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Check-Out
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Abstract—Automatic Check-Out (ACO) provides an object de-
tection based mechanism for retailers to process the purchases of
customers automatically. However, it suffers a lot from the domain
shift problem because of different data distribution between the
single item in training exemplar images and mixed items in
testing checkout images. In this paper, we propose a new iterative
knowledge distillation method to solve the domain adaptation
problem for this task. First, we develop a new augmentation data
strategy to generate synthesized checkout images. It can extract
segmented items from the training images by the coarse-to-fine
strategy and filter items with unrealistic poses by pose pruning.
Second, we propose a dual pyramid scale network (DPSNet) to
exploit the multi-scale feature representation in joint detection
and counting views. Third, the iterative knowledge distillation
training strategy is developed to make full use of both image-
level and instance-level samples to narrow the semantic gap
between source domain and target domain. Extensive experiments
on the large-scale Retail Product Checkout (RPC) dataset show
the proposed DPSNet can achieve state-of-the-art performance
compared with existing methods. The source codes can be found
at https://isrc.iscas.ac.cn/gitlab/research/dpsnet.

Index Terms—automatic check-out, domain adaptation, data
augmentation, dual pyramid scale network, iterative knowledge
distillation

I. INTRODUCTION

UTOMATIC Check-Out (ACO) attracts increasingly in-
terest of researchers due to its practical applications in
our daily life such as supermarkets and grocery stores. It can
recognize all kinds of shopping items chosen by the costumers
and output the final price by determining the categories and
count of these items automatically and efficiently, resulting
in better user experience for customers and lower operational
costs for retailers. However, limited research focuses on this
topic [1]. With the fast development of deep learning, it can
be formulated as object detection problem using deep neural
network [2]-[4].
Generally speaking, good performance for object detection
relies on large-scale training and testing data in similar scenes.
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Fig. 1. The Retail Product Checkout (RPC) dataset for the Automatic
Check-Out (ACO) system. The training data and testing data have different
distribution.

However, unlike general object detection, we need to deal with
the shift from source domain to target domain in the ACO task.
As shown in Fig. 1, the training data include isolated items
with different viewing angles captured from the turntable;
while the testing data are several items piled together over
a surface. Given the different distribution between training
exemplar images and testing checkout images, the question
then arises, “how can we perform domain adaptation between
the source domain with the isolated item and the target domain
with mixed items in an image?”’

To this end, Wei et al. [1] propose a baseline object detection
framework. Specifically, it first synthesizes the checkout im-
ages based on the images with isolated items using a random
copy-and-paste strategy. Then, the CycleGAN method [5] is
used to render the synthesized checkout images for more
realistic lighting condition and shadows. Finally, the Feature
Pyramid Network (FPN) [3] is trained based on rendered
synthesized images and recognizes the category and count of
items based on testing images. However, the previous work
[1] mainly focuses on generating training samples similar
to the testing data. The performance is still not satisfactory
for two reasons. First, simple copy-and-paste using inaccurate
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Fig. 2. The illustration of domain adaptation. There exists a huge gap
between the isolated item in training exemplar images and mixed items in
testing checkout images (left), and domain adaptation from reliable images to
checkout images (right).

object segmentation will introduce background noises and
affect detection accuracy. Second, there still exists considerable
domain shift between training synthesized images and testing
checkout images.

To address the above issues, we first propose a new data
augmentation strategy to narrow the gap between training data
and testing data. As shown in the left-hand part of Fig. 2, the
data distribution of source domain and target domain is quite
different!. We extract the foreground region from the training
images of isolated objects using the coarse-to-fine saliency
detection method. Moreover, we develop the pose pruning
method to select images only with consistent configurations
of the target domain as candidates, and generate synthesized
images of checked out items with realistic poses.

However, there still exists a huge gap between synthesized
images and testing checkout images. The solution is to distil
knowledge from unlabeled testing checkout images directly.
Inspired by the work in [7] that assigns pseudo-labels to
unlabelled target samples, we develop the dual pyramid scale
network (DPSNet) to exploit the multi-scale feature represen-
tation in joint detection and counting views. Note that the two
views are derived from the same backbone to learn a common
but different representation of data. If the outputs from two
views are consistent, it is reliable to assign the corresponding
testing checkout samples to pseudo labels.

Given the aforementioned synthesized samples and pseudo-
labelled target samples, we develop the iterative knowledge
distillation strategy to train the DPSNet to narrow the gap
between source domain and target domain gradually (see the
right-hand part of Fig. 2). Specifically, we select some testing
samples to learn a common feature representation in each
iteration and fine-tune the whole network based on the data
from different domains. In this way, the target-discriminative
representation can be learned to improve the accuracy on
the target domain gradually. We conduct the experiments on
the large-scale Retail Product Checkout (RPC) dataset [1].

'To visualize the data distribution, we employ the ResNet-101 network to
calculate the high-dimensional feature of each sample and then embed it in a
low-dimensional space of two dimensions by t-Distributed Stochastic Neighbor
Embedding (t-SNE) [6].

Compared with existing methods, our method with the same
backbone achieves the best 88.14%, 94.28%, 88.56%, and
81.59% checkout accuracy in terms of averaged, easy, medium,
and hard difficulty levels, respectively. The main contributions
of this work are summarized as follows.

o We propose the dual pyramid scale network (DPSNet)
with joint counting and detection views to learn a com-
mon but different representation of data, and distinguish
then reliable testing samples for pseudo label assignment.

« We develop the iterative knowledge distillation learning
strategy to train the DPSNet model, which narrows the
huge gap between synthesized images and testing check-
out images gradually.

« Extensive experiments demonstrate the effectiveness of
the proposed method compared with existing methods on
the automatic check-out task.

A preliminary conference version of this work appeared in
[8] where Data Priming Network (DPNet) was developed. It
proposes a new data priming network with rough combination
of detection head and counting head, and then selects some
reliable testing images to narrow the gap between source
domain and target domain. However, it does not make full use
of multi-scale features of samples with high confidence in each
image. In this work, we enhance DPNet [8] substantially on the
aspects of network architecture, domain adaptation learning
strategy and experimental evaluation, which is summarized in
the following aspects:

« Instead of rough combination of detection and counting
head, we improve the framework of DPNet by considering
the multi-scale representation for detection and counting
simultaneously;

« The iterative detection and counting collaborative learn-
ing strategy can make full use of reliable testing samples
at both image-level and instance-level;

« We provide more ablative studies and qualitative analy-
ses to demonstrate the superiority of DPSNet compre-
hensively, including different detection backbones, the
computational complexity of network, and convergence
of iterative learning scheme.

The remainder of this paper is organized as follows. A brief
review of related works is presented in Section II. The details
of the proposed DPSNet and learning strategy are given in
Section III. Extensive experiments and ablation studies are
given in Section IV. We conclude our method in Section V.

II. RELATED WORK
A. Domain Adaptation

Deep neural networks perform not well in source and
target domains with different distribution. To solve this issue,
many domain adaptation training methods have been proposed.
Szegedy et al. [9] develop a new training strategy by adding
auxiliary classifiers to intermediate layers and discarding these
auxiliary networks at inference time. In [10], the proposed
collaborative learning framework adds multiple classifier heads
of the same network and optimizes them collaboratively. In
[11], a multi-task collaborative learning method is proposed
to solve the facial landmark detection problem based on
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auxiliary training and geometric constraints. Chen et al. [12]
employ Faster R-CNN detection network [2] and design two
domain adaptation components, on image level and instance
level, to reduce the domain discrepancy. Wang et al. [13]
develop a manifold embedded distribution alignment method
to learn a domain-invariant classifier in Grassmann manifold
with structural risk minimization, which is the first attempt to
perform dynamic distribution alignment for manifold domain
adaptation. Jing et al. [14] develop the heterogeneous hashing
network to learn compact hash representations of both face
images and videos for face retrieval across image and video
domains. In terms of unsupervised domain adaptation, anno-
tations are only available for source domain and no labels
for target domain. To solve this problem, Lee [15] trains the
target domain classifier using pseudo-labels with maximum
predicted probability from the source domain trained classifier.
Saito et al. [7] develop an asymmetric tri-training method for
unsupervised domain adaptation, where unlabeled samples are
assigned to pseudo labels selected by two asymmetric classifier
heads.

Domain adaptation is widely used in cross-domain data
(e.g., image, video and text) analysis. Qian et al. [16] propose
a generic cross-domain collaborative learning framework via
a discriminative nonparametric Bayesian dictionary learning
model. In [17], multimodal domain adaptation neural networks
are proposed to learn domain-invariant features by constraining
single modal features, fused features, and attention scores.
In [18], the multi-kernel sparse representation-based domain-
adaptive discriminative projection method is proposed to learn
the discriminative features of the data in the two domains
with the dictionary. Ma et al. [19] use the multi-modality
adversarial network to learn semantic multi-modality repre-
sentations to reduce domain discrepancy. In this work, we
propose an iterative learning strategy to learn a common
feature representation for different detection and counting
views, based on reliable testing samples in both image-level
and instance-level.

B. Knowledge Distillation

Domain adaptation methods usually use knowledge distil-
lation to transfer representations between data domains. The
goal of knowledge distillation is simple: train a student model
that achieves better performance by knowledge transfer from
the teacher model than it would if trained directly. It is first
proposed in [20], which distills the knowledge in an ensemble
of models into a single smaller model. Romero et al. [21]
use intermediate representations learned by the teacher as
hints to improve the training process and final performance
of the student. Fukuda et al. [22] propose two new strategies
for knowledge distillation using multiple teachers. In [23], a
weighted cross-entropy loss is developed to address the prob-
lem of class imbalance and a teacher bounded loss is used to
handle the regression component, where the adaptation layers
can learn from intermediate teacher distributions effectively.
Bagherinezhad er al. [24] introduce an iterative procedure
that updates the ground truth labels after examining the entire
dataset. Refining the labels while training enables the model

to generate soft, informative, collective, and dynamic labels
which results in major improvements. Furlanello et al. [25]
develop a simple re-training procedure: after the teacher model
converges, they initialize a new student identical to the teacher
model and train it with the dual goals of predicting the
correct labels and matching the output distribution of the
teacher. This procedure is called self-distillation, which gains
significant improvement in both computer vision and language
modeling tasks. Knowledge distillation has been adapted to
other tasks. Li ef al. [26] mimick feature maps between the
student and the teacher pooled from the same region proposal
and discarded those from uninterested regions. Ning et al. [27]
use learned projections that impose proper prior to inject
external knowledge into the deep neural networks for the
guidance of its training process in human pose estimation.
Huang and Peng [28] propose the two-level progressive cross-
media knowledge transfer method to transfer knowledge from
large-scale cross-media data. Recently, Tang et al. [29] design
an adaptive knowledge distillation loss, which is able to pay
more attention to teacher-defined hard samples. Besides, they
use a simple data filtering mechanism to train on unlabeled
data in the semi-supervised setting. Heo er al. [30] provide
a new perspective based on a decision boundary, i.e., the
generalization performance of a classifier is closely related
to the adequacy of its decision boundary. Based on this idea,
they train a student classifier based on the adversarial samples
supporting the decision boundary to transfer more accurate
information about the decision boundary. In this work, our
framework can be regarded as iterative knowledge distillation
between source domain and target domain.

C. Grocery Product Datasets

Recently, emerging interest occurs in integrating computer
vision technology into the retail industry. However, there only
exist few datasets for grocery product classification [31], [32],
recognition [33]-[36], segmentation [37] and tallying [1]. This
is because the retail industry requires a huge amount of human
labor and a large percentage of the workload is spent on
recognizing products. Klasson et al. [32] establish the dataset
from fruit and vegetable sections and refrigerated sections in
18 different grocery stores, which consists of 5, 125 images and
81 fine-grained classes. Jund et al. [36] collect 5,021 images of
25 grocery classes using smartphone cameras at various stores,
apartments and offices in Freiburg, Germany, including 4, 947
training images that contain one or more instances of one
class, and 74 testing images of 37 clutter scenes that contain
objects of multiple classes. Follmann et al. [37] propose the
MVTec D2S dataset for instance semantic segmentation, which
contains 21, 000 images of 60 object categories with pixel-wise
masks. However, the aforementioned datasets are relatively
not challenging, resulting in a poor representation of checkout
scenarios in real life.

In this work, we use the largest scale Retail Product
Checkout (RPC) dataset [1] to evaluate the proposed al-
gorithm. It includes 200 product categories and 83,739
images for both training data and testing data. It is fur-
ther divided into 17 sub-categories, i.e., Puffed Food,
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Fig. 3. The overall architecture of our proposed DPSNet.
Dried Fruit, Dried Food, Instant Drink, Instant

Noodles, Dessert, Drink, Alcohol, Milk, Canned Food,
Chocolate, Gum, Candy, Seasoner, Personal Hygiene,
Tissue, and Stationery.

The training data contain 53,739 single-product images in
total, where each image has a particular instance of a type
of product. As shown in the top of Fig. 1, there are four
cameras to collect exemplar images on a turntable for the
top horizontal, 30° and 45° views. Meanwhile, each image
is extracted every 9 degrees when the turntable rotating. The
resolution of training images is 2592 x 1944. The bounding
boxes annotation is provided to show the location and category
of items in each image.

The testing data contain three sub-sets with different dif-
ficulty modes, each containing 10,000 images. As shown in
the bottom of Fig. 1, we use the camera mounted on top to
generate testing checkout images by putting random items on
a 80cm x 80cm whiteboard. The resolution of testing images is
1800 x 1800. Notably, according to the number of items in an
image, the three difficulty modes in the RPC dataset consist of
easy (3 ~ 5 categories and 3 ~ 10 instances), medium (5 ~ 8
categories and 10 ~ 15 instances), and hard (8 ~ 10 categories
and 5 ~ 20 instances). Three different annotations are provided
for weak to strong supervision:

o shopping lists including the category and count of each
instance,

« point-level annotations including the central position and
the category of each item,

o bounding boxes including the bounding box and the
category of each item in the checkout image.

III. METHODOLOGY

In this section, we present our data augmentation method,
the architecture of the proposed DPSNet, and iterative training
scheme to distill knowledge from source domain S to target
domain 7 in detail. Specifically, we first employ the data
augmentation strategy to narrow the gap between training data
and testing data. Then, our DPSNet is used to generate pseudo
annotations by collaborative learning of detection and counting
heads. After that, we use the iterative training strategy to
fine-tune the whole network based on the data from different
domains gradually. The overall architecture is illustrated in
Fig. 3 for better understanding.

A. Data Augmentation

To generate random rendered synthesized images for train-
ing, we collect training images of segmented items to remove
those with irrelevant poses. It consists of three steps includ-
ing background removal, pose pruning and checkout images
synthesis.

1) Background Removal: Since the exemplar images in
the RPC dataset [1] are captured on the turntable, the pro-
vided bounding box annotations contain background noise.
We remove the background noise to narrow the gap between
training images and testing images by coarse-to-fine refinement
strategy [8]. As shown in Fig. 4, we first use the edge
detector [38] to extract the contour of the item and then remove
the edges with low confidence (i.e., confidence score less
than 0.1). Secondly, we fill the holes inside the contour and
remove small isolated regions by mathematical morphology
(i.e., dilation and erosion operations). Thirdly, the edges of the
item mask are smoothed by the median filter. After that, the
saliency detection network [39] is used to generate fine masks
based on the coarse masks, which is trained on the MSRA-
B salient object dataset [40]. Notably, the saliency model is
further fine-tuned on the coarse masks.

2) Pose Pruning: To generate synthesized checkout images,
we randomly select multiple segmented items and paste them
on a prepared background image. However, not all the poses
of the isolated items are viable in checkout images. As shown
in Fig. 5, it is not stable to put bag-like or can-like items on
the checkout table with the view from bottom to top, which is
called unrealistic pose. To remove them, we introduce a simple
metric based on the ratio of areas, i.e., Ry, = ﬁ"%h. A,y
denotes the area of the item mask captured by the v-th view
in the k-th category and max, A, the maximal area of pose.
If the ratio is less than a pre-set threshold 6,,, it indicates that
the area of this pose is too small to be put on the checkout
table stably; otherwise, we regard this pose as a realistic pose.

3) Checkout Images Synthesis: Given the segmented items
with realistic pose, the checkout images are synthesized by
using the method in [1]. Specifically, segmented items are
randomly selected and freely placed (i.e., random angles from
0 to 360 and scales from 0.4 to 0.7) on a prepared background
image such that the occlusion rate of each instance less than
50%. Thus the synthesized images are similar to true checkout
images in terms of item placement (see the first row of Fig. 6).
As discussed before, the synthesized checkout images (see
the second row of Fig. 6) still lack lighting and shadow
characteristics of true checkout images (see the third row of
Fig. 6). Therefore, we employ the Cycle-GAN method [5] to
render synthesized checkout images for more realistic lighting
condition and shadows.

B. Network Architecture

As discussed in the introduction, the source domain of
rendered checkout images is still different from the target
domain of real checkout images after data augmentation.
Inspired by [7], we propose the Dual Pyramid Scale Network
(DPSNet) to learn a common feature representation from two
different views, i.e., detection and counting. As shown in
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Fig. 4. Background removal by mathematical morphology.

(a) Realistic Pose

Fig. 5. Comparison between the items with unrealistic and realistic poses.

Fig. 6. Comparison of synthesized checkout images (first row), rendered
checkout images (second row) by Cycle-GAN [5] and true checkout images
(third row).

Fig. 7, the detection view D produces a set of objects O, which
is a 5-tuple in the form of (c, x, y, w, h), where c is the index
of object category and x,y,w, h are central coordinates and
scales of the object. The counting view C predicts a density
map © € RIXWXC where C, H and W indicate the density
category, density map height and width, respectively.

A g

(b) Unrealistic Pose

Dilation & Erosion Masked Image

Median Blur

Masked Image

(c) Pose with Maximal Area

According to the work in [3], low-level features are with
more location information while high-level features are with
strong semantical information. To make full use of the features,
we use all level feature maps from the backbone of feature
pyramid network (FPN) [3], i.e., P = {P2, P3, P4, P5, P6}.
For the low-resolution feature map, we upsample the spatial
resolution using the bilinear method. The upsampled map is
followed by one 1 x 1 convolutional layer (without ReLU
layer) to learn to select useful information, then added to
the next level feature. This upsample procedure is stopped as
P3, and then we use the same procedure to down-sample P2
and add it to P3. The fused feature map has the same shape
as that in the original P3 feature maps. Finally, the counting
head consists of one 3 x 3 convolutional layer and one 1 X 1
convolutional layer to predict density map; while the detection
head contains fully connected layers to calculate regression and
classification results of detection proposals. Compared to our
preliminary work [8], it is worth mentioning that the proposed
network considers the multi-scale representation for counting
and detection views simultaneously. On the other hand, the
counting head has been greatly simplified compared with [41].
Therefore, we train the detection and counting network based
on training data in end-to-end fashion more efficiently (see the
results in Table IV).

C. Iterative Knowledge Distillation

After the detection model is initialized on the training data
(source domain), we learn a common feature representation
from source domain to target domain gradually via the iterative
knowledge distillation scheme. Before that, we revisit the
previous representative knowledge distillation methods briefly.

Fig. 8(a) shows the conventional knowledge distillation
procedure [20]. The class probabilities produced by the cum-
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Fig. 8. Different knowledge distillation frameworks. (a) traditional knowledge distillation method; (b) self-distillation training method; (c) our proposed iterative

knowledge distillation method.

bersome teacher model T are used as soft targets to train the
small student model S. If the soft targets have high entropy,
they provide much more information per training case than
hard targets and much less variance in the gradient between
training cases. Thus the small model can be trained on much
less data than the original cumbersome model by using a much
higher learning rate. However, this procedure is often limited
to the same domain where the teacher model 7" and the student
model § are trained on the dataset with the same distribution.
Besides, unlike discrete categories, it is difficult to use soft
targets for regression tasks like object detection directly. This

is because the teacher’s regression outputs may provide wrong
guidance toward the student model and the variance and mean
of regression targets may vary greatly.

On the other hand, the self-distillation procedure [25] is
shown in Fig. 8(b), where the student network is identical
to the teacher model in terms of the network graph. This
distillation process can be performed consecutively several
times. At each consecutive step, a new identical model is
initialized from a different random seed and trained from
the supervision of the earlier generation. At the end of the
procedure, additional gains can be achieved with an ensemble
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of multiple students generations. An ensemble of multiple
student generations increases the inference time accordingly
as well.

Different from the aforementioned knowledge distillation
methods, our method is based on two views with the common
backbone, as shown in Fig. 8(c). Specifically, the detection
view learns to localize objects while the counting view focuses
on counting objects. However, both two views learn from the
shared backbone and back-propagates gradients independently
during training. To distill knowledge from source domain to
target domain, we use consistent targets instead of soft and
hard targets. Consistent targets are defined as predicted outputs
from the detection view that passes the consistency check such
that

H W
[Z Z@(i,j, c)] = Y IPd) > ) Ve eC (1)

i=0 j=0 deD

where (i, j) enumerates all positions in the density map
0 € RI>WXC [.] indicates the rounding operation. Pc(d) is
the probability of detection d belonging to the c-th category,
where D is the set of detections and C is the set of categories.
6, is the threshold of detection confidence. I(-) = 1 if its
argument is true, and 0 otherwise.

Iterative learning. We perform the consistency check on the
unlabelled target domain to select reliable images using pseudo
labels. If the number of objects with high confidence equals
to the count number estimated by density map in all density
categories, we assign the sample to valid pseudo label and
regard it as a reliable image; otherwise, we discard the outputs.
To guide the training procedure converging on target domain,
we use both source domain data and selected target domain
data to fine-tune the initialized detection network iteratively.
That is, we train the network using the testing data with pseudo
labels generated in the previous step, and then generate new
samples with pseudo labels after this step stops. Thus this
training procedure is iterative as shown in Fig. 8(c).

Pseudo labels at instance-level. After iterative training, to
make full use of training samples, we re-collect the instances
with high confidence and ignore others in the discarded
unreliable images. Specifically, we remove the counting head C
of the DPSNet, and then fill background pixels in the bounding
boxes of the objects with low confidence (i.e., lower than the
threshold 6,). As shown in Fig. 9, there are three types of
ignored instances: (A) the objects with similar appearance
as that of neighbouring objects, (B) occluded objects in
crowded scenes, (C) non-product objects in check-out images
of the RPC dataset. Finally, we fine-tune the network using
filtered unreliable testing images. In such an iterative training
procedure, the knowledge flows from source domain to target
domain at both image-level and instance-level. For better
understanding, the whole procedure of iterative training is
presented in Algorithm 1.

D. Loss Function

For iterative training, we consider loss function of both
counting and detection heads. For the counting head, the
squared Euclidean distance between the ground-truth map and

Fig. 9. Comparison between original checkout images and filtered images
without low-confidence instances (from top to bottom). There exist three types
of ignored objects with low-confidence (instance A,B,C).

Algorithm 1 Iterative Knowledge Distillation

Input: rendered training data S with annotations, unlabelled
testing data 7~
Output: the model of DPSNet
1: for j =1 to Nier do
2:  Train DPSNet with counting head C and detection head
D using rendered training data S.
3: end for
4: Assign reliable testing data J to pseudo labels based on
Eq. (1).
5: for i =1 to Nyep do
. for j=1to N, do
7 Train DPSNet based on training data and reliable

testing data S U 7.
: end for
9:  Assign reliable testing data 7~ to pseudo labels based
on Eq. (1).
10: end for

11: Remove the counting head C of DPSNet.

12: Filter unreliable testing images by ignoring the instances
with low confidence.

13: Fine-tune DPSNet using filtered unreliable testing images.

the estimated density map is computed. For the detection
head, the standard cross-entropy loss for classification and the
smooth L1 loss for regression [3] are computed. The whole
loss function is calculated as

N
L= () 16(:x) -0 x)!
i=1 4

+ Z(Lals(ﬁd, pa: %) + W(pg > 0) - Lieo(Fan ta; X)),
a

@)

where x; denotes the input checkout image with the size of
800 x 800 and N is the batch size. ©(¢; x;) and O(¢; x;) are
estimated and ground-truth density values of location ¢ in
image x;, respectively. Notably, the density maps are 1/8 size
of the input image, i.e., 100 X 100. py and p, are predicted
and ground-truth category label of detection d in image x;,
respectively. I(ps > 0) means that we only calculate the
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regression loss of objects. We have I(py > 0) = 1 if its
argument is true (objects), and I(p4 > 0) = 0 otherwise (back-
ground). 7; and t4 are the regression vectors that represent the
4 parameterized coordinates of the predicted and ground-truth
bounding box of detection d in the image x;, respectively. In
terms of generating ground-truth density maps, we generate a
map with the normalized Gaussian kernel based on the central
locations of each object, and then sum up all the density maps
to produce the final ground-truth density map, similar to the
work in [41].

IV. EXPERIMENT

We evaluate our method on the RPC dataset [1] compared
with two existing methods [1], [8]. We use several metrics
following [1], including Checkout Accuracy (cAcc), Average
Counting Distance (ACD), Mean Category Counting Distance
(mCCD), Mean Category Intersection of Union (mCloU), and
two mean Average Precision scores (i.e., mAP50 and mmAP),
which are defined as follows.

o Checkout Accuracy (cAcce [0, 1]) is the accuracy when
the complete shopping list is predicted correctly, which
is computed as

Zf\il 5(25;1 CDi,k = 0)
N .
In Eq.(3), CD;x = |Pix — GT;x| is the counting error
for a specific category in an image, where P; ; and GT;
correspond to the predicted and ground-truth number of
items in the k-th category in the i-th image, respectively.
cAcc = 1 means that all items are predicted accurately,
ie., Zszl CD; r = 0. This is the primary metric.
e Mean Category Intersection of Union (mCloUe [0, 1])
is the overlap between the predicted and ground-truth
shopping list, which is defined as

cAcc = (3)

K ©N .
1 - min(GT; g, P;
mCloU = — § o (CTu ”‘).

iy max(GT;, P;x)

“4)
K=
« Average Counting Distance (ACD) is the average number

of counting errors for each image:

1 N K
ACD = NZZCDM. (5)

i=1 k=1
o Mean Category Counting Distance (mCCD) calculates the
average ratio of counting errors for each category:
(6)

K N
1 N CD;
mCCD = — § —Z‘I;I *
K k=1 Zi:l GTi,k

o The mean Average Precision (mAP) metrics including
mAP50 and mmAP are used to evaluate the object
detection performance. mAP50 is the average precision
based on the Intersection over Union (IoU) threshold 0.50
over all the categories, while mmAP is the mean average
precision of all item categories based on all 10 IoU
thresholds from the interval [0.50, 0.95] in steps of 0.05.
Please refer to evaluation protocols in MS COCO [42]
and the ILSVRC 2015 challenge [43] for more details.

8

A. Implementation Details

The propose DPSNet is implemented by PyTorch [44] on
a workstation with 4 Nvidia TITAN Xp GPU cards. We set
the batch size to 8 in the training phase, where each image
includes at most 256 detection proposals. Then, the network is
trained using SGD optimization method with 0.9 momentum
and 0.0001 weight decay. We set the initial learning rate to
10~7 and 0.01 for counting and detection heads, respectively.
Besides, the channel dimension of density map in the counting
head is set as C = 1. In Section III-A2, the threshold for pose
pruning is set as 6,, = 0.45. In Section III-C, the threshold
for consistency check is set as 6, = 0.95.

In terms of iterative knowledge distillation training, the
initial learning rate is 0.001 for the first 7 training steps, which
decays by a factor of 10 at the 10-th step and 12-th step. The
training steps are 14 in total in our experiment. For each step,
we train 10,000 iterations using the pseudo labels generated
in the previous step, then we generate new pseudo labels after
this step stops.

B. Results and Analysis

We evaluate the proposed DPSNet compared with the
Wei et al. method [1] and Data Priming Network (DPNet) [8].
For each compared method, we conduct the experiments on
two variants including Render and Syn+Render. The Render
method is trained based on rendered synthesized images
using Cycle-GAN [5]. The Syn+Render method is trained
based on both synthesized and rendered images. Note that
we generate 100, 000 synthesized checkout images by copying
and pasting the segmented isolated items to the background.
DPNet [8] is an improved FPN detector with both detection
and counting heads, which is optimized by collaborative de-
tection and counting learning. Besides, we construct additional
Instance+Render variant for the proposed DPSNet, where we
train the network on both instance-level samples and rendered
images.

As shown in Table I, the Render baseline method achieves
only 45.60% cAcc score on averaged clutter mode. This
may be due to considerable domain shift between rendered
training samples and real checkout images. Based on both
synthesized and rendered images, the domain shift problem
is solved to some degree, resulting in better 56.68% checkout
accuracy. After further introducing reliable testing samples in
the training phase, the checkout accuracy of DPNet [8] is
improved from 45.60% to 77.91% significantly. Similarly, the
performance reaches 80.51% when we train DPNet [8] based
on both synthesized and rendered images.

Compared with the previous methods, our DPSNet em-
ploys an iterative training scheme to learn a common feature
representation for both source domain and target domain
more effectively. That is, better 86.54% checkout accuracy is
obtained on averaged clutter mode. It is worth mentioning
that the “DPSNet (Syn+Render)” method achieves slightly
inferior performance than the “DPSNet (Render)” method
(i.e., 85.98% vs. 86.54%). We speculate that DPSNet can
make full use of rendered training data while synthesized data
introduce additional domain shift. In terms of other metrics
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TABLE 1
EXPERIMENTAL RESULTS ON THE RPC DATASET.

[ Clutter mode | Methods [[ cAcc (D) [ ACD () | mCCD () [ mCIoU (1) [ mAP50 () [ mmAP () |

Wei et al. [1] (Render) 63.19% 0.72 0.11 90.64% 96.21% 77.65%

Wei et al. [1] (Syn+Render) 73.17% 0.49 0.07 93.66% 97.34% 79.01%

DPNet [8] (Render) 89.74% 0.16 0.02 97.83% 98.52% 82.75%

Easy DPNet [8] (Syn+Render) 90.32% 0.10 0.02 97.87% 98.60% 83.07%
DPSNet (Render) 93.00% 0.10 0.01 98.57% 99.10% 84.69%

DPSNet (Syn+Render) 93.01% 0.10 0.01 98.54% 99.03% 84.96%

DPSNet (Instance+Render) 94.28% 0.08 0.01 98.94% 99.23% 85.18%

Wei et al. [1] (Render) 43.02% 1.24 0.11 90.64% 95.83% 72.53%

Wei er al. [1] (Syn+Render) 54.69% 0.90 0.08 92.95% 96.56% 73.24%

DPNet [8] (Render) 77.75% 0.35 0.03 97.04% 97.92% 76.78%

Medium DPNet [8] (Syn+Render) 80.68% 0.32 0.03 97.38% 98.07% 77.25%
DPSNet (Render) 87.10% 0.19 0.02 98.38% 98.85% 79.34%

DPSNet (Syn+Render) 86.28% 0.21 0.02 98.20% 98.83% 79.69%

DPSNet (Instance+Render) 88.56% 0.16 0.01 98.69% 98.86% 79.85%

Wei et al. [1] (Renden) 31.01% 1.77 0.10 90.41% 95.18% 71.56%

Wei et al. [1] (Syn+Render) 42.48% 1.28 0.07 93.06% 96.45% 72.72%

DPNet [8] (Render) 66.35% 0.60 0.03 96.60% 97.49% 74.67%

Hard DPNet [8] (Syn+Render) 70.76% 0.53 0.03 97.04% 97.76% 74.95%
DPSNet (Render) 79.65% 0.32 0.02 98.16% 98.45% 77.32%

DPSNet (Syn+Render) 78.71% 0.34 0.02 98.06% 98.51% 77.60%

DPSNet (Instance+Render) 81.59% 0.26 0.02 98.49% 98.51% 77.88%

Wei et al. [1] (Render) 45.60% 1.25 0.10 90.58% 95.50% 72.76%

Wei et al. [1] (Syn+Render) 56.68% 0.89 0.07 93.19% 96.57% 73.83%

DPNet [8] (Render) 77.91% 0.37 0.03 97.01% 97.74% 76.80%

Averaged DPNet [8] (Syn+Render) 80.51% 0.34 0.03 97.33% 97.91% 77.04%
DPSNet (Render) 86.54% 0.21 0.02 98.33% 98.56% 79.18%

DPSNet (Syn+Render) 85.98% 0.22 0.02 98.24% 98.61% 79.46%

DPSNet (Instance+Render) 88.14% 0.17 0.01 98.66% 98.64% 79.75%

such as ACD, mCloU and mmAP, our method achieves the
best performance in different difficulty levels.

Moreover, to verify the robustness of our method applied
in more advanced detectors, we also evaluate DPSNet with
different detection backbones including FPN [3], Mask R-
CNN [45], Libra R-CNN [46] and Cascade R-CNN [47].
For a fair comparison, all experiments settings are the same
except the detectors. As shown in Table II, the cAcc scores
are increased along with the improvement of detection accu-
racies of different backbones. Specifically, the “Mask R-CNN
(Instance+Render)” method performs slightly better than the
“FPN (Instance+Render)” method by using another segmen-
tation head. The “Libra R-CNN (Instance+Render)” method
tries to reduce the imbalance at sample, feature, and objective
level, resulting in 89.67% cAcc score. The “Cascade R-CNN
(Instance+Render)” method employs a sequence of detectors
trained with increasing IoU thresholds to achieve over 2%
improvement on the cAcc score (i.e., 90.74% vs. 88.14%)
and approximate 3% gain on the mmAP score (i.e., 82.72%
vs. 79.75%). It indicates that our method can further boost
the performance when using advanced detectors. Besides, we
provide visual examples in different difficulty levels of the
RPC dataset in Fig. 10.

C. Ablation Study

In this section, the ablation study is conducted to explore the
complexity of network and convergence procedure of iterative
learning scheme. we first study the influence of the number
of density categories C on the performance. In addition, as
shown in Table III, we construct several DPSNet variants and

evaluate them on the RPC dataset to show the effectiveness.
Notably, we use the same parameter settings including input
size (800 x 800) and training data.

1) Influence of Density Categories: To analyze the influ-
ence of different density categories C in Section III-B, we
enumerate C token 1, 17 and 200, as shown in Fig. 11. If
C =1, we obtain 86.54% cAcc score, which means that we
regard all the products as one category. If C = 17, we obtain
80.05% cAcc score by using 17 super categories as density
categories. If C = 200, we only obtain 77.22% cAcc score
by considering all the categories. In terms of other metrics
including MAE (mean absolute error), label accuracy and the
number of selected samples, we can see the similar trend. The
MAE score is decreased as the training steps increase, which
is defined as

1 & & .
MAE = D Mae = M, ol (7

i=1 c=1

where N is the number of images in the testing set. Mxl.,c
and M,, . are the estimated and ground-truth counts of image
x; for the c-th density category respectively, i.e., Mxl.,c

fio Z}ZO @(i, J»¢;x;). The label accuracy means the per-
centage of correct label assignment for instances in all the
selected instances, and the number of selected samples is
the total number of instances for training. In summary, it is
more difficult to converge based on more density categories.
Therefore, we set C = 1 in our network.

2) Effectiveness of Dual Pyramid Scale Network: To cap-
ture the appearance of various scales of objects, we propose
the dual pyramid scale network (DPSNet, see Fig. 7). From Ta-
ble III, DPSNet performs similarly compared with the variant
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Fig. 10. Detection results of the proposed DPSNet for easy, medium, and hard modes (from top to down). Different color bounding boxes correspond to

different predicted categories. Best view in color.

without a dual pyramid scale representation (i.e., DPNet [8])
if no collaborative learning of detection and counting heads is
performed for domain adaptation (i.e., 70.08% vs. 70.80%).
If we the use collaborative learning strategy based on the
dual pyramid scale network, the cAcc score grows 1.44%, i.e.,
79.35% vs. 77.91%.

Moreover, we report the complexity and running time of
existing methods in Table IV. Compared with Wei et al. [1],
DPNet [8] has 2.73 million more parameters and achieves a
promising cAcc score of 77.91%. However, the training time
also increases from 0.36 second to 1.20 second per iteration.
The proposed DPSNet increases only 0.85 million parameters
than Wei et al. [1] but achieves more than 20% improvement in
checkout accuracy. It indicates that our method is efficient and
effective. It is worth mentioning that the compared methods
have the same inference speed. This is because all of them
are based on the FPN detector, where the only difference
is the training strategy. In other words, only the original
FPN backbone is used in the inference phase and all other
additional modules (e.g., the counting head and consistency
check module) are removed.

3) Effectiveness of Collaborative Learning: 1If we only
consider the multi-scale feature representation in the network,
the accuracy is slightly degraded. However, the performance
is significantly improved by using the proposed detection
and counting collaborative learning (70.80% vs. 79.35%).
This is maybe because detection and counting heads are
mutually affected without collaborative learning, resulting in
local optimum of two different views in the training phase. The
experiment results indicate the importance and effectiveness of
collaborative learning.

4) Effectiveness of Iterative Learning: From Table III, it
can be seen that the significant improvement in cAcc score
is obtained by using iterative learning strategy, i.e., 79.35%
vs. 86.54%. To further show the effectiveness of iterative
training scheme, we provide the iteration results in Fig. 12.
It is observed that the checkout accuracy increases along with
the increase of training steps and reaches the maximal value
at the 12-th step (see the blue line in Fig. 12(a)). It means that
we have taken full use of testing samples to facilitate training
our model. Moreover, the red line denotes the performance of
the iterative training scheme based on selected samples with
ground-truth annotations, which shows the upper bound of the
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TABLE II
COMPARISON BETWEEN DIFFERENT BACKBONES INCLUDING FPN [3], Mask R-CNN [45], LiBra R-CNN [46] anD Cascabpe R-CNN [47].

[ Clutter mode | Methods [[ cAcc (D) [ ACD () | mCCD () | mCIoU (1) [ mAP50 (1) [ mmAP (7) |
FPN (Render) 93.00% 0.10 0.01 98.57% 99.10% 84.69%
FPN (Instance+Render) 94.28% 0.08 0.01 98.94% 99.23% 85.18%
Mask R-CNN (Render) 93.54% 0.09 0.01 98.63% 99.15% 85.01%
Easy Mask R-CNN (Instance+Render) 94.63% 0.08 0.01 99.01% 99.32% 85.89%
” Libra R-CNN (Render) 95.32% 0.07 0.01 99.05% 99.36% 86.69%
Libra R-CNN (Instance+Render) 95.84% 0.06 0.01 99.08% 99.41% 87.51%
Cascade R-CNN (Render) 96.71% 0.05 0.01 99.12% 99.46% 88.77%
Cascade R-CNN (Instance+Render) 97.22% 0.04 0.01 99.35% 99.63% 89.45%
FPN (Render) 87.10% 0.19 0.02 98.38% 98.85% 79.34%
FPN (Instance+Render) 88.56% 0.16 0.01 98.69% 98.86% 79.85%
Mask R-CNN (Render) 87.77% 0.18 0.01 98.46% 98.85% 79.44%
Medium Mask R-CNN (Instance+Render) 89.01% 0.15 0.01 98.84% 98.98% 82.11%
Libra R-CNN (Render) 89.87% 0.14 0.01 98.97% 99.01% 82.18%
Libra R-CNN (Instance+Render) 90.33% 0.13 0.01 99.01% 99.09% 82.21%
Cascade R-CNN (Render) 90.81% 0.12 0.01 99.05% 99.12% 82.34%
Cascade R-CNN (Instance+Render) 91.64% 0.09 0.01 99.17% 99.28% 82.97%
FPN (Render) 79.65% 0.32 0.02 98.16% 98.45% 77.32%
FPN (Instance+Render) 81.59% 0.26 0.02 98.49% 98.51% 77.88%
Mask R-CNN (Render) 80.12% 0.30 0.01 98.32% 98.47% 77.46%
Hard Mask R-CNN (Instance+Render) 82.05% 0.23 0.01 98.75% 98.83% 79.31%
Libra R-CNN (Render) 82.11% 0.22 0.01 98.78% 98.84% 79.42%
Libra R-CNN (Instance+Render) 83.16% 0.20 0.01 98.82% 98.86% 79.75%
Cascade R-CNN (Render) 83.22% 0.19 0.01 98.89% 98.89% 79.86%
Cascade R-CNN (Instance+Render) 85.06% 0.16 0.01 99.01% 99.01% 80.15%
FPN (Render) 86.54% 0.21 0.02 98.33% 98.56% 79.18%
FPN (Instance+Render) 88.14% 0.17 0.01 98.66% 98.64% 79.75%
Mask R-CNN (Render) 86.96% 0.20 0.01 98.39% 98.58% 79.35%
Averaged Mask R-CNN (Instance+Render) 88.59% 0.15 0.01 98.73% 98.79% 81.24%
Libra R-CNN (Render) 88.79% 0.14 0.01 98.80% 98.83% 81.30%
Libra R-CNN (Instance+Render) 89.67% 0.13 0.01 98.89% 98.85% 81.56%
Cascade R-CNN (Render) 89.81% 0.13 0.01 98.96% 98.88% 81.90%
Cascade R-CNN (Instance+Render) 90.74% 0.10 0.01 99.12% 99.02% 82.72%
TABLE III
85.0 3.0
EFFECTIVENESS OF VARIOUS DESIGNS. ALL MODELS ARE TRAINED AND TESTED
825 25 oN THE RPC DATASET.
— C=1
c=17 Component DPSNet
== C=200 dual pyramid scale? v v v
collaborative learning? v v v v
iterative learning? v
instance-level sample? v
4 6 8 10 12 cAcc [70.80% 77.91% 70.08% 79.35% 86.54% 88.14%
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oo N § TABLE IV
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£ 500 — c=1 | g — c=t _
g c=17 | B 12 d=17 Method | # of Extra Params | cAcc [ Training | Inference
2oee == C=200 Tg 10K T G200 Wei et al. [1] 0 56.68% | 0.36 sf/iter | 0.16 s/img
L N DPNet [8] 2.73M 77.91% | 1.20 sfiter | 0.16 s/img
0.86 ° DPSNet 0.85M 79.35% | 0.38 sfiter | 0.16 s/img
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Fig. 11. Comparison of different number of density categories C =
{1,17,200} in terms of cAcc, MAE, label accuracy and the number of
selected samples.

accuracy. The decreased MAE score indicates the counting
head can predict more accurate number of items. Fig. 12(c)
shows the accuracy of selected pseudo labels. It can be seen
that the label accuracy remains stable. Specifically, based on
the consistency check equation (1), 92.70% of pseudo labels

are assigned correctly, which shows the effectiveness of our
training strategy. As shown in Fig. 12(d), more reliable testing
samples are used in the training phase with the increase of
training steps. In summary, both the accuracy of pseudo labels
and the number of training samples are crucial to the check-out
accuracy.

5) Effectiveness of Instance-level Samples: As discussed
before, DPNet [8] only collects reliable testing samples at
image-level, which easily ignores reliable samples with high
confidence in the discarded images. Therefore, the reliable
samples are not taken into consideration for domain adaptation
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Fig. 12. The comparison between training samples with pseudo and ground-truth labels in terms of (a) cAcc, (b) MAE, (c) label accuracy, (d) the number
of selected samples in each training step.

fully, resulting in limited performance. To this end, as shown [9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
in Fig. 9, we only remove the low-confidence instances in each D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
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these objects. As presented in Table III, the aAcc score in-  [10] G. Songand W. Chai, “Collaborative learning for deep neural networks,”

creases from 86.54% to 88.14% by considering instance-level in Neural Information Processing Systems, 2018, pp. 1837-1846.

testing samples. Meanwhile, the experiment in Table I demon- 11} G-Mu, Q. She, Z. Tian, H. Gan, and P. Jiang, "A multi-task collaborative
. 7 o . learning method based on auxiliary training and geometric constraints,”

strates the effectiveness of instance-level knowledge distillation in IEEE Industrial Cyber-Physical Systems, 2018, pp. 79-84.
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