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The lack of interpretability of existing CNN-based hand detection methods makes it difficult to under- 

stand the rationale behind their predictions. In this paper, we propose a novel neural network model, 

which introduces interpretability into hand detection for the first time. The main improvements in- 

clude: (1) Detect hands at pixel level to explain what pixels are the basis for its decision and improve 

transparency of the model. (2) The explainable Highlight Feature Fusion block highlights distinctive fea- 

tures among multiple layers and learns discriminative ones to gain robust performance. (3) We intro- 

duce a transparent representation, the rotation map, to learn rotation features instead of complex and 

non-transparent rotation and derotation layers. (4) Auxiliary supervision accelerates the training pro- 

cess, which saves more than 10 h in our experiments. Experimental results on the VIVA and Oxford 

hand detection and tracking datasets show competitive accuracy of our method compared with state-of- 

the-art methods with higher speed. Models and code are available: https://isrc.iscas.ac.cn/gitlab/research/ 

pr2020-phdn . 
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. Introduction 

Deep neural networks are widely adopted in many fields of

tudy, e.g. , computer vision and natural language processing, and

chieve state-of-the-art results. However, as their inner workings

re not transparent, the correctness and objectivity of the predict-

ng results cannot be guaranteed and thus limit their development

n industry. In recent years, some researchers have begun to ex-

lore interpretable deep leaning methods. Zhang et al. [1] focuses

n network interpretability in medical image diagnosis. Montavon

t al. [2] decomposes output into contributions of its input fea-

ures to interpret the image classification network. There is also a

lear need to develop an interpretable neural network in driving

onitoring as the predicting results will directly affect the safety

f drivers, passengers, and pedestrians. In this paper, we present
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 highly interpretable neural network to detect hands in images,

hich is a basic task in driving monitoring. 

Hand detection in natural scenes plays an important role in vir-

ual reality, human-computer interaction, driving monitoring [3,4] .

t is a critical and primary task for higher-level tasks such as hand

racking, gesture recognition, human activity understanding. Partic-

larly, accurately detecting hand is a vital part in monitoring driv-

ng behavior [4,5] . Detecting hands in images is a challenging task.

he illumination conditions, occlusion, and color/shape similarity

ill bring great difficulties to hand detection. Moreover, hands are

ighly deformable objects, which hard to detect due to their vari-

bility and flexibility. Hands are not always shown in an upright

osition in images, so the rotation angle needs to be considered to

ocate the hand in images more accurately. 

The problem of hand detection has been studied for years.

raditional methods extract features such as skin-related features

6] , hand shape and background, Histograms of Oriented Gradients

HOG) [7] to build feature vector for each sample. Then these vec-

ors are used to train classifiers such as SVM [8] . Although the

and-crafted features have clear meanings and are easy to under-

tand, they are too limited to meet the requirements for the accu-

acy of hand detection in the real world. With the increasing in-

uence of Convolutional Neural Networks (CNNs) in the field of

omputer vision, many CNN-based object detection methods have

https://doi.org/10.1016/j.patcog.2020.107202
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Fig. 1. Different connection modes of multi-scale features. (a) Serial mode. (b) Cas- 

cade mode. 
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emerged, Region-Based Convolutional Networks(R-CNNs) [9] , Sin-

gle Shot MultiBox Detector (SSD) [10] , for example. Inspired by

these advances, many CNN-based methods have been proposed to

deal with hand detection. Features are extracted automatically by

designed CNNs from the original images [11,12] or the region pro-

posals [3] and then used to locate the hands in original images.

In order to extract as many effective features as possible to detect

hand more accurately, the network structure is always very com-

plicated and therefore has a heavy computational burden. This lim-

its its value in practical applications such as monitoring driving be-

havior and sign language recognition. The deep CNNs are used as

black-boxes in the existing methods. Different from hand-crafted

features, it is difficult to know the meaning of features extracted

by CNNs. As a result, the stability and robustness of these methods

cannot be guaranteed. 

In view of the issues mentioned above, we propose an inter-

pretable framework, Pixel-wise Hand Detection Network (PHDN),

to detect hands more efficiently. The proposed method achieves

better performance with faster computational speed. An explain-

able module named Highlight Feature Fusion (HFF) block is devel-

oped to get more discriminative features. With HFF block, PHDN

performs effectively and stably in different image contexts. To

the best of our knowledge, this is the first time to give reason-

able explanations of learned features in the hand detection proce-

dure. Popular deep convolutional neural networks VGG16 [13] or

ResNet50 [14] is adopted as a backbone network in PHDN. The

HFF block makes full use of multi-scale features by weighting the

lower-level features with the higher-level features. In this way, the

discriminative features, namely the effective ones for locating the

hand, are highlighted in the detection procedure. Each HFF block

fuses features from two layers. It first weights the lower-level fea-

tures by the last higher-level feature maps and then fuses the fea-

tures by convolution operations. Several HFF blocks are connected

in cascade mode (see Fig. 1 (b)) to iteratively fuse multi-scale fea-

tures, which greatly reduces computational overhead and saves

time compared to the serial connection (see Fig. 1 (a)). As PHDN

makes hand region predictions with multi-scale features, it is more

robust to hands of different sizes. In other words, our model is

scale-invariance. 

As for the rotated hand detection, adding additional rotation

and derotation layers [15] makes the network more complicated

and thus increases the computational burden and time overhead.

We propose the rotation map and the distance map to store the

rotation angle and the geometry information of the hand region

respectively, which handles the rotation hands without increasing
omplexity of the network and learns more interpretable represen-

ations of angles by recording angles of pixels directly. 

In the training process, we add supervision to each HFF block.

eep supervision to the hidden layers makes the learned features

ore discriminative and robust, and thus the performance of the

etector is better. The auxiliary losses accelerate the convergence

f training in a simple and direct way compared with [16] , which

ccelerates training by constraining the input weight of each neu-

on with zero mean and unit norm. 

Existing detection methods make predictions for grid cells

17] or default boxes [10] , which need to seek appropriate anchor

cales. Alternatively, we predict hand regions at pixel resolution to

void the adverse effects of improper anchor scales settings, for

hich we name our model as Pixel-wise Hand Detection Network.

etecting hands at pixel level also explains what pixels are the ba-

is for its decision, which improves transparency of the model. The

and regions predicted by PHDN are filtered by the Non-Maximum

uppression (NMS) to yield the final detection results. 

To evaluate our model, experiments are conducted on two

uthentic and publicly accessible hand detection datasets, the

IVA hand detection dataset [18] and the Oxford hand detec-

ion dataset [8] . Compared with the state-of-the-art methods, our

odel achieves competitive Average Precision (AP) and Average Re-

all (AR) on VIVA dataset with 4.23 times faster detecting speed,

nd obtains 5.5% AP improvement on Oxford dataset. Furthermore,

e test the PHDN with the hand tracking task on VIVA hand

racking dataset [19] , which is a higher application scenario of

and detection. We try three tracking-by-detection methods: SORT

racker [20] , deep SORT tracker [21] and IOU tracker [22] , where

he PHDN acts as a detector. Experimental results show that us-

ng any of the aforementioned tracking algorithms based on our

etector can achieve better results than existing methods. It indi-

ates that PHDN is robust and practicable as the detector perfor-

ance plays a crucial role in tracking-by-detection multiple object

racking methods. 

Part of the work has been introduced in [23] . The extensions

ade in this article compared to Liu et al. [23] are as follows: (1)

e analyze the interpretability of our model by visualizing the fea-

ures extracted by HFF block to interpret our model. It shows the

echanism of internal layers and demonstrates how our method

utperforms the others. (2) We integrate our detector with the

opular trackers to track hands in videos and achieve state-of-

he-art results on the authoritative VIVA hand tracking challenge

ataset [19] . (3) We give a more detailed description of our model

ncluding related work in hand detection and multiple hand track-

ng in vehicles, network architecture, feature fusion processing, loss

unctions and the settings and results of conducted experiments. 

The main contributions of this paper are in four folds: 

• We give insight to the interpretability of the hand detection

network for the first time. Reasonable explanations for the fea-

ture activated in hand detection procedure and the discrimina-

tive features learned by HFF block are first given. The proposed

Pixel-wise Hand Detection Network predicts hand regions at

pixel resolution rather than grid cells or default boxes. It gets

rid of the adverse effects of inappropriate anchor scales and

can detect different sizes of hands by fusing multi-scale fea-

tures with the cascaded HFF blocks. 
• The rotation map is designed to predict hand rotation angles

precisely. It learns and represents the angles in an interpretable

way with less computational cost. 
• Auxiliary losses are added to provide supervision to hidden lay-

ers of the network, leading to faster convergence of the training

and higher precision. 
• Experiments on VIVA and Oxford hand detection datasets show

that PHDN achieves competitive performance compared with
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Fig. 2. Novel and transparent representation of the rotation angle. We use the rota- 

tion map to store the rotation angle instead of adding rotation and derotation layers 

[15] to networks. 
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the state-of-the-art methods. Evaluated on the VIVA hand track-

ing dataset, tracking-by-detection trackers such as SORT tracker,

deep SORT tracker and IOU tracker with the PHDN detector out-

perform the existing hand tracking methods. 

The remainder of this paper is organized as follows. In

ection 2 , we review the related work in the field. Section 3 gives a

etailed description of the proposed method. Section 4 introduces

he datasets and experimental setup, reports and analyzes the re-

ults. Finally, concluding remarks are presented in Section 5 . 

. Related Work 

.1. Hand detection 

Current hand detection methods can be divided into two cate-

ories. One is based on the hand-crafted structured features, such

s color, shape and so on. The other is based on features extracted

y CNNs. The methods based on hand-crafted features have strong

nterpretability, but the detection performance is poor due to the

imitations of features. On the contrary, CNNs-based methods tend

o have good performance but poor interpretability. 

.1.1. Human-interpretable features based methods 

Hand detection methods that use human crafted features usu-

lly propose hand regions using features like skin color, hand

hape, Histograms of Oriented Gradients (HOG) [24] . These fea-

ures have specific meanings and are easy to understand. Then the

eatures are used to train a classifier, such as Support Vector Ma-

hine (SVM) [8] , to generate the final detection results. Dardas and

eorganas [25] uses the skin and hand shape features to detect

ands from images. Skin areas are extracted first using a skin de-

ector and the hands are separated out using hand contour com-

arison. However, it may be confusing when distinguishing be-

ween face and fist since their contours are similar. Mittal et al.

8] generates hand region proposals using a hand shape detector,

 context-based detector and a skin-based detector. Then a SVM

lassifier, with the score vectors built by the three detectors as in-

ut, is trained to classify the hand and non-hand regions. To en-

ance the robustness of hand detection in cluttered background,

iu et al. [26] proposes three new features based on HOG, Lo-

al Binary Patterns (LBP) and Local Trinary Patterns (LTP) descrip-

ors to train classifiers, but it does not perform well if the image

s low resolution and it cannot handle well with occlusion. Be-

ancourt et al. [7] trains a SVM classifier with the HOG features,

nd extends it with a Dynamic Bayesian Network for better perfor-

ance. Due to the limitation of hand-crafted features, these meth-

ds are not robust to the change of illumination, background and

and shape. Moreover, the non-end-to-end optimization process is

ime-consuming and the performance is often suboptimal. 

.1.2. Non-transparent CNNs based methods 

Inspired by the progress of Convolutional Neural Networks

CNNs), many hand detection methods proposed recently are based

n CNNs. Bambach et al. [3] presents a lightweight hand pro-

osal generation approach, of which a CNN-based method is used

o disambiguate hands in complex egocentric interactions. Context

nformation, such as hand shapes and locations, can be seen as

rior knowledge, and they can be used to train a hand detector

27] . However, it is no doubt that additional context cues over-

omplicates the image preprocessing step. Inspired by these, Le

t al. [11] first generates hand region proposals with the Fully Con-

olutional Network (FCN) [28] and then fuses multi-scale features

xtracted from FCN into a large feature map to make final pre-

ictions, as a result of which the convolution operations are time-

onsuming in the later steps. Similarly, Yan et al. [12] concatenates
he multi-scale feature maps from the last three pooling layers into

 large feature map. Although different receptive fields are taken

nto consideration, simple concatenation of feature maps results in

igh computational cost. 

In contrast to human-crafted features, the features extracted by

NNs are not interpretable and thus the rationality and validity of

he model are difficult to verify. In order to provide interpretabil-

ty to CNN-based hand detection models, we detect hands at pixel

evel. For any pixel in the image, we predict whether it belongs

o a hand and the bounding box of the hand. In this way, we can

now the basis for the model to make predictions. Under the fact

hat the high-level feature maps reflect the global features while

he low-level feature maps contain more local information, the fea-

ure maps from different scales are weighted before merged so

hat the features from multiple scales can complement each other

n the subsequent process. In view of the heavy computational bur-

en caused by the fusion of multi-scale information, our model

uses multi-scale features iteratively rather than simultaneously. 

Another issue of hand detection is to handle the rotation. Hands

re rarely shown in upright positions in images. To accurately de-

ect hands and estimate their poses, Deng et al. [15] designs a ro-

ation network to predict the rotation angle of region proposals

nd a derotation layer to obtain axis-aligned rotating feature maps

see Fig. 2 ). However, the method is of great complexity as it in-

ludes two components for rotation, a shared network for learning

eatures and a detection network for the classification task. It is

lso hard to find out what the rotation and derotation layers really

earn. To handle rotated hand samples more effectively, we develop

he rotation map to replace the complex rotation and derotation

ayers, as shown in Fig. 2 . It is also more interpretable as each pixel

alue represents the rotation angle directly. The results on the Ox-

ord hand detection dataset show that the rotation map brings a

ignificant increase (about 0.30) in AP compared to using only the

istance maps. 

.2. Multiple hand tracking in vehicles 

Tracking hands in the vehicle cabin is important for monitor-

ng driving behavior and research in intelligent vehicles. Although

and tracking has been studied since the last century, there are

ew studies on tracking multiple hands simultaneously in nat-

ralistic driving conditions. To the best of our knowledge, only

5] has given the research results on multiple hand tracking so

ar. Rangesh et al. [5] proposes a tracking-by-detection method,

here each video frame is processed by the detector first and then

ntegrates with a tracker to provide individual tracks online. The

CF detector [29] is used to generate hand detection results and

he data association is performed using a bipartite matching al-

orithm. It reports the tracking results on the VIVA hand tracking

ataset. To investigate the performance of our model in hand track-

ng, we apply PHDN to SORT tracker [20] , deep SORT tracker [21] ,
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Fig. 3. PHDN architecture with VGG16 as the backbone. The left is feature extract- 

ing stem, and the right is feature fusion branch and the output layers. Highlight 

Feature Fusion (HFF) block is marked with red dotted rectangle. 
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IOU tracker [22] . SORT tracker and deep SORT tracker are online

tracking methods, where only the current and previous frames are

visible to the tracker. SORT tracker performs Kalman filtering in

image space and uses the Hungarian method to associate detec-

tions across frames in a video sequence. Deep SORT tracker is de-

veloped for the many identity switches in SORT tracker. It adopts a

novel association metric with more motion and appearance infor-

mation compared to the IOU distance used in SORT tracker. The

reported results show the deep SORT tracker has fewer identity

switches than the SORT tracker. IOU tracker is an offline tracking

method that can generate trajectories with all observations in the

video. It associates the detection with the highest IOU to the last

detection in previous frames to extend a trajectory. It can run at

100K fps as its complexity is very low. The tracking performance

depends largely on the detector. Therefore, we conduct experi-

ments on the VIVA hand tracking dataset with our detector and

we use three trackers to evaluate our model in the practical track-

ing task. 

3. Interpretable pixel-wise hand detection network 

The PHDN architecture is illustrated in Fig. 3 . To show our

model more clearly, only the VGG16 backbone is presented in the

figure for its simpler structure compared with ResNet50. The fea-

ture maps from four different scales extracted by the VGG16 ex-

tractor or ResNet extractor are fused iteratively in the cascaded

HFF blocks. The final feature maps, containing multi-scale infor-

mation, are upsampled and convoluted to get the score map, the

rotation map and the distance map. With the three kinds of maps,

we can restore the hand bounding boxes and filter them by the

NMS to generate the final hand regions. In the following, we de-

scribe the pipeline in detail and construct the loss function for the

training. 
.1. Feature extraction 

We try two popular deep convolutional networks, i.e. , VGG16

nd ResNet50, to extract features from the images. The pre-trained

odel on the ImageNet dataset [30] is used in our study. Feature

aps from four layers are selected for the feature fusion module.

or VGG16, we adopt the feature maps from pooling-2 to pooling-5 .

imilarly, the outputs of conv2_1, conv3_1, conv4_1 and conv5_1 are

xtracted in ResNet50. The feature maps extracted from VGG16 or

esNet50 are ( 1 4 ) 
2 , ( 1 8 ) 

2 , ( 1 
16 ) 

2 , ( 1 
32 ) 

2 the size of input images, and

epresent information of different sizes of receptive fields. 

.2. Visually interpretable and robust feature fusion 

The size of hands varies greatly in different images or even the

ame image. The larger hand detection needs more global infor-

ation. It is known that the higher the level of feature maps, the

ore global the information is presented. Hence multi-scale fea-

ure maps should be merged to detect different sizes of hands. We

ropose to fuse the feature maps from multiple layers in an itera-

ive way to reduce the computational cost, which can be achieved

y cascaded feature fusion blocks as shown in Fig. 1 (b) To reduce

he interference of useless features and learn more discriminative

eatures, we develop the Highlight Feature Fusion (HFF) block to

use the features from different scales. Fig. 3 displays three cas-

aded HFF blocks, which are marked with red dotted rectangles.

he cascaded HFF blocks operate the fusion as Algorithm 1 . 

lgorithm 1 Feature fusion procedure. 

nput: 

Feature maps extracted by VGG16 or Resnet50, f s , s ∈
{ 0 , 1 , 2 , 3 } ; 
Channels of fused feature maps, c s , s ∈ { 0 , 1 , 2 , 3 } ; 

utput: 

Fused feature maps, f ′ s , s ∈ { 0 , 1 , 2 , 3 } ; 
1: f ′ 3 = f 3 ; 

2: for s from 2 to 0 do 

3: u s +1 = U psampling( f ′ 
s +1 

) ; 

4: masked = f s ∗ (1 − Con v olution (u s +1 , 1 × 1)) ; 

5: C oncat e = C oncat enat e (masked, u s +1 ) ; 

6: Con v 1 = Con v olution (Concate, 1 × 1 , c s ) ; 

7: Con v 2 = Con v olution (Concate, 3 × 3 , c s ) ; 

8: f ′ s = Con v 2 
9: end for 

10: return f ′ s , s ∈ { 0 , 1 , 2 , 3 } ; 

We generate a mask with the higher-level feature maps to fil-

er the common features in the current level feature maps, which

ormulated as Line above and 

∗ denotes element-wise multipli-

ation. Masking f s with the complementary feature maps of u s +1 

an highlight the fine-grained distinctive information contained in

 s that u s +1 may not have. Conv 1 is the result of conducting a 1 × 1

onvolution on the concatenated feature maps. It is designed to re-

uce the output channels and thus lessen the computational bur-

en. Then a 3 × 3 convolution is operated to further fuse the fea-

ures of multiple scales. To investigate the effect of the mask, we

emove the mask operation and concatenate f s and u s +1 directly as

 Base Feature Fusion (BFF) block in our experiments. 

We visualize features extracted by HFF block and BFF block

o interpret the robustness and effectiveness of HFF block in

ection 4.5.1 . 

.3. Pixel-wise hand detection 

For each pixel in the image, we generate the confidence that

t belongs to a hand region and the corresponding hand bound-
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Fig. 4. Restore hand bounding boxes from the rotation map and distance map. 
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ng box. In this way, the model can interpret what features the

rediction is based on. The following paragraphs elaborate on this

rocess. 

After the last HFF block, the feature maps go through a 3 × 3

onvolution and then be upsampled to the same size as the in-

ut image. Finally, 1 × 1, 1 × 1 and 3 × 3 convolutions are em-

loyed to generate the score map, rotation map and distance map

espectively. The three kinds of map are the same size as the orig-

nal images, and their pixels correspond one by one. Similar to the

onfidence map used in Fully Convolutional Networks (FCN) [28] ,

ach pixel value in the score map, a scalar between 0 and 1, rep-

esents the confidence that the corresponding pixel in the input

mage belongs to a hand region. The rotation map is developed for

he rotated hand detection issue. It records the rotation angle of

he hand bounding box and the range of the angle is (−π/ 2 , π/ 2) .

nspired by the work of Zhou et al. [31] , we use the distance map

o store the geometry information of the hand box. The distance

ap has four channels, recording distances to the boundaries of

he corresponding hand bounding box, denoted as d t , d r , d b , d l in

ig. 4 . 

Hand boxes are generated with the rotation map and distance

ap for pixels whose scores are higher than a given threshold in

he score map. An example is given in Fig. 4 to illustrate the restor-

ng process for pixel p . Based on the distance map we can obtain

he distances d t , d r , d b , d l from p to the four boundaries (top, right,

ottom, left) of the rectangle R p . In order to calculate the coordi-

ates of p 0 , p 1 , p 2 , p 3 in image coordinate system (drawn in black in

ig. 4 ), an auxiliary coordinate system (drawn in red in Fig. 4 ) is in-

roduced with p 3 as the origin. The directions of X-axis and Y-axis

re the same as the image coordinate system. We rotate R p to the

orizontal around p 3 . The corresponding position of p in the ro-

ated rectangle R ′ p is denoted as p ′ . Let (x ′ , y ′ ) , (x ′ 
i 
, y ′ 

i 
) , i ∈ { 0 , 1 , 2 }

e the coordinates of p , p i , i ∈ {0, 1, 2} in the auxiliary coordinate

ystem. For the clockwise rotation of rectangle R p , we have 

M ( θ ) 

(
x ′ 
y ′ 

)
= 

(
d l 

−d b 

)
, 

 ( θ ) 

(
x ′ 0 
y ′ 0 

)
= 

(
0 

−(d t + d b ) 

)
, 

 ( θ ) 

(
x ′ 1 
y ′ 1 

)
= 

(
d l + d r 

−(d t + d b ) 

)
, 

 ( θ ) 

(
x ′ 2 
y ′ 2 

)
= 

(
d l + d r 

0 

)
, (1) 

here M ( θ ) is the rotation matrix in two-dimensional space, which

an be formulated as 

 ( θ ) = 

(
cos θ − sin θ
sin θ cos θ

)
. (2) 
is the rotation angle with counter-clockwise as the positive di-

ection, and it can be restored from the rotation map in our exper-

ments. 

Finally, the coordinates ( x i , y i ), i ∈ {0, 1, 2, 3} of p i in the image

oordinate system are calculated by 

x 3 
y 3 

)
= 

(
x 
y 

)
−

(
x ′ 
y ′ 

)
, 

(
x i 
y i 

)
= 

(
x ′ 

i 

y ′ 
i 

)
+ 

(
x 3 
y 3 

)
, i ∈ { 0 , 1 , 2 } . (3) 

 x, y ) are the coordinates of p in the image coordinate system. Ac-

ording to Eq. (1) ~ (3) , the hand bounding box R p = { (x i , y i ) | i ∈
 0 , 1 , 2 , 3 }} corresponding pixel p can be restored with the rotation

ap and distance map. 

Many redundant detection bounding boxes are produced by the

etwork. To generate pure detection results, we use the NMS to

lter the boxes with low scores and high overlapping rates. 

.4. Auxiliary supervision 

The detection loss function usually includes the confidence loss

nd the location loss. Specific to our method, the confidence loss

s calculated with the score map, and the location loss consists

he rotation loss and the geometry loss, related to the rotation

ap and distance map respectively. To learn a more discriminative

ask in the HFF, deep supervision is added to the intermediate

FF blocks with auxiliary losses ( L s , s = 1 , 2 , 3 in Fig. 3 ) besides

he L 0 for the output. The overall objective loss function is formu-

ated as 

 = 

∑ 

s ∈ S 
w s L s , (4) 

here S = { 0 , 1 , 2 , 3 } represents the scale index of the HFF blocks

s shown in Fig. 3 and the parameter w s adjusts the weight of the

orresponding scale. For scale s , the loss L s is a weighted sum of

he losses for the score map L 
[ s ] 
sco , rotation map L 

[ s ] 
rot and distance

ap L 
[ s ] 

dis 
: 

 s = αL [ s ] sco + βL [ s ] rot + L [ s ] 
dis 

. (5)

he factors α and β control the weights of the three loss terms.

e describe these three parts of the loss in detail below. 

.4.1. Loss function of score map 

Regarding the score map as a segmentation of the input im-

ge, we use the Dice Similarity Coefficient [32] (DSC) to construct

he loss for score map. DSC measures the similarity between two

ontour regions. Let P , G be the point sets of two contour regions
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respectively, then the DSC is defined as 

DSC(P, G ) = 

2 | P ⋂ 

G | 
| P | + | G | . (6)

| P | (. | G |) represents the number of elements in set P ( G ). As the

ground truth of the score map is a binary mask, the dice coefficient

can be written as 

DSC(P, G ) = 

2 

∑ N 
i =1 p i g i ∑ N 

i =1 p 
2 
i 
+ 

∑ N 
i g 2 

i 

, (7)

where the sums run over all N pixels of the score map. p i is the the

pixel in the score map P generated by the detection network, and

g i is the pixel in the ground truth map G . Based on the dice sim-

ilarity coefficient, the dice loss is proposed and proved to perform

well in segmentation tasks [32–34] . Motivated by this strategy, the

loss for the score map is formulated as 

L sco = 1 − 2 

∑ N 
i =1 p i g i + ε 0 ∑ N 

i =1 p 
2 
i 
+ 

∑ N 
i =1 g 

2 
i 
+ ε 0 

, (8)

where ε0 is the smooth. 

3.4.2. Loss function of rotation map 

The rotation map stores the predicted rotation angles for corre-

sponding pixels in the input image. The cosine function is adopted

to evaluate the distance between the predicted angle ˜ θi and the

ground truth θ i . Consequently, we can calculate the loss of rota-

tion map by 

L rot = 1 − 1 

N 

N ∑ 

i =1 

cos 
(

˜ θi − θi 

)
. (9)

3.4.3. Loss function of distance map 

As for the regression of the object bounding box, the l 2 loss

[35] performs the four distances d t , d r , d b , d l as independent vari-

ables, which may mislead the training when only one or two

bounds of the predicted box are close to the ground truth. To avoid

this, Yu et al. [36] proposes the IoU loss which treats the four dis-

tances as a whole. Besides, the IoU loss can handle bounding boxes

with various scales as it uses the IoU to norm the four distances

to [0, 1]. In other words, the IoU loss is scale-invariant, which is

important to detect hands of different sizes. The IoU loss for the

distance map is calculated as 

L dis = − 1 

N 

N ∑ 

i =1 

ln 

I [ i ] + ε 1 
U 

[ i ] + ε 1 
, 

I [ i ] = I [ i ] 
h 

∗ I [ i ] w 

, 

I [ i ] 
h 

= min (d t , ˜ d t ) + min (d b , ˜ d b ) , 

I [ i ] w 

= min (d l , ˜ d l ) + min (d r , ˜ d r ) , 

 

[ i ] = X 

[ i ] + 

˜ X 

[ i ] − I [ i ] , 

X 

[ i ] = (d t + d b ) ∗ (d l + d r ) , 

˜ X 

[ i ] = ( ̃  d t + 

˜ d b ) ∗ ( ̃  d l + 

˜ d r ) , (10)

where N is the number of pixels in the distance map and ε1 is

the smooth term. I [ i ] and U 

[ i ] denote the intersection and union of

the predicted box { ̃  d t , ˜ d r , ˜ d b , 
˜ d l } and the ground truth { d t , d r , d b , d l }

respectively. 

4. Experiments 

We evaluate our detector on three benchmark datasets: the

VIVA hand detection dataset [18] , the Oxford hand detection

dataset [8] and the VIVA hand tracking dataset [19] . 
.1. Experimental settings 

All experiments are conducted on an Intel(R) Core(TM) i7-

70 0K @ 4.0 0GHz CPU with a single GeForce GTX 1080 GPU. We

ry two backbone networks: VGG16 [13] and ResNet50 [14] for fea-

ure extraction and use the pre-trained models on ImageNet [30] .

e employ the network with the Base Feature Fusion (BFF) block

s our base model and conduct ablation experiments to evaluate

he performance of the Highlight Feature Fusion (HFF) block and

he auxiliary losses. 

Training is implemented with a stochastic gradient algorithm

sing the ADAM scheme. We take the exponential decay learning

ate, the initial value of which is 0.0 0 01 and decays every 10,0 0 0

terations with rate 0.94. The weight parameters w s , s ∈ {1, 2, 3,

} are all set to 1 for default. The hyper-parameters α, β are set to

.01 and 20, respectively. Besides, the score map threshold is set to

.8. In other words, all the pixels that obtain scores higher than 0.8

re considered in the bounding box restoration. Then the bounding

oxes are filtered by the NMS with a threshold 0.2. 

In order to reduce the over-fitting risk and improve the gener-

lization performance of the model, a variety of data enhancement

trategies are employed. We randomly mirror and crop the images,

s well as distort the hue, saturation and brightness for color jit-

ering. Due to the limitation of the GPU capacity, the batch size is

et as 12 and all the images are resized to 512 × 512 before fed

nto the network in training. When predicting on the test dataset,

he original size of the input image is preserved as the network is

 fully convolutional network that allows arbitrary sizes of input

mages. 

.2. Evaluations on VIVA Hand detection dataset 

VIVA Hand Detection Dataset is published by the Vision for In-

elligent Vehicles and Applications Challenge [18] for hand detec-

ion subtask. The dataset includes 5,500 training and 5,500 test-

ng images. The images are collected from 54 videos captured in

aturalistic driving scenarios. There are 7 possible viewpoints in

he videos. Annotations for the images are publicly accessible. The

ounding boxes of hand regions in an image are given by ( x, y, w,

 ) in the .txt format annotation file. x, y are the upper-left coor-

inates of the box and w, h are the width and height of the box,

espectively. As the given annotations are axis-aligned, the rotation

ngles are set to 0 in training and the predictions are axis-aligned

ounding boxes in our experiments on this dataset. 

We evaluate the algorithms on two levels according to the size

f the hand instances using the evaluate kit provided by the Vision

or Intelligent Vehicles and Applications Challenge. Level-1 focuses

n the hand instances with a minimum height of 70 pixels, only

ver the shoulder (back) camera view, while Level-2 evaluates hand

amples with a minimum height of 25 pixels in all camera views.

valuation metrics include the Average Precision (AP) and Average

ecall (AR). AP is the area under the Precision-Recall curve and AR

s calculated over 9 evenly sampled points in log space between

0 −2 and 10 0 false positives per image. As performed in PASCAL

OC [38] , the hit/miss threshold of the overlap between a pair of

redicted and ground truth bounding boxes is set to 0.5. 

As presented in Table 1 , we compare our methods with

S-RFCN [11,37] , Multi-scale fast RCNN [12] , FRCNN [27] , YOLO

17] and ACF_Depth4 [18] . The Precision-Recall curves and ROC

urves of these methods and our model (ResNet50+HFF+Auxiliary

osses) are shown in Fig. 5 . Our model achieves 92.3%/89.1%

AP/AR) at Level-1 while 83.6%/68.8% (AP/AR) at Level-2 using

GG16 as the backbone network. The ResNet50 based PHDN net-

ork obtains more accurate performance, i.e. , 94.8%/91.1% (AP/AR)

t Level-1 and 86.3%/75.8% (AP/AR) at Level-2 . 
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Fig. 5. Precision-Recall curves and ROC curves (logarithmic scale for x-axis) on VIVA dataset. 

Table 1 

Results on VIVA hand detection dataset. 

Methods Level-1 (AP/AR)/% Level-2 (AP/AR)/% Speed/fps Environment 

MS-RFCN [11] 95.1/94.5 86.0/ 83.4 4.65 6 cores@3.5GHz, 32GB RAM, Titan X GPU 

MS-RFCN [37] 94.2/91.1 86.9 /77.3 4.65 

Multi-scale fast RCNN [12] 92.8/82.8 84.7/66.5 3.33 6 cores@3.5GHz, 64GB RAM, Titan X GPU 

FRCNN [27] 90.7/55.9 86.5/53.3 - - 

YOLO [17] 76.4/46.0 69.5/39.1 35.00 6 cores@3.5GHz, 16GB RAM, Titan X GPU 

ACF_Depth4 [18] 70.1/53.8 60.1/40.4 - - 

Ours (VGG16 + BFF) 88.9/82.8 72.6/56.7 13.88 4 cores@4.0GHz, 32GB RAM, GeForce GTX 1080 

Ours (VGG16 + BFF+Auxiliary Losses) 92.9/88.3 80.9/62.7 13.16 

Ours (VGG16 + HFF+Auxiliary Losses) 92.3/89.1 83.6/68.8 13.10 

Ours (ResNet50 + BFF) 93.7/89.9 83.6/73.6 20.40 

Ours (ResNet50 + BFF+Auxiliary Losses) 94.0/90.1 85.7/74.0 20.00 

Ours (ResNet50 + HFF+Auxiliary Losses) 94.8 / 91.1 86.3 / 75.8 19.68 
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2 http://www.robots.ox.ac.uk/ ∼vgg/data/hands/index.html . 
Apart from the accuracy, the detection speed is also an im-

ortant metric. As we can see in Table 1 , YOLO [17] performs

and detection in real-time, but its accuracy is unsatisfactory.

n the contrary, MS-RFCN [11] performs against other detec-

ors in accuracy but the detecting speed is very slow, i.e. , 4.65

ps. With our PHDN based on VGG16 and ResNet50, the de-

ection speeds are up to 13.10 and 19.68 fps, respectively. The

odel (ResNet50+HFF+Auxiliary Losses) obtains competitive accu- 

acy while a 4.23 times faster running speed compared to Le et al.

11] . Therefore, it is of great significance that our model achieves a

ood trade-off between accuracy and speed. 

.3. Evaluations on oxford hand detection dataset 

Oxford Hand Detection Dataset consists of three parts: the

raining set, the validation set and the testing set, with 1,844, 406

nd 436 images separately. Unlike the VIVA dataset, the images in

xford dataset are collected from various different scenes. More-

ver, the ground truth is given by the four vertexes ( x i , y i ), i ∈ {1,

, 3, 4} of the box in the format of .mat and not necessarily to be
xis-aligned but oriented with respect to the wrist. The rotation

ngle will be calculated furthermore in our experiments. 

According to the official evaluation tool 2 on the Oxford dataset,

e report the performance on all the “bigger” hand instances,

hose with more than 1,500 pixels. As shown in Table 2 , simi-

ar to the results on VIVA dataset, ResNet50 performs better than

GG16 as a backbone network. Specifically, ResNet50 based PHDN

chieves an improvement of 5.5% in AP score compared with the

tate-of-the-art MS-RFCN [11] . VGG16 based PHDN still outper-

orms MS-RFCN [11] by 2.9% in AP score. The Precision-Recall curve

nd ROC curve are presented in Fig. 6 . In addition, it is worth men-

ioning that the detecting speed on the Oxford dataset is up to 62.5

ps using ResNet50 while 52.6 fps using VGG16. 

.4. Evaluations on VIVA hand tracking dataset 

VIVA hand tracking dataset is built by the Vision for Intelligent

ehicles and Applications Challenge for hand tracking sub contest.

http://www.robots.ox.ac.uk/~vgg/data/hands/index.html
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Fig. 6. Precision-Recall curve and ROC curve on oxford dataset. 

Table 2 

Results on oxford hand detection dataset. 

Methods AP/% 

MS-RFCN [11] 75.1 

Multiple proposals [8] 48.2 

Multi-scale CNN [12] 58.4 

Ours (VGG16 + BFF) 68.7 

Ours (VGG16 + BFF+Auxiliary Losses) 77.8 

Ours (VGG16 + HFF+Auxiliary Losses) 78.0 

Ours (ResNet50 + BFF) 78.2 

Ours (ResNet50 + BFF+Auxiliary Losses) 78.6 

Ours (ResNet50 + HFF+Auxiliary Losses) 80.6 
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There are 27 training and 29 test sequences captured under nat-

uralistic driving conditions in this dataset and 2D bounding box

annotations of hands are provided with {frame, id, bb_left, bb_top,

bb_width, bb_height} . Evaluation metrics [5] follow standard multi-

ple object tracking and are listed as follows. 

• MOTA (The Multiple Object Tracking Accuracy): A comprehen-

sive metric combining the false negatives, false positives and

mismatch rate. 
• MOTP (The Multiple Object Tracking Precision): Overlap be-

tween the estimated positions and the ground truth averaged

by all the matches. 
• Recall: Ratio of correctly matched detections to ground truth

detections. 
• Precision: Ratio of correctly matched detections to total result

detections. 
• MT (Most Tracking): Percentage of ground truth trajectories

which are covered by the tracker output for more than 80% of

their length. 
• ML (Most Lost): Percentage of ground truth trajectories which

are covered by the tracker output for less than 20% of their

length. 
• IDS (ID Switches): Number of times that a tracked trajectory

changes its matched ground truth identity. 
• FRAG (Fragments): Number of times that a ground truth tra-

jectory is interrupted in the tracking result. 

For MOTA, MOTP, Recall, Precision and MT, greater values mean

better performance, whereas the ML, IDS and FRAG are the smaller

the better. 

To evaluate our detector, we employ the SORT tracker [20] ,

deep SORT tracker [21] and IOU tracker [22] to associate our de-

tection results to extend a trajectory on the VIVA hand track-

ing dataset. The results are reported in Table 3 . The model

(ResNet50+HFF+Auxiliary Losses) is used to generate detection re-

sults. Note that, we present the Recall and Precision of our method

as they are metrics concerned with the detection performance

in multiple object tracking. Our model (ResNet50+HFF+Auxiliary
osses) performs much better than the existing methods on this

ataset. It indicates that our detector is practicable and well-

erformed in hand tracking task. 

.5. Ablation study 

Ablation experiments are conducted to study the effect of dif-

erent aspects of our model on the detection performance. We

hoose the ResNet50 as a default backbone network and Oxford

and detection dataset to do further analysis of our model. 

.5.1. Interpretable and robust HFF block 

Some visual explanations for the effectiveness and robustness

f HFF block are given in Fig. 8 . The activation feature map is con-

erted into a blue-yellow-red color scale and then added to the

riginal input image to see which pixels are activated in the detec-

ion procedure. We can see that the HFF block is good at locating

iscriminative pixels comparing with the BFF block. The HFF block

eeps off confusing parts like faces and feet. It can also activate the

and pixels accurately even in clutter background as shown in the

econd example in Fig. 8 (b). HFF block uses the mask to filter the

edundant features of the corresponding layer while the BFF does

ot. 

From Tables 1 and 2 , we can see that the HFF block outperforms

he BFF block whether using the VGG16 or ResNet50 as the back-

one. Specifically, with VGG16 as the backbone and evaluated at

evel-2 , HFF block achieves an improvement of 2.7% in AP and 6.1%

n AR on VIVA hand detection dataset. With ResNet50, there are

.6% in AP and 1.8% in AR respectively. The AR score is improved

reatly, which indicates that the model with the HFF block pro-

uces less false negatives than the BFF block and makes better use

f the distinctive features of different scales. The HFF block also

how better performance on the Oxford dataset: It gains an im-

rovement of 0.2% in AP score with VGG16 and 2.0% with ResNet50

omparing to the BFF block. 

.5.2. Influence of the score map and rotation map 

We adjust the value of α in Eq. (4) to find appropriate weights

f score map in training. The results are reported in Fig. 7 (a). As α
ncreases from 0.01 to 1, the AP increases first and then decreases.

t reaches the maximum 0.7966 when α takes 0.10 in our exper-

ments. As we can see, if weight the classification loss highly, the

P score will decline (0.7966 vs. 0.7738). In other words, over con-

ideration of score map brings declines in AP score, which is con-

istent with the fact that the detection is not a simple classification

ask, but also involves bounding box regression. 

The rotation map is designed to predict the rotation angle of

he box and further locate the hand more accurately. To investi-

ate the role it plays in the detection, we control the weights of

otation map in the training process by changing β in Eq. (4) . We
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Table 3 

Results on VIVA hand tracking dataset. 

Methods MOTA/% MOTP/% Recall/% Precision/% MT/% ML/% IDS FRAG 

Online TDC(CNN) [5] 25.1 64.6 - - 39.1 18.8 34 415 

TDC(HOG) [5] 24.6 64.5 - - 35.9 17.2 39 426 

Ours + SORT 83.4 78.4 90.4 92.8 87.5 3.13 2 88 

Ours + Deep SORT 85.2 77.6 90.1 94.9 84.4 1.56 1 106 

Offline TBD [39] 6.75 65.96 - - 50 12.5 29 320 

Ours + IOU 83.6 77.1 90.0 93.3 84.4 3.13 5 159 

Fig. 7. The change of AP with α and β on the oxford dataset. 

Fig. 8. Visual explanations for predictions. The heatmap in the blue-yellow-red color scale is added to the original image to show the activated regions. 
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Fig. 9. Training time and AP score vs. different numbers of scales on the oxford 

dataset. 
rst set β to 0, i.e. , ignore the rotation map in training, to obtain

etection results. Then we try four different values (1, 5, 10 and 20)

or β to train models and evaluate all the detection results on the

xford test set. The AP score and corresponding β are plotted in

ig. 7 (b) When considering the rotation angle in the optimization

rocedure, i.e., β > 0, the AP score is stable and larger than 0.78

or all the values of β tried in our experiments. Otherwise, there

s a significant drop in the AP score (0.8061 vs. 0.4991) on Oxford

ataset when β is set as 0. Therefore, the rotation map plays a

ery important role in optimizing the final model and can improve

he locating accuracy greatly. 

.5.3. Effectiveness of auxiliary supervision 

In order to investigate the effectiveness of the auxiliary losses,

e train models considering different numbers of scales. The vari-

tion of training time and AP score with the number of supervision

cales is shown in Fig. 9 . The number of scales 1, 2, 3, 4 correspond

o S = { 0 } , S = { 0 , 1 } , S = { 0 , 1 , 2 } , S = { 0 , 1 , 2 , 3 } in Eq. (4) respec-

ively. From Fig. 9 , we can see that the time it takes for the model
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(a) Examples from VIVA 
hand detection dataset

(b) Examples from Oxford 
hand detection dataset

(c) Examples from VIVA 
hand tracking dataset

Fig. 10. Detection results visualization. Annotations of VIVA hand detection dataset and VIVA hand tracking dataset are horizontal bounding boxes. Images in oxford hand 

detection dataset are labeled with wrist-oriented boxes. 

(a) Examples from VIVA 
hand detection dataset

(b) Examples from Oxford 
hand detection dataset

(c) Human annotations for VIVA 
hand tracking dataset

(d) Tracking results by our 
detector with SORT tracker on 

VIVA hand tracking dataset

Fig. 11. Detection results comparisons. (a) and (b) compare the performance between our PHDN based on ResNet50 model (cyan bounding boxes) and Multi-scale fast RCNN 

[12] (red bounding boxes). (c) and (d) show the ground truth and our tracking results on the VIVA hand tracking dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Incorrectly detection examples using PHDN model with ResNet50 as back- 

bone. 
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to convergence decreases as the number of scales used in loss

function increases. The convergence of the network is accelerated

significantly (more than 10 h) by adding auxiliary losses into the

total loss. At the same time, the AP score is stable regardless of the

number of scales. It can be concluded that the auxiliary losses ac-

celerate the training process without sacrificing the AP score. This

is attributed to the multiple supervision to the intermediate layers

of the network. 

4.5.4. Visualization results 

We show several qualitative detection examples in Fig. 10 . As

these results show, our model can handle different scales of hands

and shapes in various illumination conditions, even the blurred

samples. Fig. 11 compares our detection results with Multi-scale

fast RCNN and shows the tracking results and the corresponding

ground truth on the VIVA hand tracking dataset. We can see that

our model achieves fewer false positives and produces more accu-

rate hand locations compared with the visualization results given

in [12] . Besides, the model trained with rotated hand labels on the

Oxford dataset is capable to predict hand rotation angle precisely.

Further, applied into the hand tracking task, our model generates

satisfactory trajectories as we can see in Fig. 11 . Fig. 12 shows some

false detected samples. The false detections can be divided into

three types: (1) When the color or shape of the hand is very close

to the background, it may mislead the model to make false pre-

dictions or result in missed detection. (2) The faces and feet with

confusing colors and shapes are incorrectly detected as hand re-

gions by the model. (3) Heavy occlusions cause missed detection,

e.g. , the hand obscured by the toy is not recognized in Fig. 12 (b).

Our model does not perform well in these situations possibly be-

cause the context information, such as surroundings and similar

hand color or shape objects, is not thoroughly mined and inte-

grated effectively. We will investigate the effect of context infor-

mation in future work and try to address these issues. 
. Conclusion 

Existing hand detection neural networks are “black box” models

nd people cannot understand how they make automated predic-

ions. This hinders their application in areas such as driving moni-

oring. In this paper, we present the interpretable Pixel-wise Hand

etection Network (PHDN). To the best of our knowledge, this is

he first study towards interpretable hand detection. The pixel-wise

rediction shows the basis of detection and provides the model

nterpretability. Features from multiple layers are fused iteratively

ith cascaded Highlight Feature Fusion (HFF) blocks. This allows

ur model to learn better representations while reducing computa-

ion overhead. The proposed HFF block outperforms the Base Fea-

ure Fusion (BFF) block and improves the detection performance

ignificantly. To gain insight into the reasonability of the HFF block,
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e visualize regions activated by the HFF block and BFF block re-

pectively. The visualization results demonstrate that the HFF block

ighlights the distinctive features of different scales and learns

ore discriminative ones to achieve better performance. Complex

nd non-transparent rotation and derotation layers are replaced by

he rotation map to handle the rotated hand samples. The rota-

ion map is interpretable because it directly records the rotation

ngles of pixels as features. It makes the model more transparent.

n addition, deep supervision is added with auxiliary losses to ac-

elerate the training procedure. Compared with the state-of-the-

rt methods, our algorithm shows competitive accuracy and runs

 4.23 times faster speed on the VIVA hand detection dataset and

chieves an improvement of 5.5% in average precision at a speed

f 62.5 fps on Oxford hand detection dataset. Our detector is prac-

ical, for which it can track hands better in naturalistic driving

onditions compared with other methods on VIVA hand tracking

ataset. For future work, we will enhance the transparency and ro-

ustness of our model and apply our detector to real-world scenar-

os such as driving monitoring and virtual reality. 
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