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ABSTRACT
Automatic Check-Out (ACO) receives increased interests in recent
years. An important component of the ACO system is the visual
item counting, which recognizes the categories and counts of the
items chosen by the customers. However, the training of such a
system is challenged by the domain adaptation problem, in which
the training data are images from isolated items while the testing
images are for collections of items. Existing methods solve this
problem with data augmentation using synthesized images, but
the image synthesis leads to unreal images that affect the train-
ing process. In this paper, we propose a new data priming method
to solve the domain adaptation problem. Specifically, we first use
pre-augmentation data priming, in which we remove distracting
background from the training images using the coarse-to-fine strat-
egy and select images with realistic view angles by the pose pruning
method. In the post-augmentation step, we train a data priming net-
work using detection and counting collaborative learning, and select
more reliable images from testing data to fine-tune the final visual
item tallying network. Experiments on the large scale Retail Product
Checkout (RPC) dataset demonstrate the superiority of the proposed
method, i.e., we achieve 80.51% checkout accuracy compared with
56.68% of the baseline methods. The source codes can be found in
https://isrc.iscas.ac.cn/gitlab/research/acm-mm-2019-ACO.
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Figure 1: The illustration of Automatic Check-Out (ACO)
system. It can recognize the categories and counts of the
products that the customer puts on the checkout counter,
and calculate the corresponding total price. This can be also
expanded to other application scenarios such as shopping
cart and shelves.
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1 INTRODUCTION
The recent success of Amazon Go system has invigorated the inter-
ests in Automatic Check-Out (ACO) in supermarket and grocery
stores. With ACO, customers do not need to put items on the con-
veyer belt and wait in line for a store assistant to scan them. Instead,
they can simply collect the chosen items and an AI-based system
will be able to produce the categories and count of these items
and automatic process the purchase. Successful ACO system will
revolutionize the way we do our shopping and will have significant
impact to our daily life in the coming years.

The bedrock of an ACO system is visual item counting that takes
images of shopping items as input and generates output as a tally
of different categories. With the recent successes of deep learning,
deep neural network is a tool of choice for this task. The training
of deep neural networks predicates on the availability of large
annotated dataset. However, unlike other tasks in computer vision
such as object detection and recognition, the training of deep neural
network for visual item counting faces a special challenge of domain
shift. Specifically, the training data are usually images of individual
items under different viewing angles, which is collected using an
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isolated item sitting on a turntable. As such, the training images
may have a distribution different from the images of shopping items
piled together over a surface, see Figure 1. The visual item counting
algorithm needs to be able to adapt to the difference between the
source domain (images of isolated objects) and the target domain
(images of collections of objects).

Existing work [30] attempts to solve this problem with data ar-
gumentation. Firstly, images of collections of objects are generated
by overlaying individual objects randomly. To improve the realism
of the target images, the CycleGAN method [33] is used to render
realistic shadows and boundaries. However, such a scheme has
serious drawbacks. The synthesized testing images have low level
of realism due to some unrealistic poses. Besides, there still exists
considerable domain shift between training data and testing data.

In this work, we propose a new strategy termed as data priming,
to solve the challenging domain adaptation in the visual item count-
ing problem. Instead of simply increasing the data volume by data
augmentation as in the previous method [30], we improve the rele-
vancy of the augmented data in two steps. In the pre-augmentation
data priming step, we extract the foreground region from the train-
ing images of isolated objects using the coarse-to-fine saliency
detection method. Then, we develop a pose pruning method to
choose images only with consistent configurations of the target
domain as candidates to generate synthesized images of checked
out items with realistic poses. In the post-augmentation data prim-
ing step, we construct a data priming network with two heads,
one for counting the total number of items and the other for de-
tecting individual objects. Trained on the synthesized images, the
data priming network is used to determine the reliability of test-
ing data by detection and counting collaborative learning. Thus
reliable testing data is selected to train the visual item tallying
network. Experiments on the large-scale Retail Product Checkout
(RPC) dataset [30] demonstrate significant performance improve-
ment of the proposed method compared with the baselines, — we
achieve 80.51% checkout accuracy compared with 56.68% of the
baseline method.

The main contributions of this work are three-fold.
• First, we develop a simple and effective pose pruning method
to select synthesized checkout samples with realistic poses
for training data.

• Second, we propose the data priming network to select re-
liable testing data by detection and counting collaborative
learning to guide the training of visual item tallying network.

• Third, experiments on the RPC dataset shows that our pro-
posed method achieves favorable performance compared to
the baselines.

2 RELATEDWORK
2.1 Salient Object Detection
Salient object detection [8, 9, 13, 17, 25] is to segment the main ob-
ject in the image for pre-processing. Li et al. [13] obtain the saliency
map based on the multi-scale features extracted from CNN models.
Hu et al. [9] propose a saliency detection method based on the com-
pactness hypothesis that assumes salient regions are more compact
than background from the perspectives of both color layout and tex-
ture layout. Liu et al. [17] develop a two-stage deep network, where

a coarse prediction map is produced and followed by a recurrent
CNN to refine the details of the prediction map hierarchically and
progressively. Tang and Wu [25] develop multiple single-scale fully
convolutional networks integrated chained connections to generate
saliency prediction results from coarse to fine. Recently, Hou et
al. [8] take full advantage of multi-level and multi-scale features
extracted from fully CNNs, and introduce short connections to the
skip-layer structures within the holistically-nested edge detector.

2.2 Data Augmentation
Data augmentation is a common method used in deep network
training to deal with training data shortage. Recently, generative
models including variational auto-encoder (VAE) [26, 31] and gen-
erative adversarial networks (GANs) [6, 33] are used to synthesize
images similar to those in realistic scenes for data augmentation.
Oord et al. [26] propose a new conditional image generation method
based on the Pixel-CNN structure. It can be conditioned feature
vectors obtained from descriptive labels or tags, or latent embed-
dings created by other networks. In [31], a layered VAE model with
disentangled latent variables is proposed to generate images from
visual attributes. Besides, different from VAE, Goodfellow et al. [6]
estimate generative models via an adversarial process of two mod-
els, where the generative model captures the data distribution, and
the discriminative model estimates the probability that a sample
came from the training data rather than the generative model. Re-
cently, the CycleGAN model [33] is to learn the mapping between
an input image and an output image in different styles.

2.3 Domain Adaptation
In training deep learning models, due to many factors, there ex-
ists a shift between the domains of the training and testing data
that can degrade the performance. Domain adaptation uses labeled
data in one source domains to apply to testing data in a target
domain. Recently there have been several domain adaptation meth-
ods for visual data. In [4], the authors learn deep features such
that they are not only discriminative for the main learning task on
the source domain but invariant with respect to the shift between
the domains. Saito et al. [24] propose an asymmetric tri-training
method for unsupervised domain adaptation, where unlabeled sam-
ples are assigned to pseudo-labels and train neural networks as if
they are true labels. In [28], a novel Manifold Embedded Distribu-
tion Alignment method is proposed to learn the domain-invariant
classifier with the principle of structural risk minimization while
performing dynamic distribution alignment. The work of [1] adapts
the Faster R-CNN [21] with both image and instance level domain
adaptation components to reduce the domain discrepancy. Qi et
al. [20] propose a covariant multimodal attention based multimodal
domain adaptation method by adaptively fusing attended features
of different modalities.

2.4 Grocery Product Dataset
To date, there only exists a handful of related datasets for grocery
product classification [22], recognition [5, 10, 11, 18], segmenta-
tion [3] and tallying [30].

Supermarket Produce Dataset [22] includes 15 product categories
of fruit and vegetable and 2, 633 images in diverse scenes. However,
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this dataset is not very challenging and does not reflect the challeng-
ing aspects of real life checkout images. SOIL-47 [11] contains 47
product categories, where each category has 21 images taken from
20 different horizontal views. Then, Grozi-120 [18] contains 120
grocery product categories in natural scenes, including 676 from
the web and 11, 194 from the store. Similar to Grozi-120, Grocery
Products Dataset [5] is proposed for grocery product recognition.
It consists of 80 grocery products comprising 8, 350 training im-
ages and 680 testing images. The training images are downloaded
from the web, and the testing images are collected in natural shelf
scenario. Freiburg Groceries Dataset [10] collects 5, 021 images of
25 grocery classes using four different smartphone cameras at var-
ious stores, apartments and offices in Freiburg, Germany, rather
than collecting them from the web. Specifically, the training set
consists of 4, 947 images that contains one or more instances of
one class, while the testing set contains 74 images of 37 clutter
scenes, each containing objects of multiple classes. Besides, in [3],
the MVTec D2S dataset is used for instance-aware semantic seg-
mentation in an industrial domain. It consists of 21, 000 images of
60 object categories with pixel-wise labels.

Different from the aforementioned datasets, the RPC dataset [30]
is the largest scale of grocery product dataset to date, including 200
product categories and 83, 739 images. Each image is obtained for a
particular instance of a type of product with different appearances
and shapes, which is divided into 17 sub-categories, such as puffed
food, instant drink, dessert, gum, milk, personal hygiene
and stationery. Specifically, 53, 739 single-product images are
taken in isolated environment as training exemplar images. To
capture multi-view of single-product images, four cameras are used
to cover the top, horizontal, 30◦ and 45◦ views of the exemplar
image on a turntable. Then, each camera takes photos every 9
degrees when the turntable rotating. The resolution of the captured
image is 2592 × 1944. Then, several random products are placed
on a 80cm × 80cm white board, and then a camera mounted on
top takes the photos with a resolution of 1800 × 1800 pixels to
generate checkout images. Based on the number of products, the
testing images are categorized in three difficulty levels, i.e., easy
(3 ∼ 5 categories and 3 ∼ 10 instances), medium (5 ∼ 8 categories
and 10 ∼ 15 instances), and hard (8 ∼ 10 categories and 5 ∼ 20
instances), each containing 10, 000 images. The dataset provides
three different types of annotations for the testing checkout images:

• shopping lists that provide the category and count of each
item in the checkout image,

• point-level annotations that provide the center position and
the category of each item in the checkout image,

• bounding boxes that provide the location and category of
each item.

3 METHODOLOGY
In this section, we present in detail our data priming scheme for
data augmentation in the training of visual item tallying network
for automatic check-out system. As mentioned in the Introduction,
our method has two steps. The pre-augmentation step we process
training images of isolated items to remove those with irrelevant

Figure 2: An example of background removal by the mathe-
matical morphology technique to generate coarse masks of
items.

poses to improve the synthesized images. In the post augmenta-
tion step, we introduce a data priming network that helps to sift
synthesized images to train the visual item tallying network.

3.1 Pre-augmentation Data Priming
3.1.1 Background Removal. Since the training images are obtained
with examplar items captured on the turntable, it contains back-
ground that affects training of the visual item tallying network to
focus on the object. To remove background noise, we develop a
coarse-to-fine saliency based refinement method. Specifically, we
first extract the contour of the object using the method of [2], re-
move the edges with the confidence score less than 0.1, and fill the
connected regions. Then other holes inside the contour are filled
and small isolated regions are removed using the mathematical
morphology operations such as dilation and erosion. As a last step,
we use median filter to smooth the edges of the masks. A qualitative
example of coarse mask generation is shown in Figure 2. Given the
coarse masks, we employ the saliency detection model [8] to extract
fine masks with detailed contours of the object. The saliency model
is formed by a deep neural network trained on the MSRA-B salient
object database [29]. Then, the deep neural network is fine-tuned
based on the generated coarse masks of exemplars. We use these
masks to extract the foreground object to use in the synthesis of
testing checkout images.

3.1.2 Pose Pruning. Since the testing image contains multiple ob-
jects while the training image only contains a single object, we
use the segmented isolated items to create synthesized checkout
images. However, not all the poses of the isolated items are viable in
checkout images. For example, it is difficult to put bag-like products
on the checkout table with the view from bottom to top, as shown
in Figure 3. To remove these inappropriate poses of exemplars, we
propose a simple metric based on the ratio of areas, i.e.,

Rk,v =
Ak,v

maxv Ak,v
, (1)

where Ak,v is the area of the item mask captured by the v-th view
in the k-th category. If the ratio is less than a pre-set threshold θm
(θm = 0.45 in the experiment), it indicates that the area of this pose
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Figure 3: An example of unrealistic and realistic poses from
the bag-like product. We classify the item poses according
to the ratio of mask area in Eq.(1).

is too small to be put on the checkout table stably, i.e., unrealistic
pose. Otherwise, we regard this pose as a realistic pose.

3.1.3 Checkout Images Synthesis. After obtaining the selected seg-
mented items, we synthesize the checkout images using the method
in [30]. Specifically, segmented items are randomly selected and
freely placed (i.e., random angles from 0 to 360 and scales from 0.4
to 0.7) on a prepared background image such that the occlusion
rate of each instance less than 50%. Thus the synthesized images
are similar to the checkout images in terms of item placement.

The synthesized checkout images by random copy and paste
still lack characteristics of the true testing images, so following the
work in [30], we use the Cycle-GAN [33] to render synthesized
checkout imageswithmore realistic lighting condition and shadows,
as shown in Figure 5.

3.2 Data Priming Network
We can train a deep neural network for visual item tallying using
the rendered synthesized checkout images. However, the rendered
images still have different characteristics with regards to the actual
checkout images. To solve the problem, we propose the Data Prim-
ing Network (DPNet) to select reliable testing samples using the
detection and counting collaborative learning strategy to guide the
training of visual item tallying network.

3.2.1 Network Architecture. The goal of the visual item tallying in
ACO is to predict the count and the category of items in the check-
out image. To this end, we introduce a data priming network to
select reliable checkout images to facilitate the training. Specifically,
the data priming network consists of three components, i.e., base
network B with counter head C and detector head D, as shown in
Figure 4. B denotes the base network that outputs shared features
among two heads, which is implemented using the ResNet-101 back-
bone [7] with Feature Pyramid Network (FPN) architecture [15].
Based on the shared features, the counter head C predicts the num-
ber of total instances using the predicted density map, while the
detector head D recognizes the location and category of instances.
From the last feature maps of the base network, the counter head
consists of several dilated convolutional layers to extract deeper
features without losing resolutions and a 1 × 1 convolutional layer

as output layer, similar to [14]. Notably, the feature maps are first
down-sampled with a factor of 2 to reduce computational complex-
ity using a stride-2 dilated convolutional layer. The detector head
includes fully connected layers to calculate regression and classifi-
cation losses from multi-scale feature maps (i.e., 1/4, 1/8, 1/16, 1/32
size of the input image).

3.2.2 Loss Function. The loss function of the proposed network
consists of terms of the counter and detector heads. For the counter
head, we use the Euclidean distance to measure the difference
between the ground-truth map and the estimated density map we
generated. For the detector head, we use the standard cross-entropy
loss for classification and smooth L1 loss for regression [15]. The
loss function is given as follow:

L =
1
2N

N∑
i=1

(∑
ℓ

|Θ̂(ℓ;xi ) − Θ(ℓ;xi )|2

+ λ
∑
d

(Lcls(p̂d ,pd ;xi ) + I(pd > 0) · Lreg(t̂d , td ;xi ))
)
,

(2)

where xi represents the input image andN is the batch size. Θ̂(ℓ;xi )
and Θ(ℓ;xi ) are the estimated and ground-truth density of loca-
tion ℓ in the input image xi , respectively. Both maps are 1/8 size
of the input image. p̂d and pd are the predicted and ground-truth
class label of detection d in the image xi , including the class index
of background 0. We have I(pd > 0) = 1 if its argument is true
(objects), and 0 otherwise (background), That is, we only consider
the regression loss of objects, where t̂d and td are the regression
vectors representing the 4 parameterized coordinates of the pre-
dicted and ground-truth bounding box of detection d in the image
xi , respectively. λ is the factor to balance the two terms.

3.2.3 Ground-truth generation. To train the DPNet, we need to
generate ground-truth density maps. Using the center locations
of extracted item masks, we generate ground-truth density maps
for rendered images using the strategy in [32]. First, we blur the
center of each instance using a normalized Gaussian kernel. Then,
we generate the ground-truth considering the spatial distribution
of all instance in the rendered image. For the detector, both the
locations and labels of instances simply come from the exemplars
in the synthesized images.

3.2.4 Detection and Counting Collaborative Learning. We train the
network using detection and counting collaborative learning, the
whole procedure of which is presented in Algorithm 1. First, we
train the entire network with the source training set. Here both
the counter C and the detector D are optimized by Eq. (2). Then,
we can select reliable testing data such that the estimated number
of items by the counter head is equal to the number of detections
with high confidence (we set as θp = 0.95 in the experiment) by
the detection head after NMS operation, i.e.,[∑

ℓ

Θ̂(ℓ;xi )
]
==

∑
d

I(P(d ;xi ) > θp ), (3)

where Θ̂(ℓ;xi ) is the estimated density of location ℓ in the sample xi
and

[
·
]
indicates the rounding operation. P(d ;xi ) is the probability

of detection d in the sample xi . I(·) = 1 if its argument is true, and
0 otherwise. Finally, after removing the counter head, the network
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Figure 4: The framework of the proposed network. The black dashed bounding box indicates the base network. The red and
blue dashed bounding boxes correspond to the counter and detector heads, respectively. The orange dashed bounding box is
to measure the reliability of testing data.

Figure 5: Comparison of synthesized images (first row)
and rendered images (second row) by the Cycle-GAN
method [33].

B + D is fine-tuned based on selected reliable testing data from
target domain as the visual item tallying network.

4 EXPERIMENT
We evaluate our method1 on the RPC dataset [30] with several
baseline methods.
1Both the source codes and experimental results can be found in https://isrc.iscas.ac.
cn/gitlab/research/acm-mm-2019-ACO.

Algorithm 1 Detection and Counting Collaborative Learning
Input: rendered training data S with annotations, unlabelled test-

ing data T
Output: counts and categories of items in testing data T
1: for j = 1 to Niter do
2: Train the DPNet B + C +D using rendered training data S.
3: end for
4: Select reliable testing data T̂ based on Eq. (3).
5: Remove the counter head C of the DPNet to obtain the visual

item tallying network.
6: for j = 1 to Niter do
7: Fine-tune the visual item tallying network B + D using

reliable testing data T̂ .
8: end for
9: Evaluate the visual item tallying network based on testing data

T .

4.1 Implementation Details
The propose method is implemented by PyTorch [19]. The setting
for the cycleGAN model is similar to that of [33]. Each mini-batch
consists of 2 images on each GPU and we set the number of de-
tections to be 256 for each image. We use the SGD optimization
algorithm to train the DPNet, and set the weight decay to be 0.0001
and momentum is set to be 0.9. The factor λ in Eq. (2) is set as 1.
For the counter head, the initial learning rate is 4 × 10−7 for the
first 120k iterations, which decays by a factor of 10 for the next 40k
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iterations. For the detection head, the initial learning rate is 0.01 for
the first 120k iterations, which decays by a factor of 10 for the next
40k iterations. All the experiments are conducted on a workstation
with 4 Nvidia TITAN Xp GPUs.

4.2 Evaluation protocol
To evaluate the performance of the proposed method, we use sev-
eral metrics following [30]. First, the counting error for a specific
category in an image is defined as

CDi,k = |Pi,k − GTi,k |, (4)

where Pi,k and GTi,k indicates the predicted count and ground-
truth item number of the k-th category in the i-th image, respec-
tively. To measure the error over all K categories for the i-th image
is calculated as

CDi =

K∑
k=1

CDi,k , (5)

4.2.1 Checkout Accuracy. Checkout Accuracy (cAcc) is the pri-
mary metric for ranking in the ACO task [30], which is the accuracy
when the complete product list is predicted correctly. It is calculated
as

cAcc =
∑N
i=1 δ (

∑K
k=1 CDi,k = 0)
N

, (6)

where δ (·) = 1 if its argument is true, and 0 otherwise. The range
of the cAcc score is from 0 to 1. For example, if

∑K
k=1 CDi,k = 0, all

items are accurately predicted, i.e., cAcc = 1.

4.2.2 Mean Category Intersection of Union. Mean Category Inter-
section of Union (mCIoU) measures the compatibility between the
predicted product list and ground-truth. It is defined as

mCIoU = 1
K

K∑
k=1

∑N
i=1min(GTi,k , Pi,k )∑N
i=1max(GTi,k , Pi,k )

. (7)

The range of the mCIoU score is from 0 to 1.

4.2.3 Average Counting Distance. Different from cAcc focusing on
the counting error, Average Counting Distance (ACD) indicates the
average number of counting errors for each image, i.e.,

ACD = 1
N

N∑
i=1

K∑
k=1

CDi,k . (8)

4.2.4 Mean Category Counting Distance. Moreover, the Mean Cat-
egory Counting Distance (mCCD) is used to calculate the average
ratio of counting errors for each category, i.e.,

mCCD = 1
K

K∑
k=1

∑N
i=1 CDi,k∑N
i=1 GTi,k

. (9)

4.2.5 Mean Average Precision. On the other hand, according to
the evaluation protocols in MS COCO [16] and the ILSVRC 2015
challenge [23], we use the mean Average Precision (mAP) metrics
(i.e., mAP50 andmmAP) to evaluate the performance of the detector.
Specifically, mAP50 is computed at the single Intersection over
Union (IoU) threshold 0.50 over all item categories, while mmAP
is computed by averaging over all 10 IoU thresholds (i.e., in the
interval [0.50, 0.95] in steps of 0.05) of all item categories.

4.3 Baseline Solutions
The authors of [30] provide four baselines for comparison. Specif-
ically, a detector is trained to recognize the items based on the
following four kinds of training data.

• Single. We train the FPN detector [15] using training images
of isolated items based on the bounding box annotations.

• Syn. We copy and paste the segmented isolated items to
create 100, 000 synthesized checkout images for detector
training. To segment these items, we employ a salience based
object segmentation approach [9] with Conditional Random
Fields (CRF) [12] for mask refinement of item to remove the
background noise.

• Render. To reduce domain gap, we employ Cycle-GAN [33]
to translate the synthesized images into the checkout im-
age domain for detector training, resulting in more realistic
render images.

• Syn+Render. We train the detector based on both synthesized
and rendered images.

4.4 Experimental Results and Analysis
The performance compared with 4 baseline methods are presented
in Table 1. More visual examples for different difficulty levels are
shown in Figure 6. The Single method fails in ACO task because
of the huge gap between the exemplars and the checkout images.
By combining segmented items into synthesized checkout images,
the checkout accuracy is improved from 0.01% to 9.27% in aver-
aged level. Moreover, significant boost is achieved by training the
detector on rendered images. This is because the GAN method
can mimic the realistic checkout images in lighting conditions or
shadow patterns effectively. Compared to the aforementioned Ren-
der baseline method (i.e., 45.60% cAcc score), our DPNet method
achieves 77.91% cAcc score in averaged level only training on ren-
dered images. Given the Syn+Render data, the checkout accuracy
is further improved by 17.15%, 25.99%, 28.28% for easy, medium
and hard level respectively compared with the Syn+Render baseline
method. This indicates the effectiveness of our approach.

4.5 Ablation Study
We further perform experiments to study the effect of different
modules of the proposed method by construct three variants, i.e.,
DPNet(w/o DPC), DPNet(w/o DP) and DPNet(w/o PP). DPNet(w/o
DPC) indicates that the DPNet removes the counter head to select
reliable testing data. In this way, the reliability checking condition
in Eq. (3) is rewritten as

∑
d I(P(d ;xi ) > θp ) ≥ 3, because the least

number of items in the checkout image is 3 (easy mode). DPNet(w/o
DP) indicates that we do not use the DPNet for domain adaptation,
i.e., the detector is trained based on the rendered data. DPNet(w/o
PP) denotes the method that further removes the pose pruning
module from DPNet(w/o DP). For fair comparison, we use the same
parameter settings and input size in evaluation. We choose all
testing checkout images to conduct the experiments.

4.5.1 Effectiveness of Background Removal. The Render baseline
method uses the Saliency [9]+CRF [12] model to obtain the masks
of exemplars. As presented in Table 1, our DPNet(w/o PP) method
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Table 1: Experimental results on the RPC dataset.

Clutter mode Methods cAcc (↑) ACD (↓) mCCD (↓) mCIoU (↑) mAP50 (↑) mmAP (↑)

Easy

Single (Baseline) 0.02% 7.83 1.09 4.36% 3.65% 2.04%
Syn (Baseline) 18.49% 2.58 0.37 69.33% 81.51% 56.39%

Render (Baseline) 63.19% 0.72 0.11 90.64% 96.21% 77.65%
Syn+Render (Baseline) 73.17% 0.49 0.07 93.66% 97.34% 79.01%
Render (DPNet(w/o PP)) 79.82% 0.31 0.05 95.84% 98.33% 82.05%
Render (DPNet(w/o DP)) 85.38% 0.23 0.03 96.82% 98.72% 83.10%
Render (DPNet(w/o DPC)) 84.46% 0.23 0.03 96.92% 97.93% 83.22%

Render (DPNet) 89.74% 0.16 0.02 97.83% 98.52% 82.75%
Syn+Render (DPNet(w/o DP)) 86.58% 0.21 0.03 97.12% 98.62% 83.47%

Syn+Render (DPNet) 90.32% 0.15 0.02 97.87% 98.60% 83.07%

Medium

Single (Baseline) 0.00% 19.77 1.67 3.96% 2.06% 1.11%
Syn (Baseline) 6.54% 4.33 0.37 68.61% 79.72% 51.75%

Render (Baseline) 43.02% 1.24 0.11 90.64% 95.83% 72.53%
Syn+Render (Baseline) 54.69% 0.90 0.08 92.95% 96.56% 73.24%
Render (DPNet(w/o PP)) 58.76% 0.74 0.06 94.10% 97.55% 76.05%
Render (DPNet(w/o DP)) 70.90% 0.49 0.04 95.90% 98.16% 77.22%
Render (DPNet(w/o DPC)) 69.85% 0.50 0.04 95.95% 97.24% 77.09%

Render (DPNet) 77.75% 0.35 0.03 97.04% 97.92% 76.78%
Syn+Render (DPNet(w/o DP)) 73.20% 0.46 0.04 96.24% 98.19% 77.69%

Syn+Render (DPNet) 80.68% 0.32 0.03 97.38% 98.07% 77.25%

Hard

Single (Baseline) 0.00% 22.61 1.33 2.06% 0.97% 0.55%
Syn (Baseline) 2.91% 5.94 0.34 70.25% 80.98% 53.11%

Render (Baseline) 31.01% 1.77 0.10 90.41% 95.18% 71.56%
Syn+Render (Baseline) 42.48% 1.28 0.07 93.06% 96.45% 72.72%
Render (DPNet(w/o PP)) 44.58% 1.20 0.07 93.25% 96.86% 73.62%
Render (DPNet(w/o DP)) 56.25% 0.84 0.05 95.28% 97.67% 74.88%
Render (DPNet(w/o DPC)) 52.80% 0.86 0.05 95.17% 96.51% 74.77%

Render (DPNet) 66.35% 0.60 0.03 96.60% 97.49% 74.67%
Syn+Render (DPNet(w/o DP)) 59.05% 0.77 0.04 95.71% 97.77% 75.45%

Syn+Render (DPNet) 70.76% 0.53 0.03 97.04% 97.76% 74.95%

Averaged

Single (Baseline) 0.01% 12.84 1.06 2.14% 1.83% 1.01%
Syn (Baseline) 9.27% 4.27 0.35 69.65% 80.66% 53.08%

Render (Baseline) 45.60% 1.25 0.10 90.58% 95.50% 72.76%
Syn+Render (Baseline) 56.68% 0.89 0.07 93.19% 96.57% 73.83%
Render (DPNet(w/o PP)) 60.98% 0.75 0.06 94.05% 97.29% 75.89%
Render (DPNet(w/o DP)) 70.80% 0.52 0.04 95.86% 97.93% 77.07%
Render (DPNet(w/o DPC)) 69.03% 0.53 0.04 95.82% 96.96% 77.09%

Render (DPNet) 77.91% 0.37 0.03 97.01% 97.74% 76.80%
Syn+Render (DPNet(w/o DP)) 72.83% 0.48 0.04 96.17% 97.94% 77.56%

Syn+Render (DPNet) 80.51% 0.34 0.03 97.33% 97.91% 77.04%

achieves better performance, i.e., 60.98% vs. 45.60% checkout accu-
racy based on the rendered data. This may be attributed to better
segmentation results by our DPNet(w/o PP) method using coarse-
to-fine strategy.

4.5.2 Effectiveness of Pose Pruning. If we remove the pose pruning
module, the DPNet(w/o PP) method decreases 9.82% in terms of
checkout accuracy (60.98% vs. 70.80%). This noticeable performance
drop validates the importance of the pose pruningmodule to remove
the synthesized images including the items with unrealistic poses
(see Figure 3).

4.5.3 Effectiveness of Detection and Counting Collaborative Learn-
ing. From Table 1, our proposed DPNet achieves better results than
its variant DPNet(w/o DP). The increase in checkout accuracy in-
dicates that the data priming method adapts the data from source
domain to that from target domain effectively. Besides, DPNet(w/o

DPC) performs even slightly inferior than DPNet(w/o DP), i.e.,
(69.03% vs. 70.80%). It is not confident to determine reliable testing
data only based on the detection head, resulting in much unreliable
testing data (34.9% of selected testing data). On the contrary, we
can select 90.7% correct reliable testing data based on the proposed
DPNet with both counter and detection heads.

To visualize the distribution of source and target domains, we
first train our network with the ResNet-101 backbone and then
calculate the features of 500 images randomly selected from the
two domains using the last block of backbone. For Figure 7(a), the
network is trained on synthesized images. For Figure 7(b), the net-
work is trained on rendered images. For Figure 7(c), the network is
trained on rendered image and then finetuned on reliable testing im-
ages. Finally, we embed high-dimensional features of each domain
for visualization in a low-dimensional space of two dimensions
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Figure 6: Results of our method for easy, medium, and hard modes (from top to down). Different color bounding boxes corre-
spond to the predictions with the item categories and the confidence scores. Best view in color.

Figure 7: Comparison of the distribution of source and tar-
get domain based on the detector trained on (a) synthesized
data; (b) rendered data; (c) reliable testing data.

using the t-Distributed Stochastic Neighbor Embedding (t-SNE)
technique [27].

4.5.4 Effectiveness of Syn+Render. Similar to the trend in the base-
line methods (45.60% cAcc of Render (baseline) vs. 56.68% cAcc of
Syn+Render (baseline)), the performance is constantly improved

when training on both synthesized and rendered data. Specifi-
cally, Syn+Render (DPNet) achieves 80.51% cAcc score compared
to 77.91% cAcc score of the Render (DPNet) configuration.

5 CONCLUSION
In this paper, we propose a new data priming network to deal with
automatic checkout. Different from the previous domain adaptation
methods, we construct both counter and detector heads to measure
the reliability of testing images for the target domain. Then, the
detector of the target branch can learn target-discriminative repre-
sentation based on the reliable testing samples using detection and
counting collaborative learning, resulting in robust performance.
The experiment on the RPC dataset shows that our method sur-
passes the previous baseline methods significantly by more than
20% checkout accuracy in the averaged level. For future works, we
would like to further study other potential options for the data
priming network, including heads of other types of attributes.
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