions
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of interest. ACAB can adaptively learn the weights of different
levels and generate a discriminative context to supplement the
original pyramid features. Therefore, the semantic gap between
the levels of the pyramid is further reduced.

VI. CONCLUSION

In this paper, we analyze the key problems in traditional
FPN comprehensively. In order to address these issues, we pro-
pose a novel architecture, namely MCFPN, for the task of
object detection. MCFPN can effectively mine multi-scale
information at each level of the feature pyramid. In the high-
level stage, the dilated residual block is utilized to extract rich
context information to compensate for the context informa-
tion loss caused by channel reduction. Then, to effectively
aggregate the context of adjacent levels, the cross-scale context
aggregation block is utilized to incorporate multi-scale context
based on the interactive fusion strategy. Finally, the adaptive
context aggregation block is utilized to further narrow the
semantic gap between different levels of context information.
Extensive experiments demonstrate that MCFPN can signifi-
cantly improve the performance of numerous excellent detec-
tors. Additionally, the experiments on pixel-level prediction
tasks further confirm the effectiveness of the proposed method.
For future works, we plan to explore a more effective and
efficient network to achieve better performance in terms of
both accuracy and speed.
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