
MLPF Algorithm for Tracking Fast Moving Target
against Light Interference

Libo Zhang∗, Yuanqiang Cai∗, Zakir Ullah∗ and Tiejian Luo∗
∗University of Chinese Academy of Sciences,

Beijing, China

Abstract—In order to deal with the difficulty of tracking the
fast moving aerial targets with light interference, we propose
an improved particle tracking algorithm named multi-layers
particle filter (MLPF). In MLPF, the particles are divided into
three categories: the main particles (M-particles), the subordinate
particles (S-particles) and the regenerate particles (R-particles).
In the phase of resampling and state estimating, only M-particles
are involved, then the R-particles are generated and considered
as new S-particles in the next cycle. To a certain extent, our
algorithm maintains the diversity of particles and reduces the
computation time. Besides, MLPF has significant improvements
on overcoming the tracing error after the sudden disappearance
of the target and solving the degradation of particles. We
demonstrate effectiveness of our proposed algorithm through
systematic experiments. Experimental results show MLPF has
better tracking effect compared to the traditional particle filter
(PF) when the target is moving fast and affected by light
interference. In the first experiment, the running time has been
reduced from 47s to 21s while the precision increased from 64%
to 96%. And for the second experiment, the running time has
been reduced from 237s to 121s while precision increased from
46% to 89%.

I. INTRODUCTION

Target tracking has been widely used in both civil and
military fields and a number of target tracking algorithms
have been proposed [1]. The particle filter is one of the
most popular algorithms because both nonlinear and non-
Gaussian problems can be solved by it very well [2]. The
particle filter is a Monte Carlo estimation algorithm in which
a posteriori probability density function is constructed by using
weighted particles to make it suitable for the state estimation
of nonlinear and non-Gaussian systems [3]. With the nonlinear
target dynamics, the nonlinear measurements and the non-
Gaussian noise, the computationally intensive particle filter
[4] has become a common choice which means constructing
the posterior probability density function via a number of
weighted particles. However, by using the traditional particle
filter, it can’t handle fast moving target with light interference,
because the particle degradation occurs in the resampling
phase, and causes the loss of the diversity of particle, which
is not desirable. Other limitations of using traditional particle
filter are its high computational cost and the memory require-
ments. Therefore, it’s very hard to obtain real-time feasible
implementations for these existing methods [5], [6].

In order to solve the problems motioned above, some
improved methods have been proposed such as Stuck [7], CT
[8] and SCM [9]. Stuck uses a kernelized structured output

support vector machine (SVM), which could be learned online
to provide adaptive tracking. And this method introduces a
budgeting mechanism which would occur during tracking.
CT employs the non-adaptive random projections that pre-
serve the structure of the image feature of objects. A very
sparse measurement matrix is adopted to efficiently extract
the features for the appearance model. And SCM proposes a
robust appearance model that exploits both holistic templates
and local representations. This method develops a sparsity-
based discriminative classifier (SD-C) and a sparsity-based
generative model (SGM). But the above methods would cause
large computational cost, which means the long running time
while processing. Minimum Output Sum of Squared Error
(MOSSE) [10] presents a new type of correlation filter, a
MOSSE filter, which produces stable correlation filters using a
single frame when initialized. Although it greatly improves the
processing speed, it has low precision. SAMF [11] uses a very
appealing tracker based on the correlation filter framework,
which improves the precision but decreases the processing
speed heavily. MOSSE and SAMF both solve the real-time
problem but the precision is still not very good. Above all,
these methods cannot deal with the fast moving objects very
well with light interference condition especially in aerial target
tracking.

In this article, an improved particle filter algorithm is pro-
posed. We set three kinds of particles for keeping the diversity
of particle. Our algorithm (MLPF) chooses the S-particles
around the M-particle to optimize M-particle. And only the
optimized principle particles participate in resampling. In next
cycle, we randomly generate the equal number of R-particles
to replace the previous S-particles. This approach improves
the diversity of particles and solves a variety of problems
associated with it. It shows better results when the target has
morphological changes and temporary disappearance.

II. SIGNAL PROCESSING DOMAIN KNOWLEDGE

In order to better understand our algorithm, we summarized
the background knowledge of MLPF as follows.

A. Bayesian Filter

Subsection text here. System state estimation means getting
the state equation of the system through the observation equa-
tion. Assuming the state equation and observation equation of
the system are as following:

xk = fk (xk−1, vk−1) (1)

2016 23rd International Conference on Pattern Recognition (ICPR)
Cancún Center, Cancún, México, December 4-8, 2016

978-1-5090-4846-5/16/$31.00 ©2016 IEEE 3928

yk = hk (xk, nk) (2)

x is the real state of the system, and y is the observation
state of the system. f and h represent the state transfer function
and the observation function of the system respectively. v and
h represent the process noise and measurement noise of the
system respectively.

In Bayesian estimation, the system state estimation is cal-
culating the credibility p(xk|y1:k) of the current state xk
based on the observed state y1:k. Specific calculations include
two steps, prediction and update. The prediction process is
based on the prior acquired knowledge to predict the state,
and the prior probability density of the state is calculated by
the state equation (1) marked as p(xk|xk−1). The updating
process is modifying the prior probability density by the latest
observation to obtain a posteriori density. In this process, the
system state is assumed to obey the first order of Markoff
model, that means the current state of the system x(k) is only
related to the status of its previous state x(k−1). At the same
time, it is assumed that the observed y(k) is only associated
with the current state of the system x(k).

Assuming the probability density function of k−1 moment
is p(xk−1|yk−1), according to the probability density of the
last moment p(xk−1|y1:k−1), we can get p(xk|y1:k−1):

p(xk−1|y1:k−1)
=
∫
p(xk, xk−1|y1:k−1)dxk−1

= ∫ p(xk|xk−1)p(xk−1|y1:k−1)dxk−1
(3)

Process updating: The posterior probabilities p(xk|y1:k) can
be obtained according to p(xk|y1:k−1). It is only a prediction
process in the last step, and this step amend the last step of
the forecast through the observation of the k moments. It is
a process of filtering. The posterior probability is obtained by
this step and then brought into the next prediction process to
form a recurrence.

p(xk|y1:k)
= ∫ p(yk|xk,y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)

= ∫ p(yk|xk)p(xk|y1:k−1)
p(yk|y1:k−1)

(4)

p (yk|y1:k−1) = ∫ p(yk|xk)p(xk|y1:k−1)dk (5)

In the first and the second step of formula (4), yk is
only associated with xk. The likelihood function p (yk|xk)
is determined by the measurement equation. In the formula
yk = h (xk)+nk, xk is constant, and p (yk|xk) is only related
to the probability distribution of measurement noise nk.

B. Monte Carlo Sampling

The Monte Carlo sampling method uses the sum of the sam-
ples to accomplish the integral calculation. A series of samples
x1, . . . , xn are obtained from the probability distribution of
target p(x), which are used to estimate the expected value of
the function in this distribution.

In Monte Carlo method, we define f (x) = δ
(
xn − x(i)n

)
as

the Dirac function. To carry out the target tracking or filtering,

the expectation of the current state needed and is calculated
as below:

E [f (xn)]
≈ ∫ f (xn) p̂ (xn|y1:k) dxn

= 1
N

N∑
i=1

∫ f(x(i)n)
(6)

The expected value after filtering can be obtained by aver-
aging the state value of the sampled particles. f(x) is the state
function of each particle.

C. Bayesian Filter

Since the posteriori probability is unknown, it is impossible
to sample directly from the posterior probability distribution.
The importance sampling method is introduced to solve this
problem. The expected solution can be transformed into:

E [f (xk)]

= ∫ f (xk) p(xk|y1:k)
q(xk|y1:k)

q(xk|y1:k)dxk
= ∫ f (xk) Wk(xk)

p(y1:k)
q(xk|y1:k)dxk

(7)

Wk (xk) =
p(y1:k|xk)p (xk)
q(xk|y1:k)

(8)

According to this formula:

p (y1:k) = ∫ p(y1:k|xk)p (xk) dxk (9)

The formula (8) can be written a step further as:

E [f (xk)]
= 1

p(y1:k)
∫ f (xk)Wk (xk) q(xk|y1:k)dxk

=
Eq(xk|y1:k)[Wk(xk)f(xk)]

Eq(xk|y1:k)[Wk(xk)]

(10)

By Monte Carlo method, we can calculate the average of
the N sample to get their expectations, then formula (10) can
be approximated as:

E [f (xk)]

≈
1
N

∑N

i=1
Wk

(
x
(i)

k

)
f
(
x
(i)

k

)
1
N

∑N

i=1
W̃k

(
x
(i)

k

)
f
(
x
(i)

k

)
=

N∑
i=1

W̃k

(
x
(i)
k

)
f
(
x
(i)
k

) (11)

W̃k

(
x
(i)
k

)
=

Wk

(
x
(i)
k

)
∑N

i=1Wk

(
x
(i)
k

) (12)

The weight is not normalized in the formula (7) but normal-
ized in the formula (12). It is not the average of all particles’
states in the formula (11), but calculated by weighting. Each
particle has a corresponding weight, and the weight value of
the particle is positively related to its credibility. The greater
the weight of the particles is, the more trusted the particle will
be.

Assuming the importance probability density function is
q(x0:k|y1:k), and is decomposed into:

q (x0:k|y1:k) = q(x0:k−1|y1:k−1) q(xk|x0:k−1, y1:k) (13)

3929

Then the recursion is marked for the posterior probability
density function (Yk represent y1:k for convenience):

p(x0:k|Yk)
= p(yk|x0:k,Yk−1)p(x0:k|Yk−1)

p(yk|Yk−1)

∝ p(yk|xk)p(xk|xk−1)p (x0:k−1|Yk−1)
(14)

Because x(k) becomes x0:k, Bias estimates need to carry
out the integral calculation. But the decomposed form of the
posterior probability is not required to use integral calculation.
The recursive form of particle weights can be expressed as:

w
(i)
k

∝ p(x
(i)

0:k
|Yk)

q(x
(i)

0:k
|Yk)

= w
(i)
k−1

p(yk|x(i)

k
)p(x

(i)

k
|x(i)

k−1
)

q(x
(i)

k
|x(i)

0:k−1
,Yk)

(15)

In practical application, the filter is designed to determine
the current state p (xk|y1:k) rather than p (x0:k|y1:k), which
is pushed in the formula (15). So our assumption is that the
importance of distribution function q should satisfy:

q (xk|x0:k, y1:k) = q (xk|xk−1, yk) (16)

According to the importance of this assumption, it can
be obtained that the importance distribution is related to the
system state xk−1 and yk in the previous time. So the formula
(15) can be written as:

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)k)p(xk|x(i)k−1)

q(xk|x(i)k−1, Yk)
(17)

Based on formulas above, the weight and the state of the
particles can be obtained. The state of each particle will be
weighted by using the formula (11), and then be used to
estimate the target state.

III. MULTI-LAYERS PARTICLE FILTER

Particle filter is based on the content above, so the traditional
PF algorithm loses the diversity of particles. Too much amount
of particles will also increase the complexity of calculation. In
order to reduce the processing time and improve the accuracy
rate, we propose our MLPF algorithm by dividing the particles
into three parts and optimizing the principle particles using
S-particles. Besides, adding R-particles in the next step also
improve the performance of the algorithm.

A. Define the Particles for Keeping Diversity

Considering keeping diversity of particles, we divide parti-
cles into three parts: S-particles, M-particles and R-particles.

Definition of the S-particles:

ps = {ss, ws} (18)

ss = (x, y) indicates the position of the S-particles; ws

represents the weight of the S-particles. Definition of the M-
particles:

pp = {sp, wp} (19)

sp = (x, y) indicates the position of the M-particles; ws

represents the weight of the M-particles. Definition of the R-
particles:

pr = {sr, wr} (20)

sr = (x, y) indicates the position of the R-particles; wr

represents the weight of the R-particles. For the convenience of
easy calculation, we choose traditional tracking object model.
In this model, the object is represented by a rectangle frame
M while W and H represent the width and height of the
rectangle frame respectively. The target state is defined by:

M = {X,W,H} (21)

B. Calculate the Weight of the Particles

The weight of the particles is determined by comparing the
similarity between the rectangle frame M of each particle in
the kth frame and the target frame in the (k − 1)th frame.
There are a lot of methods to compare the similarity between
two regions, such as the matching of color histogram, the
decomposition of the matrix of the region, the matching of the
feature points based on the region and so on. In this paper,
we use the histogram matching of the particle rectangle frame
to calculate the similarity between the current frame coverage
area and the target area in the upper frame. Weight of all the
particles is calculated by the following formula:

wk =
1√
2πδ

e−
d

2δ2 (22)

Where d and ρ given as:

d =
√
1− ρ (a, b) (23)

ρ (a, b) =

m∑
i=1

√
a (i) b (i) (24)

ρ (a, b) represents the coefficient of PAP. a represents the
center point coordinates of the detected particles. b represents
the center point coordinates of the target particles in the
previous frame, d represents the distance between the current
particle a and previous particle b, and wk represents the weight
of the particles after the transformation of the particle area
similarity.

C. Optimization of the M-particle for Reducing Complexity
and Keeping Diversity

S-particle is used to optimize M-particle. In this paper, a
simple method is proposed.

Fig.1 illustrates the evolution of three kinds of particles
in the whole process. We use empty frames and dots to
represent targets and pixels respectively. Empty frames, green
frame and black frame represent weight calculated frames,
target and estimated target respectively. Black dots, red dots

3930

Fig. 1. The evolution of M-particles, S-particles and R-particles.

and orange dots represent M-particles, S-particles and R-
particles respectively. And the dots are the center of the frame
M×H , which is introduced to compare the target with weight
calculation. In order to display the weight of particles, the dot
is represented by a solid circle with radius. Then Fig.1 can be
updated to Fig. 2.

Fig. 2. The evolution of M-particles, S-particles and R-particles with weight.

Fig.2 shows the evolution of three kinds of particles with
weight in the whole process. The phase of initialization ran-
domly generates the M-particles and S-particles, which have
equal number and weight. In the phase of optimization, we
use an optimized circle with r radius to choose S-particles for
optimizing the M-particle. In the target estimation, we regard
the M-particle with largest weight as estimated target’s posi-
tion. Finally we randomly produce R-particles to replace the
same number of S-particles and adjust M-particles’ positions
according to their previous weight. We can easily find that only
half of total particles can participate in the target estimated
stage.

Assuming the number of the M-particles is m, the center
coordinates of the ith M-particle is spi , and the weight is wp

i .
The state of an M-particles in a current frame is:

pp = {spi , w
p
i } , i = 1, 2, . . . ,m (25)

spi = {xpi , y
p
i } (26)

xpi represents the ith M-particle’s horizontal coordinate
while ypi is the longitudinal coordinate of the ith M-particle.
Assuming the number of the S-particles is n, the center
coordinates of the jth S-particle is ssj , and the relative weight
of the particles is ws

j . The state of an S-particle in a current
frame is:

ps =
{
ssj , w

s
j

}
, i = 1, 2, . . . , n (27)

ssj =
{
xsj , y

s
j

}
(28)

xsj represents the jth S-particle’s horizontal coordinate, and
ysj is the longitudinal coordinate of the jth S-particle. The
circle drew by a dashed line in Fig. 2 is the set threshold. For
every M-particle, we find out that all the S-particles satisfy:√(

xpi − xsj
)2

+
(
ypi − ysj

)2 ≤ r (29)

We can find all the S-particles at a distance r or less.
Assuming the jth S-particle, which is less than r away from
the ith M-particle, is expressed as

ps =
{
ssi,j , w

s
i,j

}
(30)

ssi,j =
{
xsi,j , y

s
i,j

}
(31)

Following is used to calculate the average weight of the jth
S-particles around the ith M-particle obtained.

ws
i =

√∑j
j=1

(
ws

i,j

)2
j

(32)

Finally, weight of the ith M-particle is optimized by all S-
particles around it based on the following formula.

wp
i = ws

i + wp
i (33)

D. Resampling

In order to reduce the degradation of the particles, the
resampling process is introduced only for the M-particles in
our algorithm. For all M-particles, weight of each particle is
normalized by the following formula:

ηi =
wp

i∑i
i=1 w

p
i

(34)

According to the calculated weight ratio, the position of the
M-particle is redistributed. Then we increase more M-particles
around the M-particles with larger weight ratio and reduce the
number of M-particles around the M-particles with smaller
weight ratio. The update of the M-particle state is calculated
by the formula (35):

mp
i = m× ηi (35)

Where m is the total number of M-particles in the image,
and mp

i represents the number of M-particles around the ith

3931

original M-particle. In a new cycle, the equal number of R-
particles are generated randomly and the new R-particles are
treated as a new set of S-particle. According to the weight of
the M-particle, the state of the tracking target is estimated by
the result of the normalized operation of the M-particles with
the formula below.

X =
m∑
i=1

xpi · ηi

Y =
m∑
i=1

ypi · ηi
(36)

X and Y respectively represent the target location estimated
by the position and the weight ratio of the M-particles.

E. MLPF Algorithm

Based on the contents above, the description of the target
tracking algorithm for multi-layers particle filter is presented
in Fig 3 and Algorithm 1.

Fig. 3. MLPF tracking algorithm.

Algorithm 1 MLPF Algorithm.
Require: ps = {ss, ws}, pp = {sp, wp}, M = {X,W,H},
X and Y

Ensure: X and Y
for every S-particle and M-particle do

Calculate wk through formula (22)(23)(24)
end for
Initialize r = 3W
for every principal particle ppi do

Find all subordinate particles satisfied the formula(29)
Calculate wp

i through fomula(32)(33)
end for
for every principal particle ppi do

Calculate ηi through formula(34)
Calculate mp

i through formula(35)
end for
Calculate X’ and Y’ through formula(36)
if |X −X ′| < ε and |Y − Y ′| < ε then
X = X ′andY = Y ′

end if

In the kth frame image, the initial sample of the particle
is built for each target. First, we set the number of M-
particles to m and the number of the S-particles to n. Second,
we establish state model for each M-particle and S-particle,
then calculate the weight of every M-particle and S-particle.
Next, we optimize the M-particles and calculate the weight
of the them again. At last, we calculate the weights of M-
particles through normalize calculation. In the update phase,
M-particles are reallocated according to the weight ratio.
Randomly generated R-particles are then considered as new
S-particles.

IV. EVALUATION

This paper has implemented two experiments to test the
effectiveness of our proposed algorithm. In this chapter, we
will describe the experiments in detail. We choose an aerial
fast motion target with light interference as our dataset. We
consider both accuracy rate and processing time to compare
MLPF with traditional PF. The dataset comes from military
parade of Mikoyan MiG-29. We use part of two videos,
which can reflect light interference or fast motion. The first
experiment selects the video which contains light interference.
The second experiment chooses the video which contains fast
motion. In order to compare the MLPF algorithm with the
traditional PF algorithm, two video sequences are used. In
MLPF algorithm, we set total particles’ number to be 200,
including 100 M-particles and 100 S-particles. Particles in the
traditional particle filter is also set to be 200.

Fig. 4. MLPF and PF capture the target in video frames with light
interference.

In the first experiment, light changes rapidly. The results of
MLPF algorithm and traditional PF algorithm are shown in
Fig. 4. They both have good performance in the 11th frame,
but when light changes, the traditional PF algorithm can not
catch full target. It also can be seen in the 57th frame, when the
posture of the aircraft changs, the MLPF algorithm is able to
track it effectively compared with traditional PF. Similarly, in
the 234th frame, the traditional PF algorithm can not overcome
the influence of light.

We test 100 times and calculate the average value. From
table I, it can be seen that proposed MLPF algorithm and
traditional PF algorithm both use 200 particles. MLPF costs
21 seconds while PF costs 47 seconds, so MLPF shows its
advantage in reducing the processing time in this experiment.
The computer with MLPT algorithm achieves a processing
frequency of 16.48 frames per second, basically close to real-
time requirements while it only achieves 7.36 with PF. If we

3932

TABLE I
COMPARING PERFORMANCE OF MLPF AND PF AGAINST LIGHT

INTERFERENCE.

Particles’ Total Cost Frequency Performance

Number Frames (s) (
∑

frames
s

) (righttracking∑
frames

)

MLPF 100 M,100 S 346 21 16.48 96%

PF 200 346 47 7.36 64%

TABLE II
COMPARING PERFORMANCE OF MLPF AND PF AGAINST FAST MOVING.

Particles’ Total Cost Frequency Performance

Number Frames (s) (
∑

frames
s

) (righttracking∑
frames

)

MLPF 100 M,100 S 1641 121 13.56 89%

PF 200 1641 237 6.92 46%

regard the coverage of 70% of the target as accurate tracking,
the accuracy of the MLPF algorithm is 32% higher than the
traditional PF algorithm.

Fig. 5. MLPF and PF capture the target in video frames of fast moving.

In the experiment of the second video, the aircraft’s posture
changes significantly. The results of MLPF algorithm and
traditional PF algorithm are shown in Fig 5. They both have
good performance in the front frames of the video. But
from the 43rd frame, the tracking precision of traditional PF
algorithm is getting worse while the target moves very fast.
In the 839th frame, traditional PF algorithm completely lost
the target while our MLPF algorithm is still able to track the
aircraft effectively.

We repeat the test 100 times and calculate average value.
From table 2, proposed MLPF algorithm and traditional PF
algorithm both use 200 particles. MLPF costs 121 seconds
while PF costs 237 seconds, so MLPF also shows its ad-
vantage in reducing the processing time in this experiment.
The computer with MLPT algorithm achieves a processing
frequency of 13.56 frames per second basically close to real-
time requirements while it only achieves 6.92 with PF. In the
same way, if we regard the coverage of 70% of the target as
accurate tracking, the accuracy of MLPF algorithm is 45%
higher than traditional PF algorithm.

V. CONCLUSION

Traditional PF algorithm loses diversity of the particles
during the phase of resampling. Adding more particles to
improve the diversity of the particles will inevitably increase
the complexity of computation . Because of that, it is difficult
for traditional PF algorithm to track target, which is fast
moving and facing light interference. In our algorithm, the par-
ticles are divided into three categories: M-particles, S-particles
and R-particles. M-particles are optimized by S-particles, so
M-particles retain the whole particle’s attribute. Only the
M-particles participate in target estimation and resampling
process, so the processing time is reduced. New random R-
particles can increase the diversity of total particles. Consid-
ering the condition of using the same number of particles, our
algorithm has less computation complexity and higher tracking
accuracy. Based on experimental results, MLPF algorithm has
improved diversity of particles and outperformed traditional
PF algorithm. In the first experiment, the processing speed of
MLPF is almost 2.24 times faster than PF while the accuracy
achieves 1.50 times. In the second experiment, the process
speed of MLPF is 1.96 times faster than PF and the accuracy
achieves 1.93 times.

REFERENCES

[1] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm
computing surveys (CSUR), vol. 38, no. 4, p. 13, 2006.

[2] Y. Su, Q. Zhao, L. Zhao, and D. Gu, “Abrupt motion tracking using a
visual saliency embedded particle filter,” Pattern Recognition, vol. 47,
no. 5, pp. 1826–1834, 2014.

[3] P. Sarkar, “Sequential monte carlo methods in practice,” Technometrics,
vol. 45, no. 1, pp. 106–106, 2003.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-gaussian bayesian tracking,”
IEEE Transactions on signal processing, vol. 50, no. 2, pp. 174–188,
2002.

[5] A. Doucet, B.-N. Vo, C. Andrieu, and M. Davy, “Particle filtering for
multi-target tracking and sensor management,” 2002.

[6] L. Zhang, L. Yang, and T. Luo, “Unified saliency detection model using
color and texture features,” Plos One, vol. 11, no. 2, 2016.

[7] S. Hare, A. Saffari, and P. H. Torr, “Struck: Structured output tracking
with kernels,” in 2011 International Conference on Computer Vision.
IEEE, 2011, pp. 263–270.

[8] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,”
in European Conference on Computer Vision. Springer, 2012, pp. 864–
877.

[9] W. Zhong, H. Lu, and M.-H. Yang, “Robust object tracking via sparsity-
based collaborative model,” in Computer vision and pattern recognition
(CVPR), 2012 IEEE Conference on. IEEE, 2012, pp. 1838–1845.

[10] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE,
2010, pp. 2544–2550.

[11] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker
with feature integration,” in European Conference on Computer Vision.
Springer, 2014, pp. 254–265.

3933

