diff --git a/.mailmap b/.mailmap index 726084286d33e626ddc2bf69db078cdc972c0e4e..dfab12f809ed9c678638844ced3717742986ab26 100644 --- a/.mailmap +++ b/.mailmap @@ -96,4 +96,6 @@ Tejun Heo Thomas Graf Tony Luck Tsuneo Yoshioka +Uwe Kleine-König +Uwe Kleine-König Valdis Kletnieks diff --git a/CREDITS b/CREDITS index e97bea06b59ff12bc827c0661fb57974a6eff4d6..c62dcb3b7e2621d918815a656f2682fda044afcb 100644 --- a/CREDITS +++ b/CREDITS @@ -317,6 +317,14 @@ S: 2322 37th Ave SW S: Seattle, Washington 98126-2010 S: USA +N: Muli Ben-Yehuda +E: mulix@mulix.org +E: muli@il.ibm.com +W: http://www.mulix.org +D: trident OSS sound driver, x86-64 dma-ops and Calgary IOMMU, +D: KVM and Xen bits and other misc. hackery. +S: Haifa, Israel + N: Johannes Berg E: johannes@sipsolutions.net W: http://johannes.sipsolutions.net/ @@ -3344,8 +3352,7 @@ S: Spain N: Linus Torvalds E: torvalds@linux-foundation.org D: Original kernel hacker -S: 12725 SW Millikan Way, Suite 400 -S: Beaverton, Oregon 97005 +S: Portland, Oregon 97005 S: USA N: Marcelo Tosatti diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index 1977fab386566e23f501bea233f8f487d16f5c38..5b5aba404aacb69160f0d88301be0a76aea78682 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX @@ -89,8 +89,6 @@ cciss.txt - info, major/minor #'s for Compaq's SMART Array Controllers. cdrom/ - directory with information on the CD-ROM drivers that Linux has. -cli-sti-removal.txt - - cli()/sti() removal guide. computone.txt - info on Computone Intelliport II/Plus Multiport Serial Driver. connector/ @@ -361,8 +359,6 @@ telephony/ - directory with info on telephony (e.g. voice over IP) support. time_interpolators.txt - info on time interpolators. -tipar.txt - - information about Parallel link cable for Texas Instruments handhelds. tty.txt - guide to the locking policies of the tty layer. uml/ diff --git a/Documentation/ABI/testing/sysfs-class-regulator b/Documentation/ABI/testing/sysfs-class-regulator new file mode 100644 index 0000000000000000000000000000000000000000..79a4a75b2d2ceb7af8e07c3efa6289c3722d6342 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-class-regulator @@ -0,0 +1,315 @@ +What: /sys/class/regulator/.../state +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + state. This holds the regulator output state. + + This will be one of the following strings: + + 'enabled' + 'disabled' + 'unknown' + + 'enabled' means the regulator output is ON and is supplying + power to the system. + + 'disabled' means the regulator output is OFF and is not + supplying power to the system.. + + 'unknown' means software cannot determine the state. + + NOTE: this field can be used in conjunction with microvolts + and microamps to determine regulator output levels. + + +What: /sys/class/regulator/.../type +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + type. This holds the regulator type. + + This will be one of the following strings: + + 'voltage' + 'current' + 'unknown' + + 'voltage' means the regulator output voltage can be controlled + by software. + + 'current' means the regulator output current limit can be + controlled by software. + + 'unknown' means software cannot control either voltage or + current limit. + + +What: /sys/class/regulator/.../microvolts +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + microvolts. This holds the regulator output voltage setting + measured in microvolts (i.e. E-6 Volts). + + NOTE: This value should not be used to determine the regulator + output voltage level as this value is the same regardless of + whether the regulator is enabled or disabled. + + +What: /sys/class/regulator/.../microamps +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + microamps. This holds the regulator output current limit + setting measured in microamps (i.e. E-6 Amps). + + NOTE: This value should not be used to determine the regulator + output current level as this value is the same regardless of + whether the regulator is enabled or disabled. + + +What: /sys/class/regulator/.../opmode +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + opmode. This holds the regulator operating mode setting. + + The opmode value can be one of the following strings: + + 'fast' + 'normal' + 'idle' + 'standby' + 'unknown' + + The modes are described in include/linux/regulator/regulator.h + + NOTE: This value should not be used to determine the regulator + output operating mode as this value is the same regardless of + whether the regulator is enabled or disabled. + + +What: /sys/class/regulator/.../min_microvolts +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + min_microvolts. This holds the minimum safe working regulator + output voltage setting for this domain measured in microvolts. + + NOTE: this will return the string 'constraint not defined' if + the power domain has no min microvolts constraint defined by + platform code. + + +What: /sys/class/regulator/.../max_microvolts +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + max_microvolts. This holds the maximum safe working regulator + output voltage setting for this domain measured in microvolts. + + NOTE: this will return the string 'constraint not defined' if + the power domain has no max microvolts constraint defined by + platform code. + + +What: /sys/class/regulator/.../min_microamps +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + min_microamps. This holds the minimum safe working regulator + output current limit setting for this domain measured in + microamps. + + NOTE: this will return the string 'constraint not defined' if + the power domain has no min microamps constraint defined by + platform code. + + +What: /sys/class/regulator/.../max_microamps +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + max_microamps. This holds the maximum safe working regulator + output current limit setting for this domain measured in + microamps. + + NOTE: this will return the string 'constraint not defined' if + the power domain has no max microamps constraint defined by + platform code. + + +What: /sys/class/regulator/.../num_users +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + num_users. This holds the number of consumer devices that + have called regulator_enable() on this regulator. + + +What: /sys/class/regulator/.../requested_microamps +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + requested_microamps. This holds the total requested load + current in microamps for this regulator from all its consumer + devices. + + +What: /sys/class/regulator/.../parent +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Some regulator directories will contain a link called parent. + This points to the parent or supply regulator if one exists. + +What: /sys/class/regulator/.../suspend_mem_microvolts +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_mem_microvolts. This holds the regulator output + voltage setting for this domain measured in microvolts when + the system is suspended to memory. + + NOTE: this will return the string 'not defined' if + the power domain has no suspend to memory voltage defined by + platform code. + +What: /sys/class/regulator/.../suspend_disk_microvolts +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_disk_microvolts. This holds the regulator output + voltage setting for this domain measured in microvolts when + the system is suspended to disk. + + NOTE: this will return the string 'not defined' if + the power domain has no suspend to disk voltage defined by + platform code. + +What: /sys/class/regulator/.../suspend_standby_microvolts +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_standby_microvolts. This holds the regulator output + voltage setting for this domain measured in microvolts when + the system is suspended to standby. + + NOTE: this will return the string 'not defined' if + the power domain has no suspend to standby voltage defined by + platform code. + +What: /sys/class/regulator/.../suspend_mem_mode +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_mem_mode. This holds the regulator operating mode + setting for this domain when the system is suspended to + memory. + + NOTE: this will return the string 'not defined' if + the power domain has no suspend to memory mode defined by + platform code. + +What: /sys/class/regulator/.../suspend_disk_mode +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_disk_mode. This holds the regulator operating mode + setting for this domain when the system is suspended to disk. + + NOTE: this will return the string 'not defined' if + the power domain has no suspend to disk mode defined by + platform code. + +What: /sys/class/regulator/.../suspend_standby_mode +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_standby_mode. This holds the regulator operating mode + setting for this domain when the system is suspended to + standby. + + NOTE: this will return the string 'not defined' if + the power domain has no suspend to standby mode defined by + platform code. + +What: /sys/class/regulator/.../suspend_mem_state +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_mem_state. This holds the regulator operating state + when suspended to memory. + + This will be one of the following strings: + + 'enabled' + 'disabled' + 'not defined' + +What: /sys/class/regulator/.../suspend_disk_state +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_disk_state. This holds the regulator operating state + when suspended to disk. + + This will be one of the following strings: + + 'enabled' + 'disabled' + 'not defined' + +What: /sys/class/regulator/.../suspend_standby_state +Date: May 2008 +KernelVersion: 2.6.26 +Contact: Liam Girdwood +Description: + Each regulator directory will contain a field called + suspend_standby_state. This holds the regulator operating + state when suspended to standby. + + This will be one of the following strings: + + 'enabled' + 'disabled' + 'not defined' diff --git a/Documentation/ABI/testing/sysfs-dev b/Documentation/ABI/testing/sysfs-dev new file mode 100644 index 0000000000000000000000000000000000000000..a9f2b8b0530fb193be12ccfb7d0a529bf0ba435d --- /dev/null +++ b/Documentation/ABI/testing/sysfs-dev @@ -0,0 +1,20 @@ +What: /sys/dev +Date: April 2008 +KernelVersion: 2.6.26 +Contact: Dan Williams +Description: The /sys/dev tree provides a method to look up the sysfs + path for a device using the information returned from + stat(2). There are two directories, 'block' and 'char', + beneath /sys/dev containing symbolic links with names of + the form ":". These links point to the + corresponding sysfs path for the given device. + + Example: + $ readlink /sys/dev/block/8:32 + ../../block/sdc + + Entries in /sys/dev/char and /sys/dev/block will be + dynamically created and destroyed as devices enter and + leave the system. + +Users: mdadm diff --git a/Documentation/ABI/testing/sysfs-devices-memory b/Documentation/ABI/testing/sysfs-devices-memory new file mode 100644 index 0000000000000000000000000000000000000000..7a16fe1e2270d8e7353b209bd0dad24a5ce9b69e --- /dev/null +++ b/Documentation/ABI/testing/sysfs-devices-memory @@ -0,0 +1,24 @@ +What: /sys/devices/system/memory +Date: June 2008 +Contact: Badari Pulavarty +Description: + The /sys/devices/system/memory contains a snapshot of the + internal state of the kernel memory blocks. Files could be + added or removed dynamically to represent hot-add/remove + operations. + +Users: hotplug memory add/remove tools + https://w3.opensource.ibm.com/projects/powerpc-utils/ + +What: /sys/devices/system/memory/memoryX/removable +Date: June 2008 +Contact: Badari Pulavarty +Description: + The file /sys/devices/system/memory/memoryX/removable + indicates whether this memory block is removable or not. + This is useful for a user-level agent to determine + identify removable sections of the memory before attempting + potentially expensive hot-remove memory operation + +Users: hotplug memory remove tools + https://w3.opensource.ibm.com/projects/powerpc-utils/ diff --git a/Documentation/ABI/testing/sysfs-firmware-sgi_uv b/Documentation/ABI/testing/sysfs-firmware-sgi_uv new file mode 100644 index 0000000000000000000000000000000000000000..4573fd4b7876cfd1c3d80281f8b4101df35ba1f4 --- /dev/null +++ b/Documentation/ABI/testing/sysfs-firmware-sgi_uv @@ -0,0 +1,27 @@ +What: /sys/firmware/sgi_uv/ +Date: August 2008 +Contact: Russ Anderson +Description: + The /sys/firmware/sgi_uv directory contains information + about the SGI UV platform. + + Under that directory are a number of files: + + partition_id + coherence_id + + The partition_id entry contains the partition id. + SGI UV systems can be partitioned into multiple physical + machines, which each partition running a unique copy + of the operating system. Each partition will have a unique + partition id. To display the partition id, use the command: + + cat /sys/firmware/sgi_uv/partition_id + + The coherence_id entry contains the coherence id. + A partitioned SGI UV system can have one or more coherence + domain. The coherence id indicates which coherence domain + this partition is in. To display the coherence id, use the + command: + + cat /sys/firmware/sgi_uv/coherence_id diff --git a/Documentation/ABI/testing/sysfs-gpio b/Documentation/ABI/testing/sysfs-gpio new file mode 100644 index 0000000000000000000000000000000000000000..8aab8092ad35dd4bfc55188e22999651b572b24a --- /dev/null +++ b/Documentation/ABI/testing/sysfs-gpio @@ -0,0 +1,26 @@ +What: /sys/class/gpio/ +Date: July 2008 +KernelVersion: 2.6.27 +Contact: David Brownell +Description: + + As a Kconfig option, individual GPIO signals may be accessed from + userspace. GPIOs are only made available to userspace by an explicit + "export" operation. If a given GPIO is not claimed for use by + kernel code, it may be exported by userspace (and unexported later). + Kernel code may export it for complete or partial access. + + GPIOs are identified as they are inside the kernel, using integers in + the range 0..INT_MAX. See Documentation/gpio.txt for more information. + + /sys/class/gpio + /export ... asks the kernel to export a GPIO to userspace + /unexport ... to return a GPIO to the kernel + /gpioN ... for each exported GPIO #N + /value ... always readable, writes fail for input GPIOs + /direction ... r/w as: in, out (default low); write: high, low + /gpiochipN ... for each gpiochip; #N is its first GPIO + /base ... (r/o) same as N + /label ... (r/o) descriptive, not necessarily unique + /ngpio ... (r/o) number of GPIOs; numbered N to N + (ngpio - 1) + diff --git a/Documentation/ABI/testing/sysfs-kernel-mm b/Documentation/ABI/testing/sysfs-kernel-mm new file mode 100644 index 0000000000000000000000000000000000000000..190d523ac159f64c97ae7355f230c46f564e5f6b --- /dev/null +++ b/Documentation/ABI/testing/sysfs-kernel-mm @@ -0,0 +1,6 @@ +What: /sys/kernel/mm +Date: July 2008 +Contact: Nishanth Aravamudan , VM maintainers +Description: + /sys/kernel/mm/ should contain any and all VM + related information in /sys/kernel/. diff --git a/Documentation/ABI/testing/sysfs-kernel-mm-hugepages b/Documentation/ABI/testing/sysfs-kernel-mm-hugepages new file mode 100644 index 0000000000000000000000000000000000000000..e21c00571cf4f082b04f12b168e376c500bd845d --- /dev/null +++ b/Documentation/ABI/testing/sysfs-kernel-mm-hugepages @@ -0,0 +1,15 @@ +What: /sys/kernel/mm/hugepages/ +Date: June 2008 +Contact: Nishanth Aravamudan , hugetlb maintainers +Description: + /sys/kernel/mm/hugepages/ contains a number of subdirectories + of the form hugepages-kB, where is the page size + of the hugepages supported by the kernel/CPU combination. + + Under these directories are a number of files: + nr_hugepages + nr_overcommit_hugepages + free_hugepages + surplus_hugepages + resv_hugepages + See Documentation/vm/hugetlbpage.txt for details. diff --git a/Documentation/CodingStyle b/Documentation/CodingStyle index 6caa146155788c8a67fc940c1879f2faf4fac1bb..1875e502f87205a1dcaf268d0af78127ee336144 100644 --- a/Documentation/CodingStyle +++ b/Documentation/CodingStyle @@ -474,25 +474,29 @@ make a good program). So, you can either get rid of GNU emacs, or change it to use saner values. To do the latter, you can stick the following in your .emacs file: -(defun linux-c-mode () - "C mode with adjusted defaults for use with the Linux kernel." - (interactive) - (c-mode) - (c-set-style "K&R") - (setq tab-width 8) - (setq indent-tabs-mode t) - (setq c-basic-offset 8)) - -This will define the M-x linux-c-mode command. When hacking on a -module, if you put the string -*- linux-c -*- somewhere on the first -two lines, this mode will be automatically invoked. Also, you may want -to add - -(setq auto-mode-alist (cons '("/usr/src/linux.*/.*\\.[ch]$" . linux-c-mode) - auto-mode-alist)) - -to your .emacs file if you want to have linux-c-mode switched on -automagically when you edit source files under /usr/src/linux. +(defun c-lineup-arglist-tabs-only (ignored) + "Line up argument lists by tabs, not spaces" + (let* ((anchor (c-langelem-pos c-syntactic-element)) + (column (c-langelem-2nd-pos c-syntactic-element)) + (offset (- (1+ column) anchor)) + (steps (floor offset c-basic-offset))) + (* (max steps 1) + c-basic-offset))) + +(add-hook 'c-mode-hook + (lambda () + (let ((filename (buffer-file-name))) + ;; Enable kernel mode for the appropriate files + (when (and filename + (string-match "~/src/linux-trees" filename)) + (setq indent-tabs-mode t) + (c-set-style "linux") + (c-set-offset 'arglist-cont-nonempty + '(c-lineup-gcc-asm-reg + c-lineup-arglist-tabs-only)))))) + +This will make emacs go better with the kernel coding style for C +files below ~/src/linux-trees. But even if you fail in getting emacs to do sane formatting, not everything is lost: use "indent". diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt index 80d150458c80c5ac7f7f5f75b3e6ff8a602a19ca..d8b63d164e41193927af2c7fb41dcb0893f57878 100644 --- a/Documentation/DMA-API.txt +++ b/Documentation/DMA-API.txt @@ -298,10 +298,10 @@ recommended that you never use these unless you really know what the cache width is. int -dma_mapping_error(dma_addr_t dma_addr) +dma_mapping_error(struct device *dev, dma_addr_t dma_addr) int -pci_dma_mapping_error(dma_addr_t dma_addr) +pci_dma_mapping_error(struct pci_dev *hwdev, dma_addr_t dma_addr) In some circumstances dma_map_single and dma_map_page will fail to create a mapping. A driver can check for these errors by testing the returned diff --git a/Documentation/DMA-attributes.txt b/Documentation/DMA-attributes.txt index 6d772f84b477c9f5a4698e87d50fb63649af83d3..b768cc0e402b8e6f1cfa8ae0b0f23c4e1c50168a 100644 --- a/Documentation/DMA-attributes.txt +++ b/Documentation/DMA-attributes.txt @@ -22,3 +22,12 @@ ready and available in memory. The DMA of the "completion indication" could race with data DMA. Mapping the memory used for completion indications with DMA_ATTR_WRITE_BARRIER would prevent the race. +DMA_ATTR_WEAK_ORDERING +---------------------- + +DMA_ATTR_WEAK_ORDERING specifies that reads and writes to the mapping +may be weakly ordered, that is that reads and writes may pass each other. + +Since it is optional for platforms to implement DMA_ATTR_WEAK_ORDERING, +those that do not will simply ignore the attribute and exhibit default +behavior. diff --git a/Documentation/DMA-mapping.txt b/Documentation/DMA-mapping.txt index b463ecd0c7cebf36f53104015afcbeeccf4b934d..c74fec8c2351168d1329c527183f3a975234030e 100644 --- a/Documentation/DMA-mapping.txt +++ b/Documentation/DMA-mapping.txt @@ -740,7 +740,7 @@ failure can be determined by: dma_addr_t dma_handle; dma_handle = pci_map_single(pdev, addr, size, direction); - if (pci_dma_mapping_error(dma_handle)) { + if (pci_dma_mapping_error(pdev, dma_handle)) { /* * reduce current DMA mapping usage, * delay and try again later or diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 0eb0d027eb32e139f442eb30e3b92a7560112bed..1615350b7b53b4b681ed187e176e896ca0b0845e 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -12,7 +12,7 @@ DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml videobook.xml \ kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ - mac80211.xml debugobjects.xml + mac80211.xml debugobjects.xml sh.xml ### # The build process is as follows (targets): @@ -102,6 +102,13 @@ C-procfs-example = procfs_example.xml C-procfs-example2 = $(addprefix $(obj)/,$(C-procfs-example)) $(obj)/procfs-guide.xml: $(C-procfs-example2) +# List of programs to build +##oops, this is a kernel module::hostprogs-y := procfs_example +obj-m += procfs_example.o + +# Tell kbuild to always build the programs +always := $(hostprogs-y) + notfoundtemplate = echo "*** You have to install docbook-utils or xmlto ***"; \ exit 1 db2xtemplate = db2TYPE -o $(dir $@) $< diff --git a/Documentation/DocBook/gadget.tmpl b/Documentation/DocBook/gadget.tmpl index 5a8ffa761e09991bfc59dc97fa01a4deef94e9f7..ea3bc9565e6a7e7ae48a168841c222e07bfd0154 100644 --- a/Documentation/DocBook/gadget.tmpl +++ b/Documentation/DocBook/gadget.tmpl @@ -524,6 +524,44 @@ These utilities include endpoint autoconfiguration. +Composite Device Framework + +The core API is sufficient for writing drivers for composite +USB devices (with more than one function in a given configuration), +and also multi-configuration devices (also more than one function, +but not necessarily sharing a given configuration). +There is however an optional framework which makes it easier to +reuse and combine functions. + + +Devices using this framework provide a struct +usb_composite_driver, which in turn provides one or +more struct usb_configuration instances. +Each such configuration includes at least one +struct usb_function, which packages a user +visible role such as "network link" or "mass storage device". +Management functions may also exist, such as "Device Firmware +Upgrade". + + +!Iinclude/linux/usb/composite.h +!Edrivers/usb/gadget/composite.c + + + +Composite Device Functions + +At this writing, a few of the current gadget drivers have +been converted to this framework. +Near-term plans include converting all of them, except for "gadgetfs". + + +!Edrivers/usb/gadget/f_acm.c +!Edrivers/usb/gadget/f_serial.c + + + + Peripheral Controller Drivers diff --git a/Documentation/DocBook/kernel-locking.tmpl b/Documentation/DocBook/kernel-locking.tmpl index 2510763295d09dfbd893e288d1948c9b05feda4d..084f6ad7b7a0a4729b85aea3cc5c3e6eb6557689 100644 --- a/Documentation/DocBook/kernel-locking.tmpl +++ b/Documentation/DocBook/kernel-locking.tmpl @@ -219,10 +219,10 @@ - Three Main Types of Kernel Locks: Spinlocks, Mutexes and Semaphores + Two Main Types of Kernel Locks: Spinlocks and Mutexes - There are three main types of kernel locks. The fundamental type + There are two main types of kernel locks. The fundamental type is the spinlock (include/asm/spinlock.h), which is a very simple single-holder lock: if you can't get the @@ -239,14 +239,6 @@ can't sleep (see ), and so have to use a spinlock instead. - - The third type is a semaphore - (include/linux/semaphore.h): it - can have more than one holder at any time (the number decided at - initialization time), although it is most commonly used as a - single-holder lock (a mutex). If you can't get a semaphore, your - task will be suspended and later on woken up - just like for mutexes. - Neither type of lock is recursive: see . @@ -278,7 +270,7 @@ - Semaphores still exist, because they are required for + Mutexes still exist, because they are required for synchronization between user contexts, as we will see below. @@ -289,18 +281,17 @@ If you have a data structure which is only ever accessed from - user context, then you can use a simple semaphore - (linux/linux/semaphore.h) to protect it. This - is the most trivial case: you initialize the semaphore to the number - of resources available (usually 1), and call - down_interruptible() to grab the semaphore, and - up() to release it. There is also a - down(), which should be avoided, because it + user context, then you can use a simple mutex + (include/linux/mutex.h) to protect it. This + is the most trivial case: you initialize the mutex. Then you can + call mutex_lock_interruptible() to grab the mutex, + and mutex_unlock() to release it. There is also a + mutex_lock(), which should be avoided, because it will not return if a signal is received. - Example: linux/net/core/netfilter.c allows + Example: net/netfilter/nf_sockopt.c allows registration of new setsockopt() and getsockopt() calls, with nf_register_sockopt(). Registration and @@ -515,7 +506,7 @@ If you are in a process context (any syscall) and want to - lock other process out, use a semaphore. You can take a semaphore + lock other process out, use a mutex. You can take a mutex and sleep (copy_from_user*( or kmalloc(x,GFP_KERNEL)). @@ -662,7 +653,7 @@ SLBH SLBH SLBH -DI +MLI None @@ -692,8 +683,8 @@ spin_lock_bh -DI -down_interruptible +MLI +mutex_lock_interruptible @@ -1310,7 +1301,7 @@ as Alan Cox says, Lock data, not code. There is a coding bug where a piece of code tries to grab a spinlock twice: it will spin forever, waiting for the lock to - be released (spinlocks, rwlocks and semaphores are not + be released (spinlocks, rwlocks and mutexes are not recursive in Linux). This is trivial to diagnose: not a stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem. @@ -1335,7 +1326,7 @@ as Alan Cox says, Lock data, not code. This complete lockup is easy to diagnose: on SMP boxes the - watchdog timer or compiling with DEBUG_SPINLOCKS set + watchdog timer or compiling with DEBUG_SPINLOCK set (include/linux/spinlock.h) will show this up immediately when it happens. @@ -1558,7 +1549,7 @@ the amount of locking which needs to be done. Read/Write Lock Variants - Both spinlocks and semaphores have read/write variants: + Both spinlocks and mutexes have read/write variants: rwlock_t and struct rw_semaphore. These divide users into two classes: the readers and the writers. If you are only reading the data, you can get a read lock, but to write to @@ -1681,7 +1672,7 @@ the amount of locking which needs to be done. #include <linux/slab.h> #include <linux/string.h> +#include <linux/rcupdate.h> - #include <linux/semaphore.h> + #include <linux/mutex.h> #include <asm/errno.h> struct object @@ -1913,7 +1904,7 @@ machines due to caching. - put_user() + put_user() @@ -1927,13 +1918,13 @@ machines due to caching. - down_interruptible() and - down() + mutex_lock_interruptible() and + mutex_lock() - There is a down_trylock() which can be + There is a mutex_trylock() which can be used inside interrupt context, as it will not sleep. - up() will also never sleep. + mutex_unlock() will also never sleep. @@ -2023,7 +2014,7 @@ machines due to caching. Prior to 2.5, or when CONFIG_PREEMPT is unset, processes in user context inside the kernel would not - preempt each other (ie. you had that CPU until you have it up, + preempt each other (ie. you had that CPU until you gave it up, except for interrupts). With the addition of CONFIG_PREEMPT in 2.5.4, this changed: when in user context, higher priority tasks can "cut in": spinlocks diff --git a/Documentation/DocBook/kgdb.tmpl b/Documentation/DocBook/kgdb.tmpl index e8acd1f034567b217f9e9998f5bc05b4c24e276e..372dec20c8dab6db05fbbcd9e3cdef93f1e783a5 100644 --- a/Documentation/DocBook/kgdb.tmpl +++ b/Documentation/DocBook/kgdb.tmpl @@ -98,6 +98,24 @@ "Kernel debugging" select "KGDB: kernel debugging with remote gdb". + It is advised, but not required that you turn on the + CONFIG_FRAME_POINTER kernel option. This option inserts code to + into the compiled executable which saves the frame information in + registers or on the stack at different points which will allow a + debugger such as gdb to more accurately construct stack back traces + while debugging the kernel. + + + If the architecture that you are using supports the kernel option + CONFIG_DEBUG_RODATA, you should consider turning it off. This + option will prevent the use of software breakpoints because it + marks certain regions of the kernel's memory space as read-only. + If kgdb supports it for the architecture you are using, you can + use hardware breakpoints if you desire to run with the + CONFIG_DEBUG_RODATA option turned on, else you need to turn off + this option. + + Next you should choose one of more I/O drivers to interconnect debugging host and debugged target. Early boot debugging requires a KGDB I/O driver that supports early debugging and the driver must be diff --git a/Documentation/DocBook/procfs-guide.tmpl b/Documentation/DocBook/procfs-guide.tmpl index 1fd6a1ec7591d5f4179cdf2a641f1b055c1f486a..8a5dc6e021ffa8b16b6dc2f997e115e77b1aaf70 100644 --- a/Documentation/DocBook/procfs-guide.tmpl +++ b/Documentation/DocBook/procfs-guide.tmpl @@ -29,12 +29,12 @@ - 1.0  + 1.0 May 30, 2001 Initial revision posted to linux-kernel - 1.1  + 1.1 June 3, 2001 Revised after comments from linux-kernel diff --git a/Documentation/DocBook/procfs_example.c b/Documentation/DocBook/procfs_example.c index 7064084c1c5e4ce6b10f64971a5d7cd2d009f5d1..2f3de0fb83651779e3c849c8ec2c9706c13a2ac4 100644 --- a/Documentation/DocBook/procfs_example.c +++ b/Documentation/DocBook/procfs_example.c @@ -189,8 +189,6 @@ static int __init init_procfs_example(void) return 0; no_symlink: - remove_proc_entry("tty", example_dir); -no_tty: remove_proc_entry("bar", example_dir); no_bar: remove_proc_entry("foo", example_dir); @@ -206,7 +204,6 @@ out: static void __exit cleanup_procfs_example(void) { remove_proc_entry("jiffies_too", example_dir); - remove_proc_entry("tty", example_dir); remove_proc_entry("bar", example_dir); remove_proc_entry("foo", example_dir); remove_proc_entry("jiffies", example_dir); @@ -222,3 +219,4 @@ module_exit(cleanup_procfs_example); MODULE_AUTHOR("Erik Mouw"); MODULE_DESCRIPTION("procfs examples"); +MODULE_LICENSE("GPL"); diff --git a/Documentation/DocBook/s390-drivers.tmpl b/Documentation/DocBook/s390-drivers.tmpl index 4acc73240a6d536ef044bf1dfc5a2abd6ae4296f..95bfc12e5439d572f02e924f887802fd273bcf96 100644 --- a/Documentation/DocBook/s390-drivers.tmpl +++ b/Documentation/DocBook/s390-drivers.tmpl @@ -100,7 +100,7 @@ the hardware structures represented here, please consult the Principles of Operation. -!Iinclude/asm-s390/cio.h +!Iarch/s390/include/asm/cio.h ccw devices @@ -114,7 +114,7 @@ ccw device structure. Device drivers must not bypass those functions or strange side effects may happen. -!Iinclude/asm-s390/ccwdev.h +!Iarch/s390/include/asm/ccwdev.h !Edrivers/s390/cio/device.c !Edrivers/s390/cio/device_ops.c @@ -125,7 +125,7 @@ measurement data which is made available by the channel subsystem for each channel attached device. -!Iinclude/asm-s390/cmb.h +!Iarch/s390/include/asm/cmb.h !Edrivers/s390/cio/cmf.c @@ -142,7 +142,7 @@ ccw group devices -!Iinclude/asm-s390/ccwgroup.h +!Iarch/s390/include/asm/ccwgroup.h !Edrivers/s390/cio/ccwgroup.c diff --git a/Documentation/DocBook/sh.tmpl b/Documentation/DocBook/sh.tmpl new file mode 100644 index 0000000000000000000000000000000000000000..0c3dc4c69dd11f7c6a7b65877420395cad59bc6b --- /dev/null +++ b/Documentation/DocBook/sh.tmpl @@ -0,0 +1,105 @@ + + + + + + SuperH Interfaces Guide + + + + Paul + Mundt + +
+ lethal@linux-sh.org +
+
+
+
+ + + 2008 + Paul Mundt + + + 2008 + Renesas Technology Corp. + + + + + This documentation is free software; you can redistribute + it and/or modify it under the terms of the GNU General Public + License version 2 as published by the Free Software Foundation. + + + + This program is distributed in the hope that it will be + useful, but WITHOUT ANY WARRANTY; without even the implied + warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + See the GNU General Public License for more details. + + + + You should have received a copy of the GNU General Public + License along with this program; if not, write to the Free + Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, + MA 02111-1307 USA + + + + For more details see the file COPYING in the source + distribution of Linux. + + +
+ + + + + Memory Management + + SH-4 + + Store Queue API +!Earch/sh/kernel/cpu/sh4/sq.c + + + + SH-5 + + TLB Interfaces +!Iarch/sh/mm/tlb-sh5.c +!Iarch/sh/include/asm/tlb_64.h + + + + + Clock Framework Extensions +!Iarch/sh/include/asm/clock.h + + + Machine Specific Interfaces + + mach-dreamcast +!Iarch/sh/boards/mach-dreamcast/rtc.c + + + mach-x3proto +!Earch/sh/boards/mach-x3proto/ilsel.c + + + + Busses + + SuperHyway +!Edrivers/sh/superhyway/superhyway.c + + + + Maple +!Edrivers/sh/maple/maple.c + + +
diff --git a/Documentation/DocBook/uio-howto.tmpl b/Documentation/DocBook/uio-howto.tmpl index fdd7f4f887b75ba7bc96b7ab81b9abc7d3348d73..df87d1b93605ac54cf400bd7b8d44b0866d0789a 100644 --- a/Documentation/DocBook/uio-howto.tmpl +++ b/Documentation/DocBook/uio-howto.tmpl @@ -21,6 +21,18 @@ + + 2006-2008 + Hans-Jürgen Koch. + + + + +This documentation is Free Software licensed under the terms of the +GPL version 2. + + + 2006-12-11 @@ -29,6 +41,12 @@ + + 0.5 + 2008-05-22 + hjk + Added description of write() function. + 0.4 2007-11-26 @@ -57,20 +75,9 @@ - + About this document - - -Copyright and License - - Copyright (c) 2006 by Hans-Jürgen Koch. - -This documentation is Free Software licensed under the terms of the -GPL version 2. - - - Translations @@ -189,6 +196,30 @@ interested in translating it, please email me represents the total interrupt count. You can use this number to figure out if you missed some interrupts. + + For some hardware that has more than one interrupt source internally, + but not separate IRQ mask and status registers, there might be + situations where userspace cannot determine what the interrupt source + was if the kernel handler disables them by writing to the chip's IRQ + register. In such a case, the kernel has to disable the IRQ completely + to leave the chip's register untouched. Now the userspace part can + determine the cause of the interrupt, but it cannot re-enable + interrupts. Another cornercase is chips where re-enabling interrupts + is a read-modify-write operation to a combined IRQ status/acknowledge + register. This would be racy if a new interrupt occurred + simultaneously. + + + To address these problems, UIO also implements a write() function. It + is normally not used and can be ignored for hardware that has only a + single interrupt source or has separate IRQ mask and status registers. + If you need it, however, a write to /dev/uioX + will call the irqcontrol() function implemented + by the driver. You have to write a 32-bit value that is usually either + 0 or 1 to disable or enable interrupts. If a driver does not implement + irqcontrol(), write() will + return with -ENOSYS. + To handle interrupts properly, your custom kernel module can @@ -362,6 +393,14 @@ device is actually used. open(), you will probably also want a custom release() function. + + +int (*irqcontrol)(struct uio_info *info, s32 irq_on) +: Optional. If you need to be able to enable or disable +interrupts from userspace by writing to /dev/uioX, +you can implement this function. The parameter irq_on +will be 0 to disable interrupts and 1 to enable them. + diff --git a/Documentation/DocBook/videobook.tmpl b/Documentation/DocBook/videobook.tmpl index 89817795e668d438d3ea64f9dd37cfa9d0e55785..0bc25949b66837a0c538cb2dd3de9f43a9446dd8 100644 --- a/Documentation/DocBook/videobook.tmpl +++ b/Documentation/DocBook/videobook.tmpl @@ -1648,7 +1648,7 @@ static struct video_buffer capture_fb; Public Functions Provided -!Edrivers/media/video/videodev.c +!Edrivers/media/video/v4l2-dev.c diff --git a/Documentation/DocBook/z8530book.tmpl b/Documentation/DocBook/z8530book.tmpl index 42c75ba71ba220fed7976b30d9d601a806cf2ae6..a42a8a4c76890db386c3c4f36a140acf5e2de1d0 100644 --- a/Documentation/DocBook/z8530book.tmpl +++ b/Documentation/DocBook/z8530book.tmpl @@ -69,12 +69,6 @@ device to be used as both a tty interface and as a synchronous controller is a project for Linux post the 2.4 release - - The support code handles most common card configurations and - supports running both Cisco HDLC and Synchronous PPP. With extra - glue the frame relay and X.25 protocols can also be used with this - driver. - @@ -179,35 +173,27 @@ If you wish to use the network interface facilities of the driver, then you need to attach a network device to each channel that is - present and in use. In addition to use the SyncPPP and Cisco HDLC + present and in use. In addition to use the generic HDLC you need to follow some additional plumbing rules. They may seem complex but a look at the example hostess_sv11 driver should reassure you. The network device used for each channel should be pointed to by - the netdevice field of each channel. The dev-> priv field of the + the netdevice field of each channel. The hdlc-> priv field of the network device points to your private data - you will need to be - able to find your ppp device from this. In addition to use the - sync ppp layer the private data must start with a void * pointer - to the syncppp structures. + able to find your private data from this. The way most drivers approach this particular problem is to create a structure holding the Z8530 device definition and - put that and the syncppp pointer into the private field of - the network device. The network device fields of the channels - then point back to the network devices. The ppp_device can also - be put in the private structure conveniently. + put that into the private field of the network device. The + network device fields of the channels then point back to the + network devices. - If you wish to use the synchronous ppp then you need to attach - the syncppp layer to the network device. You should do this before - you register the network device. The - sppp_attach requires that the first void * - pointer in your private data is pointing to an empty struct - ppp_device. The function fills in the initial data for the - ppp/hdlc layer. + If you wish to use the generic HDLC then you need to register + the HDLC device. Before you register your network device you will also need to @@ -314,10 +300,10 @@ buffer in sk_buff format and queues it for transmission. The caller must provide the entire packet with the exception of the bitstuffing and CRC. This is normally done by the caller via - the syncppp interface layer. It returns 0 if the buffer has been - queued and non zero values for queue full. If the function accepts - the buffer it becomes property of the Z8530 layer and the caller - should not free it. + the generic HDLC interface layer. It returns 0 if the buffer has been + queued and non zero values for queue full. If the function accepts + the buffer it becomes property of the Z8530 layer and the caller + should not free it. The function z8530_get_stats returns a pointer diff --git a/Documentation/HOWTO b/Documentation/HOWTO index 619e8caf30db88508a3f2859d140f41ce363f552..c2371c5a98f99b5eaa785bd0affd6c40187e84e3 100644 --- a/Documentation/HOWTO +++ b/Documentation/HOWTO @@ -358,7 +358,7 @@ Here is a list of some of the different kernel trees available: - pcmcia, Dominik Brodowski git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git - - SCSI, James Bottomley + - SCSI, James Bottomley git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git - x86, Ingo Molnar diff --git a/Documentation/Intel-IOMMU.txt b/Documentation/Intel-IOMMU.txt index c2321903aa09adea7f64c00d300814cc32229d1f..21bc416d887efdfabfe4c03b22639b225d72909c 100644 --- a/Documentation/Intel-IOMMU.txt +++ b/Documentation/Intel-IOMMU.txt @@ -48,7 +48,7 @@ IOVA generation is pretty generic. We used the same technique as vmalloc() but these are not global address spaces, but separate for each domain. Different DMA engines may support different number of domains. -We also allocate gaurd pages with each mapping, so we can attempt to catch +We also allocate guard pages with each mapping, so we can attempt to catch any overflow that might happen. @@ -112,4 +112,4 @@ TBD - For compatibility testing, could use unity map domain for all devices, just provide a 1-1 for all useful memory under a single domain for all devices. -- API for paravirt ops for abstracting functionlity for VMM folks. +- API for paravirt ops for abstracting functionality for VMM folks. diff --git a/Documentation/Makefile b/Documentation/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..94b9457335344eb6b82fb06759e10f89ab037f25 --- /dev/null +++ b/Documentation/Makefile @@ -0,0 +1,3 @@ +obj-m := DocBook/ accounting/ auxdisplay/ connector/ \ + filesystems/configfs/ ia64/ networking/ \ + pcmcia/ spi/ video4linux/ vm/ watchdog/src/ diff --git a/Documentation/SubmittingPatches b/Documentation/SubmittingPatches index 118ca6e9404f47ded06c7ee3a287003d00377e56..f79ad9ff6031aa4ee622d9f0be3e0c1604e2d14b 100644 --- a/Documentation/SubmittingPatches +++ b/Documentation/SubmittingPatches @@ -528,7 +528,33 @@ See more details on the proper patch format in the following references. +16) Sending "git pull" requests (from Linus emails) +Please write the git repo address and branch name alone on the same line +so that I can't even by mistake pull from the wrong branch, and so +that a triple-click just selects the whole thing. + +So the proper format is something along the lines of: + + "Please pull from + + git://jdelvare.pck.nerim.net/jdelvare-2.6 i2c-for-linus + + to get these changes:" + +so that I don't have to hunt-and-peck for the address and inevitably +get it wrong (actually, I've only gotten it wrong a few times, and +checking against the diffstat tells me when I get it wrong, but I'm +just a lot more comfortable when I don't have to "look for" the right +thing to pull, and double-check that I have the right branch-name). + + +Please use "git diff -M --stat --summary" to generate the diffstat: +the -M enables rename detection, and the summary enables a summary of +new/deleted or renamed files. + +With rename detection, the statistics are rather different [...] +because git will notice that a fair number of the changes are renames. ----------------------------------- SECTION 2 - HINTS, TIPS, AND TRICKS diff --git a/Documentation/accounting/Makefile b/Documentation/accounting/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..31929eb875b19e9ce6898a53719fd2b0797c5f46 --- /dev/null +++ b/Documentation/accounting/Makefile @@ -0,0 +1,10 @@ +# kbuild trick to avoid linker error. Can be omitted if a module is built. +obj- := dummy.o + +# List of programs to build +hostprogs-y := getdelays + +# Tell kbuild to always build the programs +always := $(hostprogs-y) + +HOSTCFLAGS_getdelays.o += -I$(objtree)/usr/include diff --git a/Documentation/accounting/delay-accounting.txt b/Documentation/accounting/delay-accounting.txt index 1443cd71d2631241f13286e544296ef286d91c90..8a12f0730c94da018615aebc8e657daf65eadd80 100644 --- a/Documentation/accounting/delay-accounting.txt +++ b/Documentation/accounting/delay-accounting.txt @@ -11,6 +11,7 @@ the delays experienced by a task while a) waiting for a CPU (while being runnable) b) completion of synchronous block I/O initiated by the task c) swapping in pages +d) memory reclaim and makes these statistics available to userspace through the taskstats interface. @@ -41,7 +42,7 @@ this structure. See include/linux/taskstats.h for a description of the fields pertaining to delay accounting. It will generally be in the form of counters returning the cumulative -delay seen for cpu, sync block I/O, swapin etc. +delay seen for cpu, sync block I/O, swapin, memory reclaim etc. Taking the difference of two successive readings of a given counter (say cpu_delay_total) for a task will give the delay @@ -94,7 +95,9 @@ CPU count real total virtual total delay total 7876 92005750 100000000 24001500 IO count delay total 0 0 -MEM count delay total +SWAP count delay total + 0 0 +RECLAIM count delay total 0 0 Get delays seen in executing a given simple command @@ -108,5 +111,7 @@ CPU count real total virtual total delay total 6 4000250 4000000 0 IO count delay total 0 0 -MEM count delay total +SWAP count delay total + 0 0 +RECLAIM count delay total 0 0 diff --git a/Documentation/accounting/getdelays.c b/Documentation/accounting/getdelays.c index 40121b5cca14cab3993000c53078ef2d8484f001..cc49400b4af899abf34b30cf955b52d378617948 100644 --- a/Documentation/accounting/getdelays.c +++ b/Documentation/accounting/getdelays.c @@ -196,14 +196,24 @@ void print_delayacct(struct taskstats *t) " %15llu%15llu%15llu%15llu\n" "IO %15s%15s\n" " %15llu%15llu\n" - "MEM %15s%15s\n" + "SWAP %15s%15s\n" + " %15llu%15llu\n" + "RECLAIM %12s%15s\n" " %15llu%15llu\n", "count", "real total", "virtual total", "delay total", - t->cpu_count, t->cpu_run_real_total, t->cpu_run_virtual_total, - t->cpu_delay_total, + (unsigned long long)t->cpu_count, + (unsigned long long)t->cpu_run_real_total, + (unsigned long long)t->cpu_run_virtual_total, + (unsigned long long)t->cpu_delay_total, + "count", "delay total", + (unsigned long long)t->blkio_count, + (unsigned long long)t->blkio_delay_total, + "count", "delay total", + (unsigned long long)t->swapin_count, + (unsigned long long)t->swapin_delay_total, "count", "delay total", - t->blkio_count, t->blkio_delay_total, - "count", "delay total", t->swapin_count, t->swapin_delay_total); + (unsigned long long)t->freepages_count, + (unsigned long long)t->freepages_delay_total); } void task_context_switch_counts(struct taskstats *t) @@ -211,14 +221,17 @@ void task_context_switch_counts(struct taskstats *t) printf("\n\nTask %15s%15s\n" " %15llu%15llu\n", "voluntary", "nonvoluntary", - t->nvcsw, t->nivcsw); + (unsigned long long)t->nvcsw, (unsigned long long)t->nivcsw); } void print_cgroupstats(struct cgroupstats *c) { printf("sleeping %llu, blocked %llu, running %llu, stopped %llu, " - "uninterruptible %llu\n", c->nr_sleeping, c->nr_io_wait, - c->nr_running, c->nr_stopped, c->nr_uninterruptible); + "uninterruptible %llu\n", (unsigned long long)c->nr_sleeping, + (unsigned long long)c->nr_io_wait, + (unsigned long long)c->nr_running, + (unsigned long long)c->nr_stopped, + (unsigned long long)c->nr_uninterruptible); } diff --git a/Documentation/accounting/taskstats-struct.txt b/Documentation/accounting/taskstats-struct.txt index cd784f46bf8abefb9ed24257aaf5fcf4df2ecb00..e7512c061c1572f5127b7bb861ded0f0515bc6af 100644 --- a/Documentation/accounting/taskstats-struct.txt +++ b/Documentation/accounting/taskstats-struct.txt @@ -6,7 +6,7 @@ This document contains an explanation of the struct taskstats fields. There are three different groups of fields in the struct taskstats: 1) Common and basic accounting fields - If CONFIG_TASKSTATS is set, the taskstats inteface is enabled and + If CONFIG_TASKSTATS is set, the taskstats interface is enabled and the common fields and basic accounting fields are collected for delivery at do_exit() of a task. 2) Delay accounting fields @@ -26,6 +26,8 @@ There are three different groups of fields in the struct taskstats: 5) Time accounting for SMT machines +6) Extended delay accounting fields for memory reclaim + Future extension should add fields to the end of the taskstats struct, and should not change the relative position of each field within the struct. @@ -170,4 +172,9 @@ struct taskstats { __u64 ac_utimescaled; /* utime scaled on frequency etc */ __u64 ac_stimescaled; /* stime scaled on frequency etc */ __u64 cpu_scaled_run_real_total; /* scaled cpu_run_real_total */ + +6) Extended delay accounting fields for memory reclaim + /* Delay waiting for memory reclaim */ + __u64 freepages_count; + __u64 freepages_delay_total; } diff --git a/Documentation/arm/IXP4xx b/Documentation/arm/IXP4xx index 43edb4ecf27dbdd7138ea3c969f4c45cbcd720c7..72fbcc4fcab095fd61a886d3d542692a6f94d21e 100644 --- a/Documentation/arm/IXP4xx +++ b/Documentation/arm/IXP4xx @@ -32,7 +32,7 @@ Linux currently supports the following features on the IXP4xx chips: - Flash access (MTD/JFFS) - I2C through GPIO on IXP42x - GPIO for input/output/interrupts - See include/asm-arm/arch-ixp4xx/platform.h for access functions. + See arch/arm/mach-ixp4xx/include/mach/platform.h for access functions. - Timers (watchdog, OS) The following components of the chips are not supported by Linux and diff --git a/Documentation/arm/Interrupts b/Documentation/arm/Interrupts index 0d3dbf1099bcc90cae1b364002ef32e15dcdc06a..f09ab1b90ef1b486bb55273a53590b22fb8193fa 100644 --- a/Documentation/arm/Interrupts +++ b/Documentation/arm/Interrupts @@ -138,14 +138,8 @@ So, what's changed? Set active the IRQ edge(s)/level. This replaces the SA1111 INTPOL manipulation, and the set_GPIO_IRQ_edge() - function. Type should be one of the following: - - #define IRQT_NOEDGE (0) - #define IRQT_RISING (__IRQT_RISEDGE) - #define IRQT_FALLING (__IRQT_FALEDGE) - #define IRQT_BOTHEDGE (__IRQT_RISEDGE|__IRQT_FALEDGE) - #define IRQT_LOW (__IRQT_LOWLVL) - #define IRQT_HIGH (__IRQT_HIGHLVL) + function. Type should be one of IRQ_TYPE_xxx defined in + 3. set_GPIO_IRQ_edge() is obsolete, and should be replaced by set_irq_type. @@ -164,7 +158,7 @@ So, what's changed? be re-checked for pending events. (see the Neponset IRQ handler for details). -7. fixup_irq() is gone, as is include/asm-arm/arch-*/irq.h +7. fixup_irq() is gone, as is arch/arm/mach-*/include/mach/irq.h Please note that this will not solve all problems - some of them are hardware based. Mixing level-based and edge-based IRQs on the same diff --git a/Documentation/arm/README b/Documentation/arm/README index 9b9c8226fdc428665fb2e792ce142b77abf2d80d..d98783fbe0c7c8b6ff95a6e61931fc56d4ef7a3b 100644 --- a/Documentation/arm/README +++ b/Documentation/arm/README @@ -79,7 +79,7 @@ Machine/Platform support To this end, we now have arch/arm/mach-$(MACHINE) directories which are designed to house the non-driver files for a particular machine (eg, PCI, memory management, architecture definitions etc). For all future - machines, there should be a corresponding include/asm-arm/arch-$(MACHINE) + machines, there should be a corresponding arch/arm/mach-$(MACHINE)/include/mach directory. @@ -176,7 +176,7 @@ Kernel entry (head.S) class typically based around one or more system on a chip devices, and acts as a natural container around the actual implementations. These classes are given directories - arch/arm/mach- and - include/asm-arm/arch- - which contain the source files to + arch/arm/mach- - which contain the source files to/include/mach support the machine class. This directories also contain any machine specific supporting code. diff --git a/Documentation/arm/Samsung-S3C24XX/GPIO.txt b/Documentation/arm/Samsung-S3C24XX/GPIO.txt index 8caea8c237eec0b9a033414c53ab2ea30b313800..ea7ccfc4b274f5dcf269d9d239c8aeaf36cb4a6c 100644 --- a/Documentation/arm/Samsung-S3C24XX/GPIO.txt +++ b/Documentation/arm/Samsung-S3C24XX/GPIO.txt @@ -13,16 +13,31 @@ Introduction data-sheet/users manual to find out the complete list. +GPIOLIB +------- + + With the event of the GPIOLIB in drivers/gpio, support for some + of the GPIO functions such as reading and writing a pin will + be removed in favour of this common access method. + + Once all the extant drivers have been converted, the functions + listed below will be removed (they may be marked as __deprecated + in the near future). + + - s3c2410_gpio_getpin + - s3c2410_gpio_setpin + + Headers ------- - See include/asm-arm/arch-s3c2410/regs-gpio.h for the list + See arch/arm/mach-s3c2410/include/mach/regs-gpio.h for the list of GPIO pins, and the configuration values for them. This - is included by using #include + is included by using #include The GPIO management functions are defined in the hardware - header include/asm-arm/arch-s3c2410/hardware.h which can be - included by #include + header arch/arm/mach-s3c2410/include/mach/hardware.h which can be + included by #include A useful amount of documentation can be found in the hardware header on how the GPIO functions (and others) work. diff --git a/Documentation/arm/Samsung-S3C24XX/Overview.txt b/Documentation/arm/Samsung-S3C24XX/Overview.txt index d04e1e30c47f8ff1a8613a369506e58cf5a41a21..cff6227b44844dae251e4425468c3c099f58d272 100644 --- a/Documentation/arm/Samsung-S3C24XX/Overview.txt +++ b/Documentation/arm/Samsung-S3C24XX/Overview.txt @@ -8,9 +8,10 @@ Introduction The Samsung S3C24XX range of ARM9 System-on-Chip CPUs are supported by the 's3c2410' architecture of ARM Linux. Currently the S3C2410, - S3C2412, S3C2413, S3C2440 and S3C2442 devices are supported. + S3C2412, S3C2413, S3C2440, S3C2442 and S3C2443 devices are supported. + + Support for the S3C2400 and S3C24A0 series are in progress. - Support for the S3C2400 series is in progress. Configuration ------------- @@ -36,7 +37,23 @@ Layout in arch/arm/mach-s3c2410 and S3C2440 in arch/arm/mach-s3c2440 Register, kernel and platform data definitions are held in the - include/asm-arm/arch-s3c2410 directory. + arch/arm/mach-s3c2410 directory./include/mach + +arch/arm/plat-s3c24xx: + + Files in here are either common to all the s3c24xx family, + or are common to only some of them with names to indicate this + status. The files that are not common to all are generally named + with the initial cpu they support in the series to ensure a short + name without any possibility of confusion with newer devices. + + As an example, initially s3c244x would cover s3c2440 and s3c2442, but + with the s3c2443 which does not share many of the same drivers in + this directory, the name becomes invalid. We stick to s3c2440- + to indicate a driver that is s3c2440 and s3c2442 compatible. + + This does mean that to find the status of any given SoC, a number + of directories may need to be searched. Machines @@ -159,6 +176,17 @@ NAND For more information see Documentation/arm/Samsung-S3C24XX/NAND.txt +SD/MMC +------ + + The SD/MMC hardware pre S3C2443 is supported in the current + kernel, the driver is drivers/mmc/host/s3cmci.c and supports + 1 and 4 bit SD or MMC cards. + + The SDIO behaviour of this driver has not been fully tested. There is no + current support for hardware SDIO interrupts. + + Serial ------ @@ -178,6 +206,9 @@ GPIO The core contains support for manipulating the GPIO, see the documentation in GPIO.txt in the same directory as this file. + Newer kernels carry GPIOLIB, and support is being moved towards + this with some of the older support in line to be removed. + Clock Management ---------------- diff --git a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt b/Documentation/arm/Samsung-S3C24XX/USB-Host.txt index b93b68e2b143ec72bed475f6a4203dc3fc485c70..67671eba423125179a6ab7f0e831225dab43bbbb 100644 --- a/Documentation/arm/Samsung-S3C24XX/USB-Host.txt +++ b/Documentation/arm/Samsung-S3C24XX/USB-Host.txt @@ -49,7 +49,7 @@ Board Support Platform Data ------------- - See linux/include/asm-arm/arch-s3c2410/usb-control.h for the + See arch/arm/mach-s3c2410/include/mach/usb-control.h for the descriptions of the platform device data. An implementation can be found in linux/arch/arm/mach-s3c2410/usb-simtec.c . diff --git a/Documentation/auxdisplay/Makefile b/Documentation/auxdisplay/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..51fe23332c81fc644f091099e363d01d5f367a36 --- /dev/null +++ b/Documentation/auxdisplay/Makefile @@ -0,0 +1,10 @@ +# kbuild trick to avoid linker error. Can be omitted if a module is built. +obj- := dummy.o + +# List of programs to build +hostprogs-y := cfag12864b-example + +# Tell kbuild to always build the programs +always := $(hostprogs-y) + +HOSTCFLAGS_cfag12864b-example.o += -I$(objtree)/usr/include diff --git a/Documentation/bt8xxgpio.txt b/Documentation/bt8xxgpio.txt new file mode 100644 index 0000000000000000000000000000000000000000..d8297e4ebd265eb5dd273bad20162e51d369b25a --- /dev/null +++ b/Documentation/bt8xxgpio.txt @@ -0,0 +1,67 @@ +=============================================================== +== BT8XXGPIO driver == +== == +== A driver for a selfmade cheap BT8xx based PCI GPIO-card == +== == +== For advanced documentation, see == +== http://www.bu3sch.de/btgpio.php == +=============================================================== + + +A generic digital 24-port PCI GPIO card can be built out of an ordinary +Brooktree bt848, bt849, bt878 or bt879 based analog TV tuner card. The +Brooktree chip is used in old analog Hauppauge WinTV PCI cards. You can easily +find them used for low prices on the net. + +The bt8xx chip does have 24 digital GPIO ports. +These ports are accessible via 24 pins on the SMD chip package. + + +============================================== +== How to physically access the GPIO pins == +============================================== + +The are several ways to access these pins. One might unsolder the whole chip +and put it on a custom PCI board, or one might only unsolder each individual +GPIO pin and solder that to some tiny wire. As the chip package really is tiny +there are some advanced soldering skills needed in any case. + +The physical pinouts are drawn in the following ASCII art. +The GPIO pins are marked with G00-G23 + + G G G G G G G G G G G G G G G G G G + 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 + 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 + | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + --------------------------------------------------------------------------- + --| ^ ^ |-- + --| pin 86 pin 67 |-- + --| |-- + --| pin 61 > |-- G18 + --| |-- G19 + --| |-- G20 + --| |-- G21 + --| |-- G22 + --| pin 56 > |-- G23 + --| |-- + --| Brooktree 878/879 |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| |-- + --| O |-- + --| |-- + --------------------------------------------------------------------------- + | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | + ^ + This is pin 1 + diff --git a/Documentation/cciss.txt b/Documentation/cciss.txt index 63e59b8847c5475fe46f3012f6365a4f292ba9fc..8244c6442faa4d24ce9980c586be316629d54633 100644 --- a/Documentation/cciss.txt +++ b/Documentation/cciss.txt @@ -112,27 +112,18 @@ Hot plug support for SCSI tape drives Hot plugging of SCSI tape drives is supported, with some caveats. The cciss driver must be informed that changes to the SCSI bus -have been made, in addition to and prior to informing the SCSI -mid layer. This may be done via the /proc filesystem. For example: +have been made. This may be done via the /proc filesystem. +For example: echo "rescan" > /proc/scsi/cciss0/1 -This causes the adapter to query the adapter about changes to the -physical SCSI buses and/or fibre channel arbitrated loop and the +This causes the driver to query the adapter about changes to the +physical SCSI buses and/or fibre channel arbitrated loop and the driver to make note of any new or removed sequential access devices or medium changers. The driver will output messages indicating what devices have been added or removed and the controller, bus, target and -lun used to address the device. Once this is done, the SCSI mid layer -can be informed of changes to the virtual SCSI bus which the driver -presents to it in the usual way. For example: - - echo scsi add-single-device 3 2 1 0 > /proc/scsi/scsi - -to add a device on controller 3, bus 2, target 1, lun 0. Note that -the driver makes an effort to preserve the devices positions -in the virtual SCSI bus, so if you are only moving tape drives -around on the same adapter and not adding or removing tape drives -from the adapter, informing the SCSI mid layer may not be necessary. +lun used to address the device. It then notifies the SCSI mid layer +of these changes. Note that the naming convention of the /proc filesystem entries contains a number in addition to the driver name. (E.g. "cciss0" diff --git a/Documentation/cli-sti-removal.txt b/Documentation/cli-sti-removal.txt deleted file mode 100644 index 60932b02fcb333a8c4bd60e4ac0e8296f33c8784..0000000000000000000000000000000000000000 --- a/Documentation/cli-sti-removal.txt +++ /dev/null @@ -1,133 +0,0 @@ - -#### cli()/sti() removal guide, started by Ingo Molnar - - -as of 2.5.28, five popular macros have been removed on SMP, and -are being phased out on UP: - - cli(), sti(), save_flags(flags), save_flags_cli(flags), restore_flags(flags) - -until now it was possible to protect driver code against interrupt -handlers via a cli(), but from now on other, more lightweight methods -have to be used for synchronization, such as spinlocks or semaphores. - -for example, driver code that used to do something like: - - struct driver_data; - - irq_handler (...) - { - .... - driver_data.finish = 1; - driver_data.new_work = 0; - .... - } - - ... - - ioctl_func (...) - { - ... - cli(); - ... - driver_data.finish = 0; - driver_data.new_work = 2; - ... - sti(); - ... - } - -was SMP-correct because the cli() function ensured that no -interrupt handler (amongst them the above irq_handler()) function -would execute while the cli()-ed section is executing. - -but from now on a more direct method of locking has to be used: - - DEFINE_SPINLOCK(driver_lock); - struct driver_data; - - irq_handler (...) - { - unsigned long flags; - .... - spin_lock_irqsave(&driver_lock, flags); - .... - driver_data.finish = 1; - driver_data.new_work = 0; - .... - spin_unlock_irqrestore(&driver_lock, flags); - .... - } - - ... - - ioctl_func (...) - { - ... - spin_lock_irq(&driver_lock); - ... - driver_data.finish = 0; - driver_data.new_work = 2; - ... - spin_unlock_irq(&driver_lock); - ... - } - -the above code has a number of advantages: - -- the locking relation is easier to understand - actual lock usage - pinpoints the critical sections. cli() usage is too opaque. - Easier to understand means it's easier to debug. - -- it's faster, because spinlocks are faster to acquire than the - potentially heavily-used IRQ lock. Furthermore, your driver does - not have to wait eg. for a big heavy SCSI interrupt to finish, - because the driver_lock spinlock is only used by your driver. - cli() on the other hand was used by many drivers, and extended - the critical section to the whole IRQ handler function - creating - serious lock contention. - - -to make the transition easier, we've still kept the cli(), sti(), -save_flags(), save_flags_cli() and restore_flags() macros defined -on UP systems - but their usage will be phased out until 2.6 is -released. - -drivers that want to disable local interrupts (interrupts on the -current CPU), can use the following five macros: - - local_irq_disable(), local_irq_enable(), local_save_flags(flags), - local_irq_save(flags), local_irq_restore(flags) - -but beware, their meaning and semantics are much simpler, far from -that of the old cli(), sti(), save_flags(flags) and restore_flags(flags) -SMP meaning: - - local_irq_disable() => turn local IRQs off - - local_irq_enable() => turn local IRQs on - - local_save_flags(flags) => save the current IRQ state into flags. The - state can be on or off. (on some - architectures there's even more bits in it.) - - local_irq_save(flags) => save the current IRQ state into flags and - disable interrupts. - - local_irq_restore(flags) => restore the IRQ state from flags. - -(local_irq_save can save both irqs on and irqs off state, and -local_irq_restore can restore into both irqs on and irqs off state.) - -another related change is that synchronize_irq() now takes a parameter: -synchronize_irq(irq). This change too has the purpose of making SMP -synchronization more lightweight - this way you can wait for your own -interrupt handler to finish, no need to wait for other IRQ sources. - - -why were these changes done? The main reason was the architectural burden -of maintaining the cli()/sti() interface - it became a real problem. The -new interrupt system is much more streamlined, easier to understand, debug, -and it's also a bit faster - the same happened to it that will happen to -cli()/sti() using drivers once they convert to spinlocks :-) - diff --git a/Documentation/connector/Makefile b/Documentation/connector/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..8df1a7285a06bab82de03628a686a55339675334 --- /dev/null +++ b/Documentation/connector/Makefile @@ -0,0 +1,11 @@ +ifneq ($(CONFIG_CONNECTOR),) +obj-m += cn_test.o +endif + +# List of programs to build +hostprogs-y := ucon + +# Tell kbuild to always build the programs +always := $(hostprogs-y) + +HOSTCFLAGS_ucon.o += -I$(objtree)/usr/include diff --git a/Documentation/controllers/memory.txt b/Documentation/controllers/memory.txt index 866b9cd9a9590d6b6b8c3d577038e8d51234082b..9b53d5827361fd647f3388212e648f502defc698 100644 --- a/Documentation/controllers/memory.txt +++ b/Documentation/controllers/memory.txt @@ -242,8 +242,7 @@ rmdir() if there are no tasks. 1. Add support for accounting huge pages (as a separate controller) 2. Make per-cgroup scanner reclaim not-shared pages first 3. Teach controller to account for shared-pages -4. Start reclamation when the limit is lowered -5. Start reclamation in the background when the limit is +4. Start reclamation in the background when the limit is not yet hit but the usage is getting closer Summary diff --git a/Documentation/cpu-freq/governors.txt b/Documentation/cpu-freq/governors.txt index dcec0564d04075a9751e462968f956385405f283..5b0cfa67aff9c89ebc6d0f9dd4d467e8be8ae71f 100644 --- a/Documentation/cpu-freq/governors.txt +++ b/Documentation/cpu-freq/governors.txt @@ -122,7 +122,7 @@ around '10000' or more. show_sampling_rate_(min|max): the minimum and maximum sampling rates available that you may set 'sampling_rate' to. -up_threshold: defines what the average CPU usaged between the samplings +up_threshold: defines what the average CPU usage between the samplings of 'sampling_rate' needs to be for the kernel to make a decision on whether it should increase the frequency. For example when it is set to its default value of '80' it means that between the checking diff --git a/Documentation/cpu-hotplug.txt b/Documentation/cpu-hotplug.txt index ba0aacde94fba2472d33ba9da5764a2b8cc5f63e..94bbc27ddd4fbf50ff361177450c5f524210f1cb 100644 --- a/Documentation/cpu-hotplug.txt +++ b/Documentation/cpu-hotplug.txt @@ -59,15 +59,10 @@ apicid values in those tables for disabled apics. In the event BIOS doesn't mark such hot-pluggable cpus as disabled entries, one could use this parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map. -s390 uses the number of cpus it detects at IPL time to also the number of bits -in cpu_possible_map. If it is desired to add additional cpus at a later time -the number should be specified using this option or the possible_cpus option. - possible_cpus=n [s390 only] use this to set hotpluggable cpus. This option sets possible_cpus bits in cpu_possible_map. Thus keeping the numbers of bits set constant even if the machine gets rebooted. - This option overrides additional_cpus. CPU maps and such ----------------- diff --git a/Documentation/cpusets.txt b/Documentation/cpusets.txt index 1f5a924d1e56430bc3c8a0a6bb74e7524fab1670..47e568a9370afa28f703acf9ce55f88a8ca52519 100644 --- a/Documentation/cpusets.txt +++ b/Documentation/cpusets.txt @@ -635,14 +635,16 @@ prior 'mems' setting, will not be moved. There is an exception to the above. If hotplug functionality is used to remove all the CPUs that are currently assigned to a cpuset, -then the kernel will automatically update the cpus_allowed of all -tasks attached to CPUs in that cpuset to allow all CPUs. When memory -hotplug functionality for removing Memory Nodes is available, a -similar exception is expected to apply there as well. In general, -the kernel prefers to violate cpuset placement, over starving a task -that has had all its allowed CPUs or Memory Nodes taken offline. User -code should reconfigure cpusets to only refer to online CPUs and Memory -Nodes when using hotplug to add or remove such resources. +then all the tasks in that cpuset will be moved to the nearest ancestor +with non-empty cpus. But the moving of some (or all) tasks might fail if +cpuset is bound with another cgroup subsystem which has some restrictions +on task attaching. In this failing case, those tasks will stay +in the original cpuset, and the kernel will automatically update +their cpus_allowed to allow all online CPUs. When memory hotplug +functionality for removing Memory Nodes is available, a similar exception +is expected to apply there as well. In general, the kernel prefers to +violate cpuset placement, over starving a task that has had all +its allowed CPUs or Memory Nodes taken offline. There is a second exception to the above. GFP_ATOMIC requests are kernel internal allocations that must be satisfied, immediately. diff --git a/Documentation/devices.txt b/Documentation/devices.txt index e6244cde26e9406527dfcaa9aae9edf9e17c6161..05c80645e4ee172fafa118eea8f8b56aec242209 100644 --- a/Documentation/devices.txt +++ b/Documentation/devices.txt @@ -2560,9 +2560,6 @@ Your cooperation is appreciated. 96 = /dev/usb/hiddev0 1st USB HID device ... 111 = /dev/usb/hiddev15 16th USB HID device - 112 = /dev/usb/auer0 1st auerswald ISDN device - ... - 127 = /dev/usb/auer15 16th auerswald ISDN device 128 = /dev/usb/brlvgr0 First Braille Voyager device ... 131 = /dev/usb/brlvgr3 Fourth Braille Voyager device diff --git a/Documentation/dontdiff b/Documentation/dontdiff index 881e6dd03aea411bb9a1b0b11aa3b4fb3a90761e..27809357da58755c4484d711a6bc90534ec07a29 100644 --- a/Documentation/dontdiff +++ b/Documentation/dontdiff @@ -5,6 +5,8 @@ *.css *.dvi *.eps +*.fw.gen.S +*.fw *.gif *.grep *.grp diff --git a/Documentation/edac.txt b/Documentation/edac.txt index a5c36842ecef4ec103ff7f44b5499ed9963db0c2..8eda3fb664166726163bf59565c9d52c76af6c79 100644 --- a/Documentation/edac.txt +++ b/Documentation/edac.txt @@ -222,74 +222,9 @@ both csrow2 and csrow3 are populated, this indicates a dual ranked set of DIMMs for channels 0 and 1. -Within each of the 'mc','mcX' and 'csrowX' directories are several +Within each of the 'mcX' and 'csrowX' directories are several EDAC control and attribute files. - -============================================================================ -DIRECTORY 'mc' - -In directory 'mc' are EDAC system overall control and attribute files: - - -Panic on UE control file: - - 'edac_mc_panic_on_ue' - - An uncorrectable error will cause a machine panic. This is usually - desirable. It is a bad idea to continue when an uncorrectable error - occurs - it is indeterminate what was uncorrected and the operating - system context might be so mangled that continuing will lead to further - corruption. If the kernel has MCE configured, then EDAC will never - notice the UE. - - LOAD TIME: module/kernel parameter: panic_on_ue=[0|1] - - RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_panic_on_ue - - -Log UE control file: - - 'edac_mc_log_ue' - - Generate kernel messages describing uncorrectable errors. These errors - are reported through the system message log system. UE statistics - will be accumulated even when UE logging is disabled. - - LOAD TIME: module/kernel parameter: log_ue=[0|1] - - RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ue - - -Log CE control file: - - 'edac_mc_log_ce' - - Generate kernel messages describing correctable errors. These - errors are reported through the system message log system. - CE statistics will be accumulated even when CE logging is disabled. - - LOAD TIME: module/kernel parameter: log_ce=[0|1] - - RUN TIME: echo "1" >/sys/devices/system/edac/mc/edac_mc_log_ce - - -Polling period control file: - - 'edac_mc_poll_msec' - - The time period, in milliseconds, for polling for error information. - Too small a value wastes resources. Too large a value might delay - necessary handling of errors and might loose valuable information for - locating the error. 1000 milliseconds (once each second) is the current - default. Systems which require all the bandwidth they can get, may - increase this. - - LOAD TIME: module/kernel parameter: poll_msec=[0|1] - - RUN TIME: echo "1000" >/sys/devices/system/edac/mc/edac_mc_poll_msec - - ============================================================================ 'mcX' DIRECTORIES @@ -392,7 +327,7 @@ Sdram memory scrubbing rate: 'sdram_scrub_rate' Read/Write attribute file that controls memory scrubbing. The scrubbing - rate is set by writing a minimum bandwith in bytes/sec to the attribute + rate is set by writing a minimum bandwidth in bytes/sec to the attribute file. The rate will be translated to an internal value that gives at least the specified rate. @@ -537,7 +472,6 @@ Channel 1 DIMM Label control file: motherboard specific and determination of this information must occur in userland at this time. - ============================================================================ SYSTEM LOGGING @@ -570,7 +504,6 @@ error type, a notice of "no info" and then an optional, driver-specific error message. - ============================================================================ PCI Bus Parity Detection @@ -604,6 +537,74 @@ Enable/Disable PCI Parity checking control file: echo "0" >/sys/devices/system/edac/pci/check_pci_parity +Parity Count: + + 'pci_parity_count' + + This attribute file will display the number of parity errors that + have been detected. + + +============================================================================ +MODULE PARAMETERS + +Panic on UE control file: + + 'edac_mc_panic_on_ue' + + An uncorrectable error will cause a machine panic. This is usually + desirable. It is a bad idea to continue when an uncorrectable error + occurs - it is indeterminate what was uncorrected and the operating + system context might be so mangled that continuing will lead to further + corruption. If the kernel has MCE configured, then EDAC will never + notice the UE. + + LOAD TIME: module/kernel parameter: edac_mc_panic_on_ue=[0|1] + + RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue + + +Log UE control file: + + 'edac_mc_log_ue' + + Generate kernel messages describing uncorrectable errors. These errors + are reported through the system message log system. UE statistics + will be accumulated even when UE logging is disabled. + + LOAD TIME: module/kernel parameter: edac_mc_log_ue=[0|1] + + RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue + + +Log CE control file: + + 'edac_mc_log_ce' + + Generate kernel messages describing correctable errors. These + errors are reported through the system message log system. + CE statistics will be accumulated even when CE logging is disabled. + + LOAD TIME: module/kernel parameter: edac_mc_log_ce=[0|1] + + RUN TIME: echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce + + +Polling period control file: + + 'edac_mc_poll_msec' + + The time period, in milliseconds, for polling for error information. + Too small a value wastes resources. Too large a value might delay + necessary handling of errors and might loose valuable information for + locating the error. 1000 milliseconds (once each second) is the current + default. Systems which require all the bandwidth they can get, may + increase this. + + LOAD TIME: module/kernel parameter: edac_mc_poll_msec=[0|1] + + RUN TIME: echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec + Panic on PCI PARITY Error: @@ -614,21 +615,13 @@ Panic on PCI PARITY Error: error has been detected. - module/kernel parameter: panic_on_pci_parity=[0|1] + module/kernel parameter: edac_panic_on_pci_pe=[0|1] Enable: - echo "1" >/sys/devices/system/edac/pci/panic_on_pci_parity + echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe Disable: - echo "0" >/sys/devices/system/edac/pci/panic_on_pci_parity - - -Parity Count: - - 'pci_parity_count' - - This attribute file will display the number of parity errors that - have been detected. + echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe diff --git a/Documentation/fb/sh7760fb.txt b/Documentation/fb/sh7760fb.txt new file mode 100644 index 0000000000000000000000000000000000000000..c87bfe5c630a16893aed884a86f6e39506d94182 --- /dev/null +++ b/Documentation/fb/sh7760fb.txt @@ -0,0 +1,131 @@ +SH7760/SH7763 integrated LCDC Framebuffer driver +================================================ + +0. Overwiew +----------- +The SH7760/SH7763 have an integrated LCD Display controller (LCDC) which +supports (in theory) resolutions ranging from 1x1 to 1024x1024, +with color depths ranging from 1 to 16 bits, on STN, DSTN and TFT Panels. + +Caveats: +* Framebuffer memory must be a large chunk allocated at the top + of Area3 (HW requirement). Because of this requirement you should NOT + make the driver a module since at runtime it may become impossible to + get a large enough contiguous chunk of memory. + +* The driver does not support changing resolution while loaded + (displays aren't hotpluggable anyway) + +* Heavy flickering may be observed + a) if you're using 15/16bit color modes at >= 640x480 px resolutions, + b) during PCMCIA (or any other slow bus) activity. + +* Rotation works only 90degress clockwise, and only if horizontal + resolution is <= 320 pixels. + +files: drivers/video/sh7760fb.c + include/asm-sh/sh7760fb.h + Documentation/fb/sh7760fb.txt + +1. Platform setup +----------------- +SH7760: + Video data is fetched via the DMABRG DMA engine, so you have to + configure the SH DMAC for DMABRG mode (write 0x94808080 to the + DMARSRA register somewhere at boot). + + PFC registers PCCR and PCDR must be set to peripheral mode. + (write zeros to both). + +The driver does NOT do the above for you since board setup is, well, job +of the board setup code. + +2. Panel definitions +-------------------- +The LCDC must explicitly be told about the type of LCD panel +attached. Data must be wrapped in a "struct sh7760fb_platdata" and +passed to the driver as platform_data. + +Suggest you take a closer look at the SH7760 Manual, Section 30. +(http://documentation.renesas.com/eng/products/mpumcu/e602291_sh7760.pdf) + +The following code illustrates what needs to be done to +get the framebuffer working on a 640x480 TFT: + +====================== cut here ====================================== + +#include +#include + +/* + * NEC NL6440bc26-01 640x480 TFT + * dotclock 25175 kHz + * Xres 640 Yres 480 + * Htotal 800 Vtotal 525 + * HsynStart 656 VsynStart 490 + * HsynLenn 30 VsynLenn 2 + * + * The linux framebuffer layer does not use the syncstart/synclen + * values but right/left/upper/lower margin values. The comments + * for the x_margin explain how to calculate those from given + * panel sync timings. + */ +static struct fb_videomode nl6448bc26 = { + .name = "NL6448BC26", + .refresh = 60, + .xres = 640, + .yres = 480, + .pixclock = 39683, /* in picoseconds! */ + .hsync_len = 30, + .vsync_len = 2, + .left_margin = 114, /* HTOT - (HSYNSLEN + HSYNSTART) */ + .right_margin = 16, /* HSYNSTART - XRES */ + .upper_margin = 33, /* VTOT - (VSYNLEN + VSYNSTART) */ + .lower_margin = 10, /* VSYNSTART - YRES */ + .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT, + .vmode = FB_VMODE_NONINTERLACED, + .flag = 0, +}; + +static struct sh7760fb_platdata sh7760fb_nl6448 = { + .def_mode = &nl6448bc26, + .ldmtr = LDMTR_TFT_COLOR_16, /* 16bit TFT panel */ + .lddfr = LDDFR_8BPP, /* we want 8bit output */ + .ldpmmr = 0x0070, + .ldpspr = 0x0500, + .ldaclnr = 0, + .ldickr = LDICKR_CLKSRC(LCDC_CLKSRC_EXTERNAL) | + LDICKR_CLKDIV(1), + .rotate = 0, + .novsync = 1, + .blank = NULL, +}; + +/* SH7760: + * 0xFE300800: 256 * 4byte xRGB palette ram + * 0xFE300C00: 42 bytes ctrl registers + */ +static struct resource sh7760_lcdc_res[] = { + [0] = { + .start = 0xFE300800, + .end = 0xFE300CFF, + .flags = IORESOURCE_MEM, + }, + [1] = { + .start = 65, + .end = 65, + .flags = IORESOURCE_IRQ, + }, +}; + +static struct platform_device sh7760_lcdc_dev = { + .dev = { + .platform_data = &sh7760fb_nl6448, + }, + .name = "sh7760-lcdc", + .id = -1, + .resource = sh7760_lcdc_res, + .num_resources = ARRAY_SIZE(sh7760_lcdc_res), +}; + +====================== cut here ====================================== diff --git a/Documentation/fb/tridentfb.txt b/Documentation/fb/tridentfb.txt index 8a6c8a43e6a37803e4fcbd640f1b4578f5a611c6..45d9de5b13a3cb9f8143484d49737ae87254fdf7 100644 --- a/Documentation/fb/tridentfb.txt +++ b/Documentation/fb/tridentfb.txt @@ -3,11 +3,25 @@ Tridentfb is a framebuffer driver for some Trident chip based cards. The following list of chips is thought to be supported although not all are tested: -those from the Image series with Cyber in their names - accelerated -those with Blade in their names (Blade3D,CyberBlade...) - accelerated -the newer CyberBladeXP family - nonaccelerated - -Only PCI/AGP based cards are supported, none of the older Tridents. +those from the TGUI series 9440/96XX and with Cyber in their names +those from the Image series and with Cyber in their names +those with Blade in their names (Blade3D,CyberBlade...) +the newer CyberBladeXP family + +All families are accelerated. Only PCI/AGP based cards are supported, +none of the older Tridents. +The driver supports 8, 16 and 32 bits per pixel depths. +The TGUI family requires a line length to be power of 2 if acceleration +is enabled. This means that range of possible resolutions and bpp is +limited comparing to the range if acceleration is disabled (see list +of parameters below). + +Known bugs: +1. The driver randomly locks up on 3DImage975 chip with acceleration + enabled. The same happens in X11 (Xorg). +2. The ramdac speeds require some more fine tuning. It is possible to + switch resolution which the chip does not support at some depths for + older chips. How to use it? ============== @@ -17,12 +31,11 @@ video=tridentfb The parameters for tridentfb are concatenated with a ':' as in this example. -video=tridentfb:800x600,bpp=16,noaccel +video=tridentfb:800x600-16@75,noaccel The second level parameters that tridentfb understands are: noaccel - turns off acceleration (when it doesn't work for your card) -accel - force text acceleration (for boards which by default are noacceled) fp - use flat panel related stuff crt - assume monitor is present instead of fp @@ -31,21 +44,24 @@ center - for flat panels and resolutions smaller than native size center the image, otherwise use stretch -memsize - integer value in Kb, use if your card's memory size is misdetected. +memsize - integer value in KB, use if your card's memory size is misdetected. look at the driver output to see what it says when initializing. -memdiff - integer value in Kb,should be nonzero if your card reports - more memory than it actually has.For instance mine is 192K less than + +memdiff - integer value in KB, should be nonzero if your card reports + more memory than it actually has. For instance mine is 192K less than detection says in all three BIOS selectable situations 2M, 4M, 8M. Only use if your video memory is taken from main memory hence of - configurable size.Otherwise use memsize. - If in some modes which barely fit the memory you see garbage at the bottom - this might help by not letting change to that mode anymore. + configurable size. Otherwise use memsize. + If in some modes which barely fit the memory you see garbage + at the bottom this might help by not letting change to that mode + anymore. nativex - the width in pixels of the flat panel.If you know it (usually 1024 800 or 1280) and it is not what the driver seems to detect use it. -bpp - bits per pixel (8,16 or 32) -mode - a mode name like 800x600 (as described in Documentation/fb/modedb.txt) +bpp - bits per pixel (8,16 or 32) +mode - a mode name like 800x600-8@75 as described in + Documentation/fb/modedb.txt Using insane values for the above parameters will probably result in driver misbehaviour so take care(for instance memsize=12345678 or memdiff=23784 or diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index 65a1482457a89ec9d6c5beec89464bc049f3f5e2..83c88cae1eda446a12562a34f2c10f1a3f8cf5c2 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -19,15 +19,6 @@ Who: Pavel Machek --------------------------- -What: old NCR53C9x driver -When: October 2007 -Why: Replaced by the much better esp_scsi driver. Actual low-level - driver can be ported over almost trivially. -Who: David Miller - Christoph Hellwig - ---------------------------- - What: Video4Linux API 1 ioctls and video_decoder.h from Video devices. When: December 2008 Files: include/linux/video_decoder.h include/linux/videodev.h @@ -47,6 +38,30 @@ Who: Mauro Carvalho Chehab --------------------------- +What: old tuner-3036 i2c driver +When: 2.6.28 +Why: This driver is for VERY old i2c-over-parallel port teletext receiver + boxes. Rather then spending effort on converting this driver to V4L2, + and since it is extremely unlikely that anyone still uses one of these + devices, it was decided to drop it. +Who: Hans Verkuil + Mauro Carvalho Chehab + + --------------------------- + +What: V4L2 dpc7146 driver +When: 2.6.28 +Why: Old driver for the dpc7146 demonstration board that is no longer + relevant. The last time this was tested on actual hardware was + probably around 2002. Since this is a driver for a demonstration + board the decision was made to remove it rather than spending a + lot of effort continually updating this driver to stay in sync + with the latest internal V4L2 or I2C API. +Who: Hans Verkuil + Mauro Carvalho Chehab + +--------------------------- + What: PCMCIA control ioctl (needed for pcmcia-cs [cardmgr, cardctl]) When: November 2005 Files: drivers/pcmcia/: pcmcia_ioctl.c @@ -138,24 +153,6 @@ Who: Kay Sievers --------------------------- -What: find_task_by_pid -When: 2.6.26 -Why: With pid namespaces, calling this funciton will return the - wrong task when called from inside a namespace. - - The best way to save a task pid and find a task by this - pid later, is to find this task's struct pid pointer (or get - it directly from the task) and call pid_task() later. - - If someone really needs to get a task by its pid_t, then - he most likely needs the find_task_by_vpid() to get the - task from the same namespace as the current task is in, but - this may be not so in general. - -Who: Pavel Emelyanov - ---------------------------- - What: ACPI procfs interface When: July 2008 Why: ACPI sysfs conversion should be finished by January 2008. @@ -199,19 +196,6 @@ Who: Tejun Heo --------------------------- -What: The arch/ppc and include/asm-ppc directories -When: Jun 2008 -Why: The arch/powerpc tree is the merged architecture for ppc32 and ppc64 - platforms. Currently there are efforts underway to port the remaining - arch/ppc platforms to the merged tree. New submissions to the arch/ppc - tree have been frozen with the 2.6.22 kernel release and that tree will - remain in bug-fix only mode until its scheduled removal. Platforms - that are not ported by June 2008 will be removed due to the lack of an - interested maintainer. -Who: linuxppc-dev@ozlabs.org - ---------------------------- - What: i386/x86_64 bzImage symlinks When: April 2010 @@ -300,11 +284,15 @@ Who: ocfs2-devel@oss.oracle.com --------------------------- -What: asm/semaphore.h -When: 2.6.26 -Why: Implementation became generic; users should now include - linux/semaphore.h instead. -Who: Matthew Wilcox +What: SCTP_GET_PEER_ADDRS_NUM_OLD, SCTP_GET_PEER_ADDRS_OLD, + SCTP_GET_LOCAL_ADDRS_NUM_OLD, SCTP_GET_LOCAL_ADDRS_OLD +When: June 2009 +Why: A newer version of the options have been introduced in 2005 that + removes the limitions of the old API. The sctp library has been + converted to use these new options at the same time. Any user + space app that directly uses the old options should convert to using + the new options. +Who: Vlad Yasevich --------------------------- @@ -314,3 +302,31 @@ Why: This option was introduced just to allow older lm-sensors userspace to keep working over the upgrade to 2.6.26. At the scheduled time of removal fixed lm-sensors (2.x or 3.x) should be readily available. Who: Rene Herman + +--------------------------- + +What: Code that is now under CONFIG_WIRELESS_EXT_SYSFS + (in net/core/net-sysfs.c) +When: After the only user (hal) has seen a release with the patches + for enough time, probably some time in 2010. +Why: Over 1K .text/.data size reduction, data is available in other + ways (ioctls) +Who: Johannes Berg + +--------------------------- + +What: CONFIG_NF_CT_ACCT +When: 2.6.29 +Why: Accounting can now be enabled/disabled without kernel recompilation. + Currently used only to set a default value for a feature that is also + controlled by a kernel/module/sysfs/sysctl parameter. +Who: Krzysztof Piotr Oledzki + +--------------------------- + +What: ide-scsi (BLK_DEV_IDESCSI) +When: 2.6.29 +Why: The 2.6 kernel supports direct writing to ide CD drives, which + eliminates the need for ide-scsi. The new method is more + efficient in every way. +Who: FUJITA Tomonori diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index 8b22d7d8b99166b6db2e037644e9c5d7ff03695e..8362860e21a7d6b4db3595e83905b32b25e55ecf 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -144,8 +144,8 @@ prototypes: void (*kill_sb) (struct super_block *); locking rules: may block BKL -get_sb yes yes -kill_sb yes yes +get_sb yes no +kill_sb yes no ->get_sb() returns error or 0 with locked superblock attached to the vfsmount (exclusive on ->s_umount). @@ -409,12 +409,12 @@ ioctl: yes (see below) unlocked_ioctl: no (see below) compat_ioctl: no mmap: no -open: maybe (see below) +open: no flush: no release: no fsync: no (see below) aio_fsync: no -fasync: yes (see below) +fasync: no lock: yes readv: no writev: no @@ -431,13 +431,6 @@ For many filesystems, it is probably safe to acquire the inode semaphore. Note some filesystems (i.e. remote ones) provide no protection for i_size so you will need to use the BKL. -->open() locking is in-transit: big lock partially moved into the methods. -The only exception is ->open() in the instances of file_operations that never -end up in ->i_fop/->proc_fops, i.e. ones that belong to character devices -(chrdev_open() takes lock before replacing ->f_op and calling the secondary -method. As soon as we fix the handling of module reference counters all -instances of ->open() will be called without the BKL. - Note: ext2_release() was *the* source of contention on fs-intensive loads and dropping BKL on ->release() helps to get rid of that (we still grab BKL for cases when we close a file that had been opened r/w, but that @@ -510,6 +503,7 @@ prototypes: void (*close)(struct vm_area_struct*); int (*fault)(struct vm_area_struct*, struct vm_fault *); int (*page_mkwrite)(struct vm_area_struct *, struct page *); + int (*access)(struct vm_area_struct *, unsigned long, void*, int, int); locking rules: BKL mmap_sem PageLocked(page) @@ -517,6 +511,7 @@ open: no yes close: no yes fault: no yes page_mkwrite: no yes no +access: no yes ->page_mkwrite() is called when a previously read-only page is about to become writeable. The file system is responsible for @@ -525,6 +520,11 @@ taking to lock out truncate, the page range should be verified to be within i_size. The page mapping should also be checked that it is not NULL. + ->access() is called when get_user_pages() fails in +acces_process_vm(), typically used to debug a process through +/proc/pid/mem or ptrace. This function is needed only for +VM_IO | VM_PFNMAP VMAs. + ================================================================================ Dubious stuff diff --git a/Documentation/filesystems/bfs.txt b/Documentation/filesystems/bfs.txt index ea825e178e797b3b8af53d8d6d5fa2c1f1974a0d..78043d5a8fc35f01c343ced6f956aadee03e1026 100644 --- a/Documentation/filesystems/bfs.txt +++ b/Documentation/filesystems/bfs.txt @@ -26,11 +26,11 @@ You can simplify mounting by just typing: this will allocate the first available loopback device (and load loop.o kernel module if necessary) automatically. If the loopback driver is not -loaded automatically, make sure that your kernel is compiled with kmod -support (CONFIG_KMOD) enabled. Beware that umount will not -deallocate /dev/loopN device if /etc/mtab file on your system is a -symbolic link to /proc/mounts. You will need to do it manually using -"-d" switch of losetup(8). Read losetup(8) manpage for more info. +loaded automatically, make sure that you have compiled the module and +that modprobe is functioning. Beware that umount will not deallocate +/dev/loopN device if /etc/mtab file on your system is a symbolic link to +/proc/mounts. You will need to do it manually using "-d" switch of +losetup(8). Read losetup(8) manpage for more info. To create the BFS image under UnixWare you need to find out first which slice contains it. The command prtvtoc(1M) is your friend: diff --git a/Documentation/filesystems/configfs/Makefile b/Documentation/filesystems/configfs/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..be7ec5e67dbcb17b0730da4ea47890eb7b6b583f --- /dev/null +++ b/Documentation/filesystems/configfs/Makefile @@ -0,0 +1,3 @@ +ifneq ($(CONFIG_CONFIGFS_FS),) +obj-m += configfs_example_explicit.o configfs_example_macros.o +endif diff --git a/Documentation/filesystems/configfs/configfs.txt b/Documentation/filesystems/configfs/configfs.txt index 15838d706ea24afaac3d1951d3452006b15d9742..fabcb0e00f25d4288c31382699c844d5f3820939 100644 --- a/Documentation/filesystems/configfs/configfs.txt +++ b/Documentation/filesystems/configfs/configfs.txt @@ -233,12 +233,10 @@ accomplished via the group operations specified on the group's config_item_type. struct configfs_group_operations { - int (*make_item)(struct config_group *group, - const char *name, - struct config_item **new_item); - int (*make_group)(struct config_group *group, - const char *name, - struct config_group **new_group); + struct config_item *(*make_item)(struct config_group *group, + const char *name); + struct config_group *(*make_group)(struct config_group *group, + const char *name); int (*commit_item)(struct config_item *item); void (*disconnect_notify)(struct config_group *group, struct config_item *item); @@ -313,9 +311,20 @@ the subsystem must be ready for it. [An Example] The best example of these basic concepts is the simple_children -subsystem/group and the simple_child item in configfs_example.c It -shows a trivial object displaying and storing an attribute, and a simple -group creating and destroying these children. +subsystem/group and the simple_child item in configfs_example_explicit.c +and configfs_example_macros.c. It shows a trivial object displaying and +storing an attribute, and a simple group creating and destroying these +children. + +The only difference between configfs_example_explicit.c and +configfs_example_macros.c is how the attributes of the childless item +are defined. The childless item has extended attributes, each with +their own show()/store() operation. This follows a convention commonly +used in sysfs. configfs_example_explicit.c creates these attributes +by explicitly defining the structures involved. Conversely +configfs_example_macros.c uses some convenience macros from configfs.h +to define the attributes. These macros are similar to their sysfs +counterparts. [Hierarchy Navigation and the Subsystem Mutex] diff --git a/Documentation/filesystems/configfs/configfs_example.c b/Documentation/filesystems/configfs/configfs_example.c deleted file mode 100644 index 0b422acd470c5826e269d6a98628b4cd0d81cf07..0000000000000000000000000000000000000000 --- a/Documentation/filesystems/configfs/configfs_example.c +++ /dev/null @@ -1,487 +0,0 @@ -/* - * vim: noexpandtab ts=8 sts=0 sw=8: - * - * configfs_example.c - This file is a demonstration module containing - * a number of configfs subsystems. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * General Public License for more details. - * - * You should have received a copy of the GNU General Public - * License along with this program; if not, write to the - * Free Software Foundation, Inc., 59 Temple Place - Suite 330, - * Boston, MA 021110-1307, USA. - * - * Based on sysfs: - * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel - * - * configfs Copyright (C) 2005 Oracle. All rights reserved. - */ - -#include -#include -#include - -#include - - - -/* - * 01-childless - * - * This first example is a childless subsystem. It cannot create - * any config_items. It just has attributes. - * - * Note that we are enclosing the configfs_subsystem inside a container. - * This is not necessary if a subsystem has no attributes directly - * on the subsystem. See the next example, 02-simple-children, for - * such a subsystem. - */ - -struct childless { - struct configfs_subsystem subsys; - int showme; - int storeme; -}; - -struct childless_attribute { - struct configfs_attribute attr; - ssize_t (*show)(struct childless *, char *); - ssize_t (*store)(struct childless *, const char *, size_t); -}; - -static inline struct childless *to_childless(struct config_item *item) -{ - return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL; -} - -static ssize_t childless_showme_read(struct childless *childless, - char *page) -{ - ssize_t pos; - - pos = sprintf(page, "%d\n", childless->showme); - childless->showme++; - - return pos; -} - -static ssize_t childless_storeme_read(struct childless *childless, - char *page) -{ - return sprintf(page, "%d\n", childless->storeme); -} - -static ssize_t childless_storeme_write(struct childless *childless, - const char *page, - size_t count) -{ - unsigned long tmp; - char *p = (char *) page; - - tmp = simple_strtoul(p, &p, 10); - if (!p || (*p && (*p != '\n'))) - return -EINVAL; - - if (tmp > INT_MAX) - return -ERANGE; - - childless->storeme = tmp; - - return count; -} - -static ssize_t childless_description_read(struct childless *childless, - char *page) -{ - return sprintf(page, -"[01-childless]\n" -"\n" -"The childless subsystem is the simplest possible subsystem in\n" -"configfs. It does not support the creation of child config_items.\n" -"It only has a few attributes. In fact, it isn't much different\n" -"than a directory in /proc.\n"); -} - -static struct childless_attribute childless_attr_showme = { - .attr = { .ca_owner = THIS_MODULE, .ca_name = "showme", .ca_mode = S_IRUGO }, - .show = childless_showme_read, -}; -static struct childless_attribute childless_attr_storeme = { - .attr = { .ca_owner = THIS_MODULE, .ca_name = "storeme", .ca_mode = S_IRUGO | S_IWUSR }, - .show = childless_storeme_read, - .store = childless_storeme_write, -}; -static struct childless_attribute childless_attr_description = { - .attr = { .ca_owner = THIS_MODULE, .ca_name = "description", .ca_mode = S_IRUGO }, - .show = childless_description_read, -}; - -static struct configfs_attribute *childless_attrs[] = { - &childless_attr_showme.attr, - &childless_attr_storeme.attr, - &childless_attr_description.attr, - NULL, -}; - -static ssize_t childless_attr_show(struct config_item *item, - struct configfs_attribute *attr, - char *page) -{ - struct childless *childless = to_childless(item); - struct childless_attribute *childless_attr = - container_of(attr, struct childless_attribute, attr); - ssize_t ret = 0; - - if (childless_attr->show) - ret = childless_attr->show(childless, page); - return ret; -} - -static ssize_t childless_attr_store(struct config_item *item, - struct configfs_attribute *attr, - const char *page, size_t count) -{ - struct childless *childless = to_childless(item); - struct childless_attribute *childless_attr = - container_of(attr, struct childless_attribute, attr); - ssize_t ret = -EINVAL; - - if (childless_attr->store) - ret = childless_attr->store(childless, page, count); - return ret; -} - -static struct configfs_item_operations childless_item_ops = { - .show_attribute = childless_attr_show, - .store_attribute = childless_attr_store, -}; - -static struct config_item_type childless_type = { - .ct_item_ops = &childless_item_ops, - .ct_attrs = childless_attrs, - .ct_owner = THIS_MODULE, -}; - -static struct childless childless_subsys = { - .subsys = { - .su_group = { - .cg_item = { - .ci_namebuf = "01-childless", - .ci_type = &childless_type, - }, - }, - }, -}; - - -/* ----------------------------------------------------------------- */ - -/* - * 02-simple-children - * - * This example merely has a simple one-attribute child. Note that - * there is no extra attribute structure, as the child's attribute is - * known from the get-go. Also, there is no container for the - * subsystem, as it has no attributes of its own. - */ - -struct simple_child { - struct config_item item; - int storeme; -}; - -static inline struct simple_child *to_simple_child(struct config_item *item) -{ - return item ? container_of(item, struct simple_child, item) : NULL; -} - -static struct configfs_attribute simple_child_attr_storeme = { - .ca_owner = THIS_MODULE, - .ca_name = "storeme", - .ca_mode = S_IRUGO | S_IWUSR, -}; - -static struct configfs_attribute *simple_child_attrs[] = { - &simple_child_attr_storeme, - NULL, -}; - -static ssize_t simple_child_attr_show(struct config_item *item, - struct configfs_attribute *attr, - char *page) -{ - ssize_t count; - struct simple_child *simple_child = to_simple_child(item); - - count = sprintf(page, "%d\n", simple_child->storeme); - - return count; -} - -static ssize_t simple_child_attr_store(struct config_item *item, - struct configfs_attribute *attr, - const char *page, size_t count) -{ - struct simple_child *simple_child = to_simple_child(item); - unsigned long tmp; - char *p = (char *) page; - - tmp = simple_strtoul(p, &p, 10); - if (!p || (*p && (*p != '\n'))) - return -EINVAL; - - if (tmp > INT_MAX) - return -ERANGE; - - simple_child->storeme = tmp; - - return count; -} - -static void simple_child_release(struct config_item *item) -{ - kfree(to_simple_child(item)); -} - -static struct configfs_item_operations simple_child_item_ops = { - .release = simple_child_release, - .show_attribute = simple_child_attr_show, - .store_attribute = simple_child_attr_store, -}; - -static struct config_item_type simple_child_type = { - .ct_item_ops = &simple_child_item_ops, - .ct_attrs = simple_child_attrs, - .ct_owner = THIS_MODULE, -}; - - -struct simple_children { - struct config_group group; -}; - -static inline struct simple_children *to_simple_children(struct config_item *item) -{ - return item ? container_of(to_config_group(item), struct simple_children, group) : NULL; -} - -static int simple_children_make_item(struct config_group *group, const char *name, struct config_item **new_item) -{ - struct simple_child *simple_child; - - simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL); - if (!simple_child) - return -ENOMEM; - - - config_item_init_type_name(&simple_child->item, name, - &simple_child_type); - - simple_child->storeme = 0; - - *new_item = &simple_child->item; - return 0; -} - -static struct configfs_attribute simple_children_attr_description = { - .ca_owner = THIS_MODULE, - .ca_name = "description", - .ca_mode = S_IRUGO, -}; - -static struct configfs_attribute *simple_children_attrs[] = { - &simple_children_attr_description, - NULL, -}; - -static ssize_t simple_children_attr_show(struct config_item *item, - struct configfs_attribute *attr, - char *page) -{ - return sprintf(page, -"[02-simple-children]\n" -"\n" -"This subsystem allows the creation of child config_items. These\n" -"items have only one attribute that is readable and writeable.\n"); -} - -static void simple_children_release(struct config_item *item) -{ - kfree(to_simple_children(item)); -} - -static struct configfs_item_operations simple_children_item_ops = { - .release = simple_children_release, - .show_attribute = simple_children_attr_show, -}; - -/* - * Note that, since no extra work is required on ->drop_item(), - * no ->drop_item() is provided. - */ -static struct configfs_group_operations simple_children_group_ops = { - .make_item = simple_children_make_item, -}; - -static struct config_item_type simple_children_type = { - .ct_item_ops = &simple_children_item_ops, - .ct_group_ops = &simple_children_group_ops, - .ct_attrs = simple_children_attrs, - .ct_owner = THIS_MODULE, -}; - -static struct configfs_subsystem simple_children_subsys = { - .su_group = { - .cg_item = { - .ci_namebuf = "02-simple-children", - .ci_type = &simple_children_type, - }, - }, -}; - - -/* ----------------------------------------------------------------- */ - -/* - * 03-group-children - * - * This example reuses the simple_children group from above. However, - * the simple_children group is not the subsystem itself, it is a - * child of the subsystem. Creation of a group in the subsystem creates - * a new simple_children group. That group can then have simple_child - * children of its own. - */ - -static int group_children_make_group(struct config_group *group, const char *name, struct config_group **new_group) -{ - struct simple_children *simple_children; - - simple_children = kzalloc(sizeof(struct simple_children), - GFP_KERNEL); - if (!simple_children) - return -ENOMEM; - - - config_group_init_type_name(&simple_children->group, name, - &simple_children_type); - - *new_group = &simple_children->group; - return 0; -} - -static struct configfs_attribute group_children_attr_description = { - .ca_owner = THIS_MODULE, - .ca_name = "description", - .ca_mode = S_IRUGO, -}; - -static struct configfs_attribute *group_children_attrs[] = { - &group_children_attr_description, - NULL, -}; - -static ssize_t group_children_attr_show(struct config_item *item, - struct configfs_attribute *attr, - char *page) -{ - return sprintf(page, -"[03-group-children]\n" -"\n" -"This subsystem allows the creation of child config_groups. These\n" -"groups are like the subsystem simple-children.\n"); -} - -static struct configfs_item_operations group_children_item_ops = { - .show_attribute = group_children_attr_show, -}; - -/* - * Note that, since no extra work is required on ->drop_item(), - * no ->drop_item() is provided. - */ -static struct configfs_group_operations group_children_group_ops = { - .make_group = group_children_make_group, -}; - -static struct config_item_type group_children_type = { - .ct_item_ops = &group_children_item_ops, - .ct_group_ops = &group_children_group_ops, - .ct_attrs = group_children_attrs, - .ct_owner = THIS_MODULE, -}; - -static struct configfs_subsystem group_children_subsys = { - .su_group = { - .cg_item = { - .ci_namebuf = "03-group-children", - .ci_type = &group_children_type, - }, - }, -}; - -/* ----------------------------------------------------------------- */ - -/* - * We're now done with our subsystem definitions. - * For convenience in this module, here's a list of them all. It - * allows the init function to easily register them. Most modules - * will only have one subsystem, and will only call register_subsystem - * on it directly. - */ -static struct configfs_subsystem *example_subsys[] = { - &childless_subsys.subsys, - &simple_children_subsys, - &group_children_subsys, - NULL, -}; - -static int __init configfs_example_init(void) -{ - int ret; - int i; - struct configfs_subsystem *subsys; - - for (i = 0; example_subsys[i]; i++) { - subsys = example_subsys[i]; - - config_group_init(&subsys->su_group); - mutex_init(&subsys->su_mutex); - ret = configfs_register_subsystem(subsys); - if (ret) { - printk(KERN_ERR "Error %d while registering subsystem %s\n", - ret, - subsys->su_group.cg_item.ci_namebuf); - goto out_unregister; - } - } - - return 0; - -out_unregister: - for (; i >= 0; i--) { - configfs_unregister_subsystem(example_subsys[i]); - } - - return ret; -} - -static void __exit configfs_example_exit(void) -{ - int i; - - for (i = 0; example_subsys[i]; i++) { - configfs_unregister_subsystem(example_subsys[i]); - } -} - -module_init(configfs_example_init); -module_exit(configfs_example_exit); -MODULE_LICENSE("GPL"); diff --git a/Documentation/filesystems/configfs/configfs_example_explicit.c b/Documentation/filesystems/configfs/configfs_example_explicit.c new file mode 100644 index 0000000000000000000000000000000000000000..d428cc9f07f399141e643fc6d8df8ce88433365b --- /dev/null +++ b/Documentation/filesystems/configfs/configfs_example_explicit.c @@ -0,0 +1,485 @@ +/* + * vim: noexpandtab ts=8 sts=0 sw=8: + * + * configfs_example_explicit.c - This file is a demonstration module + * containing a number of configfs subsystems. It explicitly defines + * each structure without using the helper macros defined in + * configfs.h. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 021110-1307, USA. + * + * Based on sysfs: + * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel + * + * configfs Copyright (C) 2005 Oracle. All rights reserved. + */ + +#include +#include +#include + +#include + + + +/* + * 01-childless + * + * This first example is a childless subsystem. It cannot create + * any config_items. It just has attributes. + * + * Note that we are enclosing the configfs_subsystem inside a container. + * This is not necessary if a subsystem has no attributes directly + * on the subsystem. See the next example, 02-simple-children, for + * such a subsystem. + */ + +struct childless { + struct configfs_subsystem subsys; + int showme; + int storeme; +}; + +struct childless_attribute { + struct configfs_attribute attr; + ssize_t (*show)(struct childless *, char *); + ssize_t (*store)(struct childless *, const char *, size_t); +}; + +static inline struct childless *to_childless(struct config_item *item) +{ + return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL; +} + +static ssize_t childless_showme_read(struct childless *childless, + char *page) +{ + ssize_t pos; + + pos = sprintf(page, "%d\n", childless->showme); + childless->showme++; + + return pos; +} + +static ssize_t childless_storeme_read(struct childless *childless, + char *page) +{ + return sprintf(page, "%d\n", childless->storeme); +} + +static ssize_t childless_storeme_write(struct childless *childless, + const char *page, + size_t count) +{ + unsigned long tmp; + char *p = (char *) page; + + tmp = simple_strtoul(p, &p, 10); + if (!p || (*p && (*p != '\n'))) + return -EINVAL; + + if (tmp > INT_MAX) + return -ERANGE; + + childless->storeme = tmp; + + return count; +} + +static ssize_t childless_description_read(struct childless *childless, + char *page) +{ + return sprintf(page, +"[01-childless]\n" +"\n" +"The childless subsystem is the simplest possible subsystem in\n" +"configfs. It does not support the creation of child config_items.\n" +"It only has a few attributes. In fact, it isn't much different\n" +"than a directory in /proc.\n"); +} + +static struct childless_attribute childless_attr_showme = { + .attr = { .ca_owner = THIS_MODULE, .ca_name = "showme", .ca_mode = S_IRUGO }, + .show = childless_showme_read, +}; +static struct childless_attribute childless_attr_storeme = { + .attr = { .ca_owner = THIS_MODULE, .ca_name = "storeme", .ca_mode = S_IRUGO | S_IWUSR }, + .show = childless_storeme_read, + .store = childless_storeme_write, +}; +static struct childless_attribute childless_attr_description = { + .attr = { .ca_owner = THIS_MODULE, .ca_name = "description", .ca_mode = S_IRUGO }, + .show = childless_description_read, +}; + +static struct configfs_attribute *childless_attrs[] = { + &childless_attr_showme.attr, + &childless_attr_storeme.attr, + &childless_attr_description.attr, + NULL, +}; + +static ssize_t childless_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + struct childless *childless = to_childless(item); + struct childless_attribute *childless_attr = + container_of(attr, struct childless_attribute, attr); + ssize_t ret = 0; + + if (childless_attr->show) + ret = childless_attr->show(childless, page); + return ret; +} + +static ssize_t childless_attr_store(struct config_item *item, + struct configfs_attribute *attr, + const char *page, size_t count) +{ + struct childless *childless = to_childless(item); + struct childless_attribute *childless_attr = + container_of(attr, struct childless_attribute, attr); + ssize_t ret = -EINVAL; + + if (childless_attr->store) + ret = childless_attr->store(childless, page, count); + return ret; +} + +static struct configfs_item_operations childless_item_ops = { + .show_attribute = childless_attr_show, + .store_attribute = childless_attr_store, +}; + +static struct config_item_type childless_type = { + .ct_item_ops = &childless_item_ops, + .ct_attrs = childless_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct childless childless_subsys = { + .subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "01-childless", + .ci_type = &childless_type, + }, + }, + }, +}; + + +/* ----------------------------------------------------------------- */ + +/* + * 02-simple-children + * + * This example merely has a simple one-attribute child. Note that + * there is no extra attribute structure, as the child's attribute is + * known from the get-go. Also, there is no container for the + * subsystem, as it has no attributes of its own. + */ + +struct simple_child { + struct config_item item; + int storeme; +}; + +static inline struct simple_child *to_simple_child(struct config_item *item) +{ + return item ? container_of(item, struct simple_child, item) : NULL; +} + +static struct configfs_attribute simple_child_attr_storeme = { + .ca_owner = THIS_MODULE, + .ca_name = "storeme", + .ca_mode = S_IRUGO | S_IWUSR, +}; + +static struct configfs_attribute *simple_child_attrs[] = { + &simple_child_attr_storeme, + NULL, +}; + +static ssize_t simple_child_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + ssize_t count; + struct simple_child *simple_child = to_simple_child(item); + + count = sprintf(page, "%d\n", simple_child->storeme); + + return count; +} + +static ssize_t simple_child_attr_store(struct config_item *item, + struct configfs_attribute *attr, + const char *page, size_t count) +{ + struct simple_child *simple_child = to_simple_child(item); + unsigned long tmp; + char *p = (char *) page; + + tmp = simple_strtoul(p, &p, 10); + if (!p || (*p && (*p != '\n'))) + return -EINVAL; + + if (tmp > INT_MAX) + return -ERANGE; + + simple_child->storeme = tmp; + + return count; +} + +static void simple_child_release(struct config_item *item) +{ + kfree(to_simple_child(item)); +} + +static struct configfs_item_operations simple_child_item_ops = { + .release = simple_child_release, + .show_attribute = simple_child_attr_show, + .store_attribute = simple_child_attr_store, +}; + +static struct config_item_type simple_child_type = { + .ct_item_ops = &simple_child_item_ops, + .ct_attrs = simple_child_attrs, + .ct_owner = THIS_MODULE, +}; + + +struct simple_children { + struct config_group group; +}; + +static inline struct simple_children *to_simple_children(struct config_item *item) +{ + return item ? container_of(to_config_group(item), struct simple_children, group) : NULL; +} + +static struct config_item *simple_children_make_item(struct config_group *group, const char *name) +{ + struct simple_child *simple_child; + + simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL); + if (!simple_child) + return ERR_PTR(-ENOMEM); + + config_item_init_type_name(&simple_child->item, name, + &simple_child_type); + + simple_child->storeme = 0; + + return &simple_child->item; +} + +static struct configfs_attribute simple_children_attr_description = { + .ca_owner = THIS_MODULE, + .ca_name = "description", + .ca_mode = S_IRUGO, +}; + +static struct configfs_attribute *simple_children_attrs[] = { + &simple_children_attr_description, + NULL, +}; + +static ssize_t simple_children_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + return sprintf(page, +"[02-simple-children]\n" +"\n" +"This subsystem allows the creation of child config_items. These\n" +"items have only one attribute that is readable and writeable.\n"); +} + +static void simple_children_release(struct config_item *item) +{ + kfree(to_simple_children(item)); +} + +static struct configfs_item_operations simple_children_item_ops = { + .release = simple_children_release, + .show_attribute = simple_children_attr_show, +}; + +/* + * Note that, since no extra work is required on ->drop_item(), + * no ->drop_item() is provided. + */ +static struct configfs_group_operations simple_children_group_ops = { + .make_item = simple_children_make_item, +}; + +static struct config_item_type simple_children_type = { + .ct_item_ops = &simple_children_item_ops, + .ct_group_ops = &simple_children_group_ops, + .ct_attrs = simple_children_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct configfs_subsystem simple_children_subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "02-simple-children", + .ci_type = &simple_children_type, + }, + }, +}; + + +/* ----------------------------------------------------------------- */ + +/* + * 03-group-children + * + * This example reuses the simple_children group from above. However, + * the simple_children group is not the subsystem itself, it is a + * child of the subsystem. Creation of a group in the subsystem creates + * a new simple_children group. That group can then have simple_child + * children of its own. + */ + +static struct config_group *group_children_make_group(struct config_group *group, const char *name) +{ + struct simple_children *simple_children; + + simple_children = kzalloc(sizeof(struct simple_children), + GFP_KERNEL); + if (!simple_children) + return ERR_PTR(-ENOMEM); + + config_group_init_type_name(&simple_children->group, name, + &simple_children_type); + + return &simple_children->group; +} + +static struct configfs_attribute group_children_attr_description = { + .ca_owner = THIS_MODULE, + .ca_name = "description", + .ca_mode = S_IRUGO, +}; + +static struct configfs_attribute *group_children_attrs[] = { + &group_children_attr_description, + NULL, +}; + +static ssize_t group_children_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + return sprintf(page, +"[03-group-children]\n" +"\n" +"This subsystem allows the creation of child config_groups. These\n" +"groups are like the subsystem simple-children.\n"); +} + +static struct configfs_item_operations group_children_item_ops = { + .show_attribute = group_children_attr_show, +}; + +/* + * Note that, since no extra work is required on ->drop_item(), + * no ->drop_item() is provided. + */ +static struct configfs_group_operations group_children_group_ops = { + .make_group = group_children_make_group, +}; + +static struct config_item_type group_children_type = { + .ct_item_ops = &group_children_item_ops, + .ct_group_ops = &group_children_group_ops, + .ct_attrs = group_children_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct configfs_subsystem group_children_subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "03-group-children", + .ci_type = &group_children_type, + }, + }, +}; + +/* ----------------------------------------------------------------- */ + +/* + * We're now done with our subsystem definitions. + * For convenience in this module, here's a list of them all. It + * allows the init function to easily register them. Most modules + * will only have one subsystem, and will only call register_subsystem + * on it directly. + */ +static struct configfs_subsystem *example_subsys[] = { + &childless_subsys.subsys, + &simple_children_subsys, + &group_children_subsys, + NULL, +}; + +static int __init configfs_example_init(void) +{ + int ret; + int i; + struct configfs_subsystem *subsys; + + for (i = 0; example_subsys[i]; i++) { + subsys = example_subsys[i]; + + config_group_init(&subsys->su_group); + mutex_init(&subsys->su_mutex); + ret = configfs_register_subsystem(subsys); + if (ret) { + printk(KERN_ERR "Error %d while registering subsystem %s\n", + ret, + subsys->su_group.cg_item.ci_namebuf); + goto out_unregister; + } + } + + return 0; + +out_unregister: + for (; i >= 0; i--) { + configfs_unregister_subsystem(example_subsys[i]); + } + + return ret; +} + +static void __exit configfs_example_exit(void) +{ + int i; + + for (i = 0; example_subsys[i]; i++) { + configfs_unregister_subsystem(example_subsys[i]); + } +} + +module_init(configfs_example_init); +module_exit(configfs_example_exit); +MODULE_LICENSE("GPL"); diff --git a/Documentation/filesystems/configfs/configfs_example_macros.c b/Documentation/filesystems/configfs/configfs_example_macros.c new file mode 100644 index 0000000000000000000000000000000000000000..d8e30a0378aa2bf3540a79da4ff030d402943497 --- /dev/null +++ b/Documentation/filesystems/configfs/configfs_example_macros.c @@ -0,0 +1,448 @@ +/* + * vim: noexpandtab ts=8 sts=0 sw=8: + * + * configfs_example_macros.c - This file is a demonstration module + * containing a number of configfs subsystems. It uses the helper + * macros defined by configfs.h + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 021110-1307, USA. + * + * Based on sysfs: + * sysfs is Copyright (C) 2001, 2002, 2003 Patrick Mochel + * + * configfs Copyright (C) 2005 Oracle. All rights reserved. + */ + +#include +#include +#include + +#include + + + +/* + * 01-childless + * + * This first example is a childless subsystem. It cannot create + * any config_items. It just has attributes. + * + * Note that we are enclosing the configfs_subsystem inside a container. + * This is not necessary if a subsystem has no attributes directly + * on the subsystem. See the next example, 02-simple-children, for + * such a subsystem. + */ + +struct childless { + struct configfs_subsystem subsys; + int showme; + int storeme; +}; + +static inline struct childless *to_childless(struct config_item *item) +{ + return item ? container_of(to_configfs_subsystem(to_config_group(item)), struct childless, subsys) : NULL; +} + +CONFIGFS_ATTR_STRUCT(childless); +#define CHILDLESS_ATTR(_name, _mode, _show, _store) \ +struct childless_attribute childless_attr_##_name = __CONFIGFS_ATTR(_name, _mode, _show, _store) +#define CHILDLESS_ATTR_RO(_name, _show) \ +struct childless_attribute childless_attr_##_name = __CONFIGFS_ATTR_RO(_name, _show); + +static ssize_t childless_showme_read(struct childless *childless, + char *page) +{ + ssize_t pos; + + pos = sprintf(page, "%d\n", childless->showme); + childless->showme++; + + return pos; +} + +static ssize_t childless_storeme_read(struct childless *childless, + char *page) +{ + return sprintf(page, "%d\n", childless->storeme); +} + +static ssize_t childless_storeme_write(struct childless *childless, + const char *page, + size_t count) +{ + unsigned long tmp; + char *p = (char *) page; + + tmp = simple_strtoul(p, &p, 10); + if (!p || (*p && (*p != '\n'))) + return -EINVAL; + + if (tmp > INT_MAX) + return -ERANGE; + + childless->storeme = tmp; + + return count; +} + +static ssize_t childless_description_read(struct childless *childless, + char *page) +{ + return sprintf(page, +"[01-childless]\n" +"\n" +"The childless subsystem is the simplest possible subsystem in\n" +"configfs. It does not support the creation of child config_items.\n" +"It only has a few attributes. In fact, it isn't much different\n" +"than a directory in /proc.\n"); +} + +CHILDLESS_ATTR_RO(showme, childless_showme_read); +CHILDLESS_ATTR(storeme, S_IRUGO | S_IWUSR, childless_storeme_read, + childless_storeme_write); +CHILDLESS_ATTR_RO(description, childless_description_read); + +static struct configfs_attribute *childless_attrs[] = { + &childless_attr_showme.attr, + &childless_attr_storeme.attr, + &childless_attr_description.attr, + NULL, +}; + +CONFIGFS_ATTR_OPS(childless); +static struct configfs_item_operations childless_item_ops = { + .show_attribute = childless_attr_show, + .store_attribute = childless_attr_store, +}; + +static struct config_item_type childless_type = { + .ct_item_ops = &childless_item_ops, + .ct_attrs = childless_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct childless childless_subsys = { + .subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "01-childless", + .ci_type = &childless_type, + }, + }, + }, +}; + + +/* ----------------------------------------------------------------- */ + +/* + * 02-simple-children + * + * This example merely has a simple one-attribute child. Note that + * there is no extra attribute structure, as the child's attribute is + * known from the get-go. Also, there is no container for the + * subsystem, as it has no attributes of its own. + */ + +struct simple_child { + struct config_item item; + int storeme; +}; + +static inline struct simple_child *to_simple_child(struct config_item *item) +{ + return item ? container_of(item, struct simple_child, item) : NULL; +} + +static struct configfs_attribute simple_child_attr_storeme = { + .ca_owner = THIS_MODULE, + .ca_name = "storeme", + .ca_mode = S_IRUGO | S_IWUSR, +}; + +static struct configfs_attribute *simple_child_attrs[] = { + &simple_child_attr_storeme, + NULL, +}; + +static ssize_t simple_child_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + ssize_t count; + struct simple_child *simple_child = to_simple_child(item); + + count = sprintf(page, "%d\n", simple_child->storeme); + + return count; +} + +static ssize_t simple_child_attr_store(struct config_item *item, + struct configfs_attribute *attr, + const char *page, size_t count) +{ + struct simple_child *simple_child = to_simple_child(item); + unsigned long tmp; + char *p = (char *) page; + + tmp = simple_strtoul(p, &p, 10); + if (!p || (*p && (*p != '\n'))) + return -EINVAL; + + if (tmp > INT_MAX) + return -ERANGE; + + simple_child->storeme = tmp; + + return count; +} + +static void simple_child_release(struct config_item *item) +{ + kfree(to_simple_child(item)); +} + +static struct configfs_item_operations simple_child_item_ops = { + .release = simple_child_release, + .show_attribute = simple_child_attr_show, + .store_attribute = simple_child_attr_store, +}; + +static struct config_item_type simple_child_type = { + .ct_item_ops = &simple_child_item_ops, + .ct_attrs = simple_child_attrs, + .ct_owner = THIS_MODULE, +}; + + +struct simple_children { + struct config_group group; +}; + +static inline struct simple_children *to_simple_children(struct config_item *item) +{ + return item ? container_of(to_config_group(item), struct simple_children, group) : NULL; +} + +static struct config_item *simple_children_make_item(struct config_group *group, const char *name) +{ + struct simple_child *simple_child; + + simple_child = kzalloc(sizeof(struct simple_child), GFP_KERNEL); + if (!simple_child) + return ERR_PTR(-ENOMEM); + + config_item_init_type_name(&simple_child->item, name, + &simple_child_type); + + simple_child->storeme = 0; + + return &simple_child->item; +} + +static struct configfs_attribute simple_children_attr_description = { + .ca_owner = THIS_MODULE, + .ca_name = "description", + .ca_mode = S_IRUGO, +}; + +static struct configfs_attribute *simple_children_attrs[] = { + &simple_children_attr_description, + NULL, +}; + +static ssize_t simple_children_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + return sprintf(page, +"[02-simple-children]\n" +"\n" +"This subsystem allows the creation of child config_items. These\n" +"items have only one attribute that is readable and writeable.\n"); +} + +static void simple_children_release(struct config_item *item) +{ + kfree(to_simple_children(item)); +} + +static struct configfs_item_operations simple_children_item_ops = { + .release = simple_children_release, + .show_attribute = simple_children_attr_show, +}; + +/* + * Note that, since no extra work is required on ->drop_item(), + * no ->drop_item() is provided. + */ +static struct configfs_group_operations simple_children_group_ops = { + .make_item = simple_children_make_item, +}; + +static struct config_item_type simple_children_type = { + .ct_item_ops = &simple_children_item_ops, + .ct_group_ops = &simple_children_group_ops, + .ct_attrs = simple_children_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct configfs_subsystem simple_children_subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "02-simple-children", + .ci_type = &simple_children_type, + }, + }, +}; + + +/* ----------------------------------------------------------------- */ + +/* + * 03-group-children + * + * This example reuses the simple_children group from above. However, + * the simple_children group is not the subsystem itself, it is a + * child of the subsystem. Creation of a group in the subsystem creates + * a new simple_children group. That group can then have simple_child + * children of its own. + */ + +static struct config_group *group_children_make_group(struct config_group *group, const char *name) +{ + struct simple_children *simple_children; + + simple_children = kzalloc(sizeof(struct simple_children), + GFP_KERNEL); + if (!simple_children) + return ERR_PTR(-ENOMEM); + + config_group_init_type_name(&simple_children->group, name, + &simple_children_type); + + return &simple_children->group; +} + +static struct configfs_attribute group_children_attr_description = { + .ca_owner = THIS_MODULE, + .ca_name = "description", + .ca_mode = S_IRUGO, +}; + +static struct configfs_attribute *group_children_attrs[] = { + &group_children_attr_description, + NULL, +}; + +static ssize_t group_children_attr_show(struct config_item *item, + struct configfs_attribute *attr, + char *page) +{ + return sprintf(page, +"[03-group-children]\n" +"\n" +"This subsystem allows the creation of child config_groups. These\n" +"groups are like the subsystem simple-children.\n"); +} + +static struct configfs_item_operations group_children_item_ops = { + .show_attribute = group_children_attr_show, +}; + +/* + * Note that, since no extra work is required on ->drop_item(), + * no ->drop_item() is provided. + */ +static struct configfs_group_operations group_children_group_ops = { + .make_group = group_children_make_group, +}; + +static struct config_item_type group_children_type = { + .ct_item_ops = &group_children_item_ops, + .ct_group_ops = &group_children_group_ops, + .ct_attrs = group_children_attrs, + .ct_owner = THIS_MODULE, +}; + +static struct configfs_subsystem group_children_subsys = { + .su_group = { + .cg_item = { + .ci_namebuf = "03-group-children", + .ci_type = &group_children_type, + }, + }, +}; + +/* ----------------------------------------------------------------- */ + +/* + * We're now done with our subsystem definitions. + * For convenience in this module, here's a list of them all. It + * allows the init function to easily register them. Most modules + * will only have one subsystem, and will only call register_subsystem + * on it directly. + */ +static struct configfs_subsystem *example_subsys[] = { + &childless_subsys.subsys, + &simple_children_subsys, + &group_children_subsys, + NULL, +}; + +static int __init configfs_example_init(void) +{ + int ret; + int i; + struct configfs_subsystem *subsys; + + for (i = 0; example_subsys[i]; i++) { + subsys = example_subsys[i]; + + config_group_init(&subsys->su_group); + mutex_init(&subsys->su_mutex); + ret = configfs_register_subsystem(subsys); + if (ret) { + printk(KERN_ERR "Error %d while registering subsystem %s\n", + ret, + subsys->su_group.cg_item.ci_namebuf); + goto out_unregister; + } + } + + return 0; + +out_unregister: + for (; i >= 0; i--) { + configfs_unregister_subsystem(example_subsys[i]); + } + + return ret; +} + +static void __exit configfs_example_exit(void) +{ + int i; + + for (i = 0; example_subsys[i]; i++) { + configfs_unregister_subsystem(example_subsys[i]); + } +} + +module_init(configfs_example_init); +module_exit(configfs_example_exit); +MODULE_LICENSE("GPL"); diff --git a/Documentation/filesystems/ext4.txt b/Documentation/filesystems/ext4.txt index 80e193d82e2e10415cc828124cec296855398aeb..0d5394920a31c146ef85cc4df64107e37a6ae386 100644 --- a/Documentation/filesystems/ext4.txt +++ b/Documentation/filesystems/ext4.txt @@ -26,6 +26,12 @@ Mailing list: linux-ext4@vger.kernel.org git://git.kernel.org/pub/scm/fs/ext2/e2fsprogs.git + - Note that it is highly important to install the mke2fs.conf file + that comes with the e2fsprogs 1.41.x sources in /etc/mke2fs.conf. If + you have edited the /etc/mke2fs.conf file installed on your system, + you will need to merge your changes with the version from e2fsprogs + 1.41.x. + - Create a new filesystem using the ext4dev filesystem type: # mke2fs -t ext4dev /dev/hda1 diff --git a/Documentation/filesystems/nfs-rdma.txt b/Documentation/filesystems/nfs-rdma.txt index d0ec45ae4e7dfa4585fa74c0757be4d80dc02bf5..44bd766f2e5d2225488337681a948c160bd2a821 100644 --- a/Documentation/filesystems/nfs-rdma.txt +++ b/Documentation/filesystems/nfs-rdma.txt @@ -5,7 +5,7 @@ ################################################################################ Author: NetApp and Open Grid Computing - Date: April 15, 2008 + Date: May 29, 2008 Table of Contents ~~~~~~~~~~~~~~~~~ @@ -60,16 +60,18 @@ Installation The procedures described in this document have been tested with distributions from Red Hat's Fedora Project (http://fedora.redhat.com/). - - Install nfs-utils-1.1.1 or greater on the client + - Install nfs-utils-1.1.2 or greater on the client - An NFS/RDMA mount point can only be obtained by using the mount.nfs - command in nfs-utils-1.1.1 or greater. To see which version of mount.nfs - you are using, type: + An NFS/RDMA mount point can be obtained by using the mount.nfs command in + nfs-utils-1.1.2 or greater (nfs-utils-1.1.1 was the first nfs-utils + version with support for NFS/RDMA mounts, but for various reasons we + recommend using nfs-utils-1.1.2 or greater). To see which version of + mount.nfs you are using, type: - > /sbin/mount.nfs -V + $ /sbin/mount.nfs -V - If the version is less than 1.1.1 or the command does not exist, - then you will need to install the latest version of nfs-utils. + If the version is less than 1.1.2 or the command does not exist, + you should install the latest version of nfs-utils. Download the latest package from: @@ -77,22 +79,33 @@ Installation Uncompress the package and follow the installation instructions. - If you will not be using GSS and NFSv4, the installation process - can be simplified by disabling these features when running configure: + If you will not need the idmapper and gssd executables (you do not need + these to create an NFS/RDMA enabled mount command), the installation + process can be simplified by disabling these features when running + configure: - > ./configure --disable-gss --disable-nfsv4 + $ ./configure --disable-gss --disable-nfsv4 - For more information on this see the package's README and INSTALL files. + To build nfs-utils you will need the tcp_wrappers package installed. For + more information on this see the package's README and INSTALL files. After building the nfs-utils package, there will be a mount.nfs binary in the utils/mount directory. This binary can be used to initiate NFS v2, v3, - or v4 mounts. To initiate a v4 mount, the binary must be called mount.nfs4. - The standard technique is to create a symlink called mount.nfs4 to mount.nfs. + or v4 mounts. To initiate a v4 mount, the binary must be called + mount.nfs4. The standard technique is to create a symlink called + mount.nfs4 to mount.nfs. - NOTE: mount.nfs and therefore nfs-utils-1.1.1 or greater is only needed + This mount.nfs binary should be installed at /sbin/mount.nfs as follows: + + $ sudo cp utils/mount/mount.nfs /sbin/mount.nfs + + In this location, mount.nfs will be invoked automatically for NFS mounts + by the system mount commmand. + + NOTE: mount.nfs and therefore nfs-utils-1.1.2 or greater is only needed on the NFS client machine. You do not need this specific version of nfs-utils on the server. Furthermore, only the mount.nfs command from - nfs-utils-1.1.1 is needed on the client. + nfs-utils-1.1.2 is needed on the client. - Install a Linux kernel with NFS/RDMA @@ -156,8 +169,8 @@ Check RDMA and NFS Setup this time. For example, if you are using a Mellanox Tavor/Sinai/Arbel card: - > modprobe ib_mthca - > modprobe ib_ipoib + $ modprobe ib_mthca + $ modprobe ib_ipoib If you are using InfiniBand, make sure there is a Subnet Manager (SM) running on the network. If your IB switch has an embedded SM, you can @@ -166,7 +179,7 @@ Check RDMA and NFS Setup If an SM is running on your network, you should see the following: - > cat /sys/class/infiniband/driverX/ports/1/state + $ cat /sys/class/infiniband/driverX/ports/1/state 4: ACTIVE where driverX is mthca0, ipath5, ehca3, etc. @@ -174,10 +187,10 @@ Check RDMA and NFS Setup To further test the InfiniBand software stack, use IPoIB (this assumes you have two IB hosts named host1 and host2): - host1> ifconfig ib0 a.b.c.x - host2> ifconfig ib0 a.b.c.y - host1> ping a.b.c.y - host2> ping a.b.c.x + host1$ ifconfig ib0 a.b.c.x + host2$ ifconfig ib0 a.b.c.y + host1$ ping a.b.c.y + host2$ ping a.b.c.x For other device types, follow the appropriate procedures. @@ -202,11 +215,11 @@ NFS/RDMA Setup /vol0 192.168.0.47(fsid=0,rw,async,insecure,no_root_squash) /vol0 192.168.0.0/255.255.255.0(fsid=0,rw,async,insecure,no_root_squash) - The IP address(es) is(are) the client's IPoIB address for an InfiniBand HCA or the - cleint's iWARP address(es) for an RNIC. + The IP address(es) is(are) the client's IPoIB address for an InfiniBand + HCA or the cleint's iWARP address(es) for an RNIC. - NOTE: The "insecure" option must be used because the NFS/RDMA client does not - use a reserved port. + NOTE: The "insecure" option must be used because the NFS/RDMA client does + not use a reserved port. Each time a machine boots: @@ -214,43 +227,45 @@ NFS/RDMA Setup For InfiniBand using a Mellanox adapter: - > modprobe ib_mthca - > modprobe ib_ipoib - > ifconfig ib0 a.b.c.d + $ modprobe ib_mthca + $ modprobe ib_ipoib + $ ifconfig ib0 a.b.c.d NOTE: use unique addresses for the client and server - Start the NFS server - If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in kernel config), - load the RDMA transport module: + If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in + kernel config), load the RDMA transport module: - > modprobe svcrdma + $ modprobe svcrdma - Regardless of how the server was built (module or built-in), start the server: + Regardless of how the server was built (module or built-in), start the + server: - > /etc/init.d/nfs start + $ /etc/init.d/nfs start or - > service nfs start + $ service nfs start Instruct the server to listen on the RDMA transport: - > echo rdma 2050 > /proc/fs/nfsd/portlist + $ echo rdma 2050 > /proc/fs/nfsd/portlist - On the client system - If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in kernel config), - load the RDMA client module: + If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in + kernel config), load the RDMA client module: - > modprobe xprtrdma.ko + $ modprobe xprtrdma.ko - Regardless of how the client was built (module or built-in), issue the mount.nfs command: + Regardless of how the client was built (module or built-in), use this + command to mount the NFS/RDMA server: - > /path/to/your/mount.nfs :/ /mnt -i -o rdma,port=2050 + $ mount -o rdma,port=2050 :/ /mnt - To verify that the mount is using RDMA, run "cat /proc/mounts" and check the - "proto" field for the given mount. + To verify that the mount is using RDMA, run "cat /proc/mounts" and check + the "proto" field for the given mount. Congratulations! You're using NFS/RDMA! diff --git a/Documentation/filesystems/ntfs.txt b/Documentation/filesystems/ntfs.txt index e79ee2db183a0a19f09bccb810a29794ab72031e..ac2a261c5f7d736ed9daddbc25802d3e83fde07a 100644 --- a/Documentation/filesystems/ntfs.txt +++ b/Documentation/filesystems/ntfs.txt @@ -40,7 +40,7 @@ Web site ======== There is plenty of additional information on the linux-ntfs web site -at http://linux-ntfs.sourceforge.net/ +at http://www.linux-ntfs.org/ The web site has a lot of additional information, such as a comprehensive FAQ, documentation on the NTFS on-disk format, information on the Linux-NTFS @@ -272,7 +272,7 @@ And you would know that /dev/hda2 has a size of 37768814 - 4209030 + 1 = For Win2k and later dynamic disks, you can for example use the ldminfo utility which is part of the Linux LDM tools (the latest version at the time of writing is linux-ldm-0.0.8.tar.bz2). You can download it from: - http://linux-ntfs.sourceforge.net/downloads.html + http://www.linux-ntfs.org/ Simply extract the downloaded archive (tar xvjf linux-ldm-0.0.8.tar.bz2), go into it (cd linux-ldm-0.0.8) and change to the test directory (cd test). You will find the precompiled (i386) ldminfo utility there. NOTE: You will not be diff --git a/Documentation/filesystems/omfs.txt b/Documentation/filesystems/omfs.txt new file mode 100644 index 0000000000000000000000000000000000000000..1d0d41ff5c65cdc75454d958ad58b367a9e2464c --- /dev/null +++ b/Documentation/filesystems/omfs.txt @@ -0,0 +1,106 @@ +Optimized MPEG Filesystem (OMFS) + +Overview +======== + +OMFS is a filesystem created by SonicBlue for use in the ReplayTV DVR +and Rio Karma MP3 player. The filesystem is extent-based, utilizing +block sizes from 2k to 8k, with hash-based directories. This +filesystem driver may be used to read and write disks from these +devices. + +Note, it is not recommended that this FS be used in place of a general +filesystem for your own streaming media device. Native Linux filesystems +will likely perform better. + +More information is available at: + + http://linux-karma.sf.net/ + +Various utilities, including mkomfs and omfsck, are included with +omfsprogs, available at: + + http://bobcopeland.com/karma/ + +Instructions are included in its README. + +Options +======= + +OMFS supports the following mount-time options: + + uid=n - make all files owned by specified user + gid=n - make all files owned by specified group + umask=xxx - set permission umask to xxx + fmask=xxx - set umask to xxx for files + dmask=xxx - set umask to xxx for directories + +Disk format +=========== + +OMFS discriminates between "sysblocks" and normal data blocks. The sysblock +group consists of super block information, file metadata, directory structures, +and extents. Each sysblock has a header containing CRCs of the entire +sysblock, and may be mirrored in successive blocks on the disk. A sysblock may +have a smaller size than a data block, but since they are both addressed by the +same 64-bit block number, any remaining space in the smaller sysblock is +unused. + +Sysblock header information: + +struct omfs_header { + __be64 h_self; /* FS block where this is located */ + __be32 h_body_size; /* size of useful data after header */ + __be16 h_crc; /* crc-ccitt of body_size bytes */ + char h_fill1[2]; + u8 h_version; /* version, always 1 */ + char h_type; /* OMFS_INODE_X */ + u8 h_magic; /* OMFS_IMAGIC */ + u8 h_check_xor; /* XOR of header bytes before this */ + __be32 h_fill2; +}; + +Files and directories are both represented by omfs_inode: + +struct omfs_inode { + struct omfs_header i_head; /* header */ + __be64 i_parent; /* parent containing this inode */ + __be64 i_sibling; /* next inode in hash bucket */ + __be64 i_ctime; /* ctime, in milliseconds */ + char i_fill1[35]; + char i_type; /* OMFS_[DIR,FILE] */ + __be32 i_fill2; + char i_fill3[64]; + char i_name[OMFS_NAMELEN]; /* filename */ + __be64 i_size; /* size of file, in bytes */ +}; + +Directories in OMFS are implemented as a large hash table. Filenames are +hashed then prepended into the bucket list beginning at OMFS_DIR_START. +Lookup requires hashing the filename, then seeking across i_sibling pointers +until a match is found on i_name. Empty buckets are represented by block +pointers with all-1s (~0). + +A file is an omfs_inode structure followed by an extent table beginning at +OMFS_EXTENT_START: + +struct omfs_extent_entry { + __be64 e_cluster; /* start location of a set of blocks */ + __be64 e_blocks; /* number of blocks after e_cluster */ +}; + +struct omfs_extent { + __be64 e_next; /* next extent table location */ + __be32 e_extent_count; /* total # extents in this table */ + __be32 e_fill; + struct omfs_extent_entry e_entry; /* start of extent entries */ +}; + +Each extent holds the block offset followed by number of blocks allocated to +the extent. The final extent in each table is a terminator with e_cluster +being ~0 and e_blocks being ones'-complement of the total number of blocks +in the table. + +If this table overflows, a continuation inode is written and pointed to by +e_next. These have a header but lack the rest of the inode structure. + diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index 7f268f327d750e725f1e5ca5ddfe99dcb8014cd5..f566ad9bcb7b6a4a58deab30f085d85f0e39746e 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -296,6 +296,7 @@ Table 1-4: Kernel info in /proc uptime System uptime version Kernel version video bttv info of video resources (2.4) + vmallocinfo Show vmalloced areas .............................................................................. You can, for example, check which interrupts are currently in use and what @@ -557,6 +558,49 @@ VmallocTotal: total size of vmalloc memory area VmallocUsed: amount of vmalloc area which is used VmallocChunk: largest contigious block of vmalloc area which is free +.............................................................................. + +vmallocinfo: + +Provides information about vmalloced/vmaped areas. One line per area, +containing the virtual address range of the area, size in bytes, +caller information of the creator, and optional information depending +on the kind of area : + + pages=nr number of pages + phys=addr if a physical address was specified + ioremap I/O mapping (ioremap() and friends) + vmalloc vmalloc() area + vmap vmap()ed pages + user VM_USERMAP area + vpages buffer for pages pointers was vmalloced (huge area) + N=nr (Only on NUMA kernels) + Number of pages allocated on memory node + +> cat /proc/vmallocinfo +0xffffc20000000000-0xffffc20000201000 2101248 alloc_large_system_hash+0x204 ... + /0x2c0 pages=512 vmalloc N0=128 N1=128 N2=128 N3=128 +0xffffc20000201000-0xffffc20000302000 1052672 alloc_large_system_hash+0x204 ... + /0x2c0 pages=256 vmalloc N0=64 N1=64 N2=64 N3=64 +0xffffc20000302000-0xffffc20000304000 8192 acpi_tb_verify_table+0x21/0x4f... + phys=7fee8000 ioremap +0xffffc20000304000-0xffffc20000307000 12288 acpi_tb_verify_table+0x21/0x4f... + phys=7fee7000 ioremap +0xffffc2000031d000-0xffffc2000031f000 8192 init_vdso_vars+0x112/0x210 +0xffffc2000031f000-0xffffc2000032b000 49152 cramfs_uncompress_init+0x2e ... + /0x80 pages=11 vmalloc N0=3 N1=3 N2=2 N3=3 +0xffffc2000033a000-0xffffc2000033d000 12288 sys_swapon+0x640/0xac0 ... + pages=2 vmalloc N1=2 +0xffffc20000347000-0xffffc2000034c000 20480 xt_alloc_table_info+0xfe ... + /0x130 [x_tables] pages=4 vmalloc N0=4 +0xffffffffa0000000-0xffffffffa000f000 61440 sys_init_module+0xc27/0x1d00 ... + pages=14 vmalloc N2=14 +0xffffffffa000f000-0xffffffffa0014000 20480 sys_init_module+0xc27/0x1d00 ... + pages=4 vmalloc N1=4 +0xffffffffa0014000-0xffffffffa0017000 12288 sys_init_module+0xc27/0x1d00 ... + pages=2 vmalloc N1=2 +0xffffffffa0017000-0xffffffffa0022000 45056 sys_init_module+0xc27/0x1d00 ... + pages=10 vmalloc N0=10 1.3 IDE devices in /proc/ide ---------------------------- @@ -887,7 +931,7 @@ group_prealloc max_to_scan mb_groups mb_history min_to_scan order2_req stats stream_req mb_groups: -This file gives the details of mutiblock allocator buddy cache of free blocks +This file gives the details of multiblock allocator buddy cache of free blocks mb_history: Multiblock allocation history. @@ -1295,6 +1339,25 @@ Enables/Disables the protection of the per-process proc entries "maps" and "smaps". When enabled, the contents of these files are visible only to readers that are allowed to ptrace() the given process. +msgmni +------ + +Maximum number of message queue ids on the system. +This value scales to the amount of lowmem. It is automatically recomputed +upon memory add/remove or ipc namespace creation/removal. +When a value is written into this file, msgmni's value becomes fixed, i.e. it +is not recomputed anymore when one of the above events occurs. +Use auto_msgmni to change this behavior. + +auto_msgmni +----------- + +Enables/Disables automatic recomputing of msgmni upon memory add/remove or +upon ipc namespace creation/removal (see the msgmni description above). +Echoing "1" into this file enables msgmni automatic recomputing. +Echoing "0" turns it off. +auto_msgmni default value is 1. + 2.4 /proc/sys/vm - The virtual memory subsystem ----------------------------------------------- @@ -1430,7 +1493,7 @@ used because pages_free(1355) is smaller than watermark + protection[2] normal page requirement. If requirement is DMA zone(index=0), protection[0] (=0) is used. -zone[i]'s protection[j] is calculated by following exprssion. +zone[i]'s protection[j] is calculated by following expression. (i < j): zone[i]->protection[j] @@ -2350,6 +2413,8 @@ The following 4 memory types are supported: - (bit 1) anonymous shared memory - (bit 2) file-backed private memory - (bit 3) file-backed shared memory + - (bit 4) ELF header pages in file-backed private memory areas (it is + effective only if the bit 2 is cleared) Note that MMIO pages such as frame buffer are never dumped and vDSO pages are always dumped regardless of the bitmask status. diff --git a/Documentation/filesystems/quota.txt b/Documentation/filesystems/quota.txt index a590c4093eff87470baebc430a1cb0034f8f93db..5e8de25bf0f1ec86aac76ad6a102d557b883603f 100644 --- a/Documentation/filesystems/quota.txt +++ b/Documentation/filesystems/quota.txt @@ -3,14 +3,14 @@ Quota subsystem =============== Quota subsystem allows system administrator to set limits on used space and -number of used inodes (inode is a filesystem structure which is associated -with each file or directory) for users and/or groups. For both used space and -number of used inodes there are actually two limits. The first one is called -softlimit and the second one hardlimit. An user can never exceed a hardlimit -for any resource. User is allowed to exceed softlimit but only for limited -period of time. This period is called "grace period" or "grace time". When -grace time is over, user is not able to allocate more space/inodes until he -frees enough of them to get below softlimit. +number of used inodes (inode is a filesystem structure which is associated with +each file or directory) for users and/or groups. For both used space and number +of used inodes there are actually two limits. The first one is called softlimit +and the second one hardlimit. An user can never exceed a hardlimit for any +resource (unless he has CAP_SYS_RESOURCE capability). User is allowed to exceed +softlimit but only for limited period of time. This period is called "grace +period" or "grace time". When grace time is over, user is not able to allocate +more space/inodes until he frees enough of them to get below softlimit. Quota limits (and amount of grace time) are set independently for each filesystem. @@ -53,6 +53,12 @@ in parentheses): QUOTA_NL_BSOFTLONGWARN - space (block) softlimit is exceeded longer than given grace period. QUOTA_NL_BSOFTWARN - space (block) softlimit + - four warnings are also defined for the event when user stops + exceeding some limit: + QUOTA_NL_IHARDBELOW - inode hardlimit + QUOTA_NL_ISOFTBELOW - inode softlimit + QUOTA_NL_BHARDBELOW - space (block) hardlimit + QUOTA_NL_BSOFTBELOW - space (block) softlimit QUOTA_NL_A_DEV_MAJOR (u32) - major number of a device with the affected filesystem QUOTA_NL_A_DEV_MINOR (u32) diff --git a/Documentation/filesystems/relay.txt b/Documentation/filesystems/relay.txt index 094f2d2f38b1a5571283ee745aa494c12b12808c..510b722667ac885cf7abed3732961941a5ad1c14 100644 --- a/Documentation/filesystems/relay.txt +++ b/Documentation/filesystems/relay.txt @@ -294,6 +294,16 @@ user-defined data with a channel, and is immediately available (including in create_buf_file()) via chan->private_data or buf->chan->private_data. +Buffer-only channels +-------------------- + +These channels have no files associated and can be created with +relay_open(NULL, NULL, ...). Such channels are useful in scenarios such +as when doing early tracing in the kernel, before the VFS is up. In these +cases, one may open a buffer-only channel and then call +relay_late_setup_files() when the kernel is ready to handle files, +to expose the buffered data to the userspace. + Channel 'modes' --------------- diff --git a/Documentation/filesystems/sysfs.txt b/Documentation/filesystems/sysfs.txt index 7f27b8f840d06210df1511db6ef603cedb8f0e58..9e9c348275a96fd362acf9916d2789be8a08c4c8 100644 --- a/Documentation/filesystems/sysfs.txt +++ b/Documentation/filesystems/sysfs.txt @@ -248,6 +248,7 @@ The top level sysfs directory looks like: block/ bus/ class/ +dev/ devices/ firmware/ net/ @@ -274,6 +275,11 @@ fs/ contains a directory for some filesystems. Currently each filesystem wanting to export attributes must create its own hierarchy below fs/ (see ./fuse.txt for an example). +dev/ contains two directories char/ and block/. Inside these two +directories there are symlinks named :. These symlinks +point to the sysfs directory for the given device. /sys/dev provides a +quick way to lookup the sysfs interface for a device from the result of +a stat(2) operation. More information can driver-model specific features can be found in Documentation/driver-model/. diff --git a/Documentation/filesystems/ubifs.txt b/Documentation/filesystems/ubifs.txt index 540e9e7f59c53f083f105432a7a7be28f53eb2d3..6a0d70a22f05f238cb1da86208437818f192b495 100644 --- a/Documentation/filesystems/ubifs.txt +++ b/Documentation/filesystems/ubifs.txt @@ -57,7 +57,7 @@ Similarly to JFFS2, UBIFS supports on-the-flight compression which makes it possible to fit quite a lot of data to the flash. Similarly to JFFS2, UBIFS is tolerant of unclean reboots and power-cuts. -It does not need stuff like ckfs.ext2. UBIFS automatically replays its +It does not need stuff like fsck.ext2. UBIFS automatically replays its journal and recovers from crashes, ensuring that the on-flash data structures are consistent. diff --git a/Documentation/filesystems/vfat.txt b/Documentation/filesystems/vfat.txt index 2d5e1e582e13272bfaef2fbc494a156d829cc289..bbac4f1d90567c3f7ea0f46a869c091160390076 100644 --- a/Documentation/filesystems/vfat.txt +++ b/Documentation/filesystems/vfat.txt @@ -96,6 +96,14 @@ shortname=lower|win95|winnt|mixed emulate the Windows 95 rule for create. Default setting is `lower'. +tz=UTC -- Interpret timestamps as UTC rather than local time. + This option disables the conversion of timestamps + between local time (as used by Windows on FAT) and UTC + (which Linux uses internally). This is particuluarly + useful when mounting devices (like digital cameras) + that are set to UTC in order to avoid the pitfalls of + local time. + : 0,1,yes,no,true,false TODO diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index b7522c6cbae3758f77cb12e22b78825e43a3796d..c4d348dabe9499454055ebff41fb88ef71346dda 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -143,7 +143,7 @@ struct file_system_type { The get_sb() method has the following arguments: - struct file_system_type *fs_type: decribes the filesystem, partly initialized + struct file_system_type *fs_type: describes the filesystem, partly initialized by the specific filesystem code int flags: mount flags @@ -895,9 +895,9 @@ struct dentry_operations { iput() yourself d_dname: called when the pathname of a dentry should be generated. - Usefull for some pseudo filesystems (sockfs, pipefs, ...) to delay + Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay pathname generation. (Instead of doing it when dentry is created, - its done only when the path is needed.). Real filesystems probably + it's done only when the path is needed.). Real filesystems probably dont want to use it, because their dentries are present in global dcache hash, so their hash should be an invariant. As no lock is held, d_dname() should not try to modify the dentry itself, unless diff --git a/Documentation/ftrace.txt b/Documentation/ftrace.txt index f218f616ff6bbf79e6b6aa6987f64a41142df5f0..d330fe3103da9c9a3cb8f888ac7255ce48e666d4 100644 --- a/Documentation/ftrace.txt +++ b/Documentation/ftrace.txt @@ -4,6 +4,7 @@ Copyright 2008 Red Hat Inc. Author: Steven Rostedt License: The GNU Free Documentation License, Version 1.2 + (dual licensed under the GPL v2) Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton, John Kacur, and David Teigland. diff --git a/Documentation/gpio.txt b/Documentation/gpio.txt index c35ca9e40d4ca8ae0cbf7c06c639d8531ae8d9dd..18022e249c53dc1ad991d74d160551fa32f32070 100644 --- a/Documentation/gpio.txt +++ b/Documentation/gpio.txt @@ -347,15 +347,12 @@ necessarily be nonportable. Dynamic definition of GPIOs is not currently standard; for example, as a side effect of configuring an add-on board with some GPIO expanders. -These calls are purely for kernel space, but a userspace API could be built -on top of them. - GPIO implementor's framework (OPTIONAL) ======================================= As noted earlier, there is an optional implementation framework making it easier for platforms to support different kinds of GPIO controller using -the same programming interface. +the same programming interface. This framework is called "gpiolib". As a debugging aid, if debugfs is available a /sys/kernel/debug/gpio file will be found there. That will list all the controllers registered through @@ -392,11 +389,21 @@ either NULL or the label associated with that GPIO when it was requested. Platform Support ---------------- -To support this framework, a platform's Kconfig will "select HAVE_GPIO_LIB" +To support this framework, a platform's Kconfig will "select" either +ARCH_REQUIRE_GPIOLIB or ARCH_WANT_OPTIONAL_GPIOLIB and arrange that its includes and defines three functions: gpio_get_value(), gpio_set_value(), and gpio_cansleep(). They may also want to provide a custom value for ARCH_NR_GPIOS. +ARCH_REQUIRE_GPIOLIB means that the gpio-lib code will always get compiled +into the kernel on that architecture. + +ARCH_WANT_OPTIONAL_GPIOLIB means the gpio-lib code defaults to off and the user +can enable it and build it into the kernel optionally. + +If neither of these options are selected, the platform does not support +GPIOs through GPIO-lib and the code cannot be enabled by the user. + Trivial implementations of those functions can directly use framework code, which always dispatches through the gpio_chip: @@ -439,4 +446,120 @@ becomes available. That may mean the device should not be registered until calls for that GPIO can work. One way to address such dependencies is for such gpio_chip controllers to provide setup() and teardown() callbacks to board specific code; those board specific callbacks would register devices -once all the necessary resources are available. +once all the necessary resources are available, and remove them later when +the GPIO controller device becomes unavailable. + + +Sysfs Interface for Userspace (OPTIONAL) +======================================== +Platforms which use the "gpiolib" implementors framework may choose to +configure a sysfs user interface to GPIOs. This is different from the +debugfs interface, since it provides control over GPIO direction and +value instead of just showing a gpio state summary. Plus, it could be +present on production systems without debugging support. + +Given approprate hardware documentation for the system, userspace could +know for example that GPIO #23 controls the write protect line used to +protect boot loader segments in flash memory. System upgrade procedures +may need to temporarily remove that protection, first importing a GPIO, +then changing its output state, then updating the code before re-enabling +the write protection. In normal use, GPIO #23 would never be touched, +and the kernel would have no need to know about it. + +Again depending on appropriate hardware documentation, on some systems +userspace GPIO can be used to determine system configuration data that +standard kernels won't know about. And for some tasks, simple userspace +GPIO drivers could be all that the system really needs. + +Note that standard kernel drivers exist for common "LEDs and Buttons" +GPIO tasks: "leds-gpio" and "gpio_keys", respectively. Use those +instead of talking directly to the GPIOs; they integrate with kernel +frameworks better than your userspace code could. + + +Paths in Sysfs +-------------- +There are three kinds of entry in /sys/class/gpio: + + - Control interfaces used to get userspace control over GPIOs; + + - GPIOs themselves; and + + - GPIO controllers ("gpio_chip" instances). + +That's in addition to standard files including the "device" symlink. + +The control interfaces are write-only: + + /sys/class/gpio/ + + "export" ... Userspace may ask the kernel to export control of + a GPIO to userspace by writing its number to this file. + + Example: "echo 19 > export" will create a "gpio19" node + for GPIO #19, if that's not requested by kernel code. + + "unexport" ... Reverses the effect of exporting to userspace. + + Example: "echo 19 > unexport" will remove a "gpio19" + node exported using the "export" file. + +GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42) +and have the following read/write attributes: + + /sys/class/gpio/gpioN/ + + "direction" ... reads as either "in" or "out". This value may + normally be written. Writing as "out" defaults to + initializing the value as low. To ensure glitch free + operation, values "low" and "high" may be written to + configure the GPIO as an output with that initial value. + + Note that this attribute *will not exist* if the kernel + doesn't support changing the direction of a GPIO, or + it was exported by kernel code that didn't explicitly + allow userspace to reconfigure this GPIO's direction. + + "value" ... reads as either 0 (low) or 1 (high). If the GPIO + is configured as an output, this value may be written; + any nonzero value is treated as high. + +GPIO controllers have paths like /sys/class/gpio/chipchip42/ (for the +controller implementing GPIOs starting at #42) and have the following +read-only attributes: + + /sys/class/gpio/gpiochipN/ + + "base" ... same as N, the first GPIO managed by this chip + + "label" ... provided for diagnostics (not always unique) + + "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1) + +Board documentation should in most cases cover what GPIOs are used for +what purposes. However, those numbers are not always stable; GPIOs on +a daughtercard might be different depending on the base board being used, +or other cards in the stack. In such cases, you may need to use the +gpiochip nodes (possibly in conjunction with schematics) to determine +the correct GPIO number to use for a given signal. + + +Exporting from Kernel code +-------------------------- +Kernel code can explicitly manage exports of GPIOs which have already been +requested using gpio_request(): + + /* export the GPIO to userspace */ + int gpio_export(unsigned gpio, bool direction_may_change); + + /* reverse gpio_export() */ + void gpio_unexport(); + +After a kernel driver requests a GPIO, it may only be made available in +the sysfs interface by gpio_export(). The driver can control whether the +signal direction may change. This helps drivers prevent userspace code +from accidentally clobbering important system state. + +This explicit exporting can help with debugging (by making some kinds +of experiments easier), or can provide an always-there interface that's +suitable for documenting as part of a board support package. diff --git a/Documentation/hwmon/dme1737 b/Documentation/hwmon/dme1737 index 8f446070e64a56ebc2c19a98c3f5e40688648b06..001d2e70bc1125f404274734f6ad0b4b7825ca34 100644 --- a/Documentation/hwmon/dme1737 +++ b/Documentation/hwmon/dme1737 @@ -10,6 +10,10 @@ Supported chips: Prefix: 'sch311x' Addresses scanned: none, address read from Super-I/O config space Datasheet: http://www.nuhorizons.com/FeaturedProducts/Volume1/SMSC/311x.pdf + * SMSC SCH5027 + Prefix: 'sch5027' + Addresses scanned: I2C 0x2c, 0x2d, 0x2e + Datasheet: Provided by SMSC upon request and under NDA Authors: Juerg Haefliger @@ -22,34 +26,36 @@ Module Parameters and PWM output control functions. Using this parameter shouldn't be required since the BIOS usually takes care of this. - -Note that there is no need to use this parameter if the driver loads without -complaining. The driver will say so if it is necessary. +* probe_all_addr: bool Include non-standard LPC addresses 0x162e and 0x164e + when probing for ISA devices. This is required for the + following boards: + - VIA EPIA SN18000 Description ----------- This driver implements support for the hardware monitoring capabilities of the -SMSC DME1737 and Asus A8000 (which are the same) and SMSC SCH311x Super-I/O -chips. These chips feature monitoring of 3 temp sensors temp[1-3] (2 remote -diodes and 1 internal), 7 voltages in[0-6] (6 external and 1 internal) and up -to 6 fan speeds fan[1-6]. Additionally, the chips implement up to 5 PWM -outputs pwm[1-3,5-6] for controlling fan speeds both manually and +SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, and SMSC +SCH311x Super-I/O chips. These chips feature monitoring of 3 temp sensors +temp[1-3] (2 remote diodes and 1 internal), 7 voltages in[0-6] (6 external and +1 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement +up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and automatically. -For the DME1737 and A8000, fan[1-2] and pwm[1-2] are always present. Fan[3-6] -and pwm[3,5-6] are optional features and their availability depends on the -configuration of the chip. The driver will detect which features are present -during initialization and create the sysfs attributes accordingly. +For the DME1737, A8000 and SCH5027, fan[1-2] and pwm[1-2] are always present. +Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on +the configuration of the chip. The driver will detect which features are +present during initialization and create the sysfs attributes accordingly. For the SCH311x, fan[1-3] and pwm[1-3] are always present and fan[4-6] and pwm[5-6] don't exist. -The hardware monitoring features of the DME1737 and A8000 are only accessible -via SMBus, while the SCH311x only provides access via the ISA bus. The driver -will therefore register itself as an I2C client driver if it detects a DME1737 -or A8000 and as a platform driver if it detects a SCH311x chip. +The hardware monitoring features of the DME1737, A8000, and SCH5027 are only +accessible via SMBus, while the SCH311x only provides access via the ISA bus. +The driver will therefore register itself as an I2C client driver if it detects +a DME1737, A8000, or SCH5027 and as a platform driver if it detects a SCH311x +chip. Voltage Monitoring @@ -60,6 +66,7 @@ scaling resistors. The values returned by the driver therefore reflect true millivolts and don't need scaling. The voltage inputs are mapped as follows (the last column indicates the input ranges): +DME1737, A8000: in0: +5VTR (+5V standby) 0V - 6.64V in1: Vccp (processor core) 0V - 3V in2: VCC (internal +3.3V) 0V - 4.38V @@ -68,6 +75,24 @@ millivolts and don't need scaling. The voltage inputs are mapped as follows in5: VTR (+3.3V standby) 0V - 4.38V in6: Vbat (+3.0V) 0V - 4.38V +SCH311x: + in0: +2.5V 0V - 6.64V + in1: Vccp (processor core) 0V - 2V + in2: VCC (internal +3.3V) 0V - 4.38V + in3: +5V 0V - 6.64V + in4: +12V 0V - 16V + in5: VTR (+3.3V standby) 0V - 4.38V + in6: Vbat (+3.0V) 0V - 4.38V + +SCH5027: + in0: +5VTR (+5V standby) 0V - 6.64V + in1: Vccp (processor core) 0V - 3V + in2: VCC (internal +3.3V) 0V - 4.38V + in3: V2_IN 0V - 1.5V + in4: V1_IN 0V - 1.5V + in5: VTR (+3.3V standby) 0V - 4.38V + in6: Vbat (+3.0V) 0V - 4.38V + Each voltage input has associated min and max limits which trigger an alarm when crossed. diff --git a/Documentation/hwmon/ibmaem b/Documentation/hwmon/ibmaem index 2fefaf582a43b928b48b0e196fab6445b28aa171..e98bdfea3467f679411f86d8f82be7ea421da491 100644 --- a/Documentation/hwmon/ibmaem +++ b/Documentation/hwmon/ibmaem @@ -1,8 +1,11 @@ Kernel driver ibmaem ====================== +This driver talks to the IBM Systems Director Active Energy Manager, known +henceforth as AEM. + Supported systems: - * Any recent IBM System X server with Active Energy Manager support. + * Any recent IBM System X server with AEM support. This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2, x3950 M2, and certain HS2x/LS2x/QS2x blades. The IPMI host interface driver ("ipmi-si") needs to be loaded for this driver to do anything. @@ -14,24 +17,22 @@ Author: Darrick J. Wong Description ----------- -This driver implements sensor reading support for the energy and power -meters available on various IBM System X hardware through the BMC. All -sensor banks will be exported as platform devices; this driver can talk -to both v1 and v2 interfaces. This driver is completely separate from the -older ibmpex driver. +This driver implements sensor reading support for the energy and power meters +available on various IBM System X hardware through the BMC. All sensor banks +will be exported as platform devices; this driver can talk to both v1 and v2 +interfaces. This driver is completely separate from the older ibmpex driver. -The v1 AEM interface has a simple set of features to monitor energy use. -There is a register that displays an estimate of raw energy consumption -since the last BMC reset, and a power sensor that returns average power -use over a configurable interval. +The v1 AEM interface has a simple set of features to monitor energy use. There +is a register that displays an estimate of raw energy consumption since the +last BMC reset, and a power sensor that returns average power use over a +configurable interval. -The v2 AEM interface is a bit more sophisticated, being able to present -a wider range of energy and power use registers, the power cap as -set by the AEM software, and temperature sensors. +The v2 AEM interface is a bit more sophisticated, being able to present a wider +range of energy and power use registers, the power cap as set by the AEM +software, and temperature sensors. Special Features ---------------- -The "power_cap" value displays the current system power cap, as set by -the Active Energy Manager software. Setting the power cap from the host -is not currently supported. +The "power_cap" value displays the current system power cap, as set by the AEM +software. Setting the power cap from the host is not currently supported. diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87 index f4ce1fdbeff664b88bd35c735968d977f6d14efd..3496b7020e7c7207308e1d247a361aee081bd323 100644 --- a/Documentation/hwmon/it87 +++ b/Documentation/hwmon/it87 @@ -6,12 +6,14 @@ Supported chips: Prefix: 'it87' Addresses scanned: from Super I/O config space (8 I/O ports) Datasheet: Publicly available at the ITE website - http://www.ite.com.tw/ + http://www.ite.com.tw/product_info/file/pc/IT8705F_V.0.4.1.pdf * IT8712F Prefix: 'it8712' Addresses scanned: from Super I/O config space (8 I/O ports) Datasheet: Publicly available at the ITE website - http://www.ite.com.tw/ + http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.1.pdf + http://www.ite.com.tw/product_info/file/pc/Errata%20V0.1%20for%20IT8712F%20V0.9.1.pdf + http://www.ite.com.tw/product_info/file/pc/IT8712F_V0.9.3.pdf * IT8716F/IT8726F Prefix: 'it8716' Addresses scanned: from Super I/O config space (8 I/O ports) @@ -90,14 +92,13 @@ upper VID bits share their pins with voltage inputs (in5 and in6) so you can't have both on a given board. The IT8716F, IT8718F and later IT8712F revisions have support for -2 additional fans. They are supported by the driver for the IT8716F and -IT8718F but not for the IT8712F +2 additional fans. The additional fans are supported by the driver. The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional 16-bit tachometer counters for fans 1 to 3. This is better (no more fan clock divider mess) but not compatible with the older chips and -revisions. For now, the driver only uses the 16-bit mode on the -IT8716F and IT8718F. +revisions. The 16-bit tachometer mode is enabled by the driver when one +of the above chips is detected. The IT8726F is just bit enhanced IT8716F with additional hardware for AMD power sequencing. Therefore the chip will appear as IT8716F diff --git a/Documentation/hwmon/lm85 b/Documentation/hwmon/lm85 index 9549237530cf8a08dbe1460f3f048802cea62567..6d41db7f17f8b5372a765504f2d6c173bfc2b372 100644 --- a/Documentation/hwmon/lm85 +++ b/Documentation/hwmon/lm85 @@ -96,11 +96,6 @@ initial testing of the ADM1027 it was 1.00 degC steps. Analog Devices has confirmed this "bug". The ADT7463 is reported to work as described in the documentation. The current lm85 driver does not show the offset register. -The ADT7463 has a THERM asserted counter. This counter has a 22.76ms -resolution and a range of 5.8 seconds. The driver implements a 32-bit -accumulator of the counter value to extend the range to over a year. The -counter will stay at it's max value until read. - See the vendor datasheets for more information. There is application note from National (AN-1260) with some additional information about the LM85. The Analog Devices datasheet is very detailed and describes a procedure for @@ -206,13 +201,15 @@ Configuration choices: The National LM85's have two vendor specific configuration features. Tach. mode and Spinup Control. For more details on these, -see the LM85 datasheet or Application Note AN-1260. +see the LM85 datasheet or Application Note AN-1260. These features +are not currently supported by the lm85 driver. The Analog Devices ADM1027 has several vendor specific enhancements. The number of pulses-per-rev of the fans can be set, Tach monitoring can be optimized for PWM operation, and an offset can be applied to the temperatures to compensate for systemic errors in the -measurements. +measurements. These features are not currently supported by the lm85 +driver. In addition to the ADM1027 features, the ADT7463 also has Tmin control and THERM asserted counts. Automatic Tmin control acts to adjust the diff --git a/Documentation/hwmon/w83627hf b/Documentation/hwmon/w83627hf index 880a59f53da91d5f24d212945b2f0b6658b0531e..6ee36dbafd64afaee72a4c308ad20c39bb5d5f15 100644 --- a/Documentation/hwmon/w83627hf +++ b/Documentation/hwmon/w83627hf @@ -40,10 +40,6 @@ Module Parameters (default is 1) Use 'init=0' to bypass initializing the chip. Try this if your computer crashes when you load the module. -* reset: int - (default is 0) - The driver used to reset the chip on load, but does no more. Use - 'reset=1' to restore the old behavior. Report if you need to do this. Description ----------- diff --git a/Documentation/hwmon/w83791d b/Documentation/hwmon/w83791d index f153b2f6d62ca76958c2e80eb42efc3aa4c830be..a67d3b7a709831bb0f32f70ab30c1695693a2606 100644 --- a/Documentation/hwmon/w83791d +++ b/Documentation/hwmon/w83791d @@ -22,6 +22,7 @@ Credits: Additional contributors: Sven Anders + Marc Hulsman Module Parameters ----------------- @@ -67,9 +68,8 @@ on until the temperature falls below the Hysteresis value. Fan rotation speeds are reported in RPM (rotations per minute). An alarm is triggered if the rotation speed has dropped below a programmable limit. Fan -readings can be divided by a programmable divider (1, 2, 4, 8 for fan 1/2/3 -and 1, 2, 4, 8, 16, 32, 64 or 128 for fan 4/5) to give the readings more -range or accuracy. +readings can be divided by a programmable divider (1, 2, 4, 8, 16, +32, 64 or 128 for all fans) to give the readings more range or accuracy. Voltage sensors (also known as IN sensors) report their values in millivolts. An alarm is triggered if the voltage has crossed a programmable minimum diff --git a/Documentation/i2c/upgrading-clients b/Documentation/i2c/upgrading-clients new file mode 100644 index 0000000000000000000000000000000000000000..9a45f9bb6a255d421bd2903e69120c0a8e281017 --- /dev/null +++ b/Documentation/i2c/upgrading-clients @@ -0,0 +1,281 @@ +Upgrading I2C Drivers to the new 2.6 Driver Model +================================================= + +Ben Dooks + +Introduction +------------ + +This guide outlines how to alter existing Linux 2.6 client drivers from +the old to the new new binding methods. + + +Example old-style driver +------------------------ + + +struct example_state { + struct i2c_client client; + .... +}; + +static struct i2c_driver example_driver; + +static unsigned short ignore[] = { I2C_CLIENT_END }; +static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END }; + +I2C_CLIENT_INSMOD; + +static int example_attach(struct i2c_adapter *adap, int addr, int kind) +{ + struct example_state *state; + struct device *dev = &adap->dev; /* to use for dev_ reports */ + int ret; + + state = kzalloc(sizeof(struct example_state), GFP_KERNEL); + if (state == NULL) { + dev_err(dev, "failed to create our state\n"); + return -ENOMEM; + } + + example->client.addr = addr; + example->client.flags = 0; + example->client.adapter = adap; + + i2c_set_clientdata(&state->i2c_client, state); + strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE); + + ret = i2c_attach_client(&state->i2c_client); + if (ret < 0) { + dev_err(dev, "failed to attach client\n"); + kfree(state); + return ret; + } + + dev = &state->i2c_client.dev; + + /* rest of the initialisation goes here. */ + + dev_info(dev, "example client created\n"); + + return 0; +} + +static int __devexit example_detach(struct i2c_client *client) +{ + struct example_state *state = i2c_get_clientdata(client); + + i2c_detach_client(client); + kfree(state); + return 0; +} + +static int example_attach_adapter(struct i2c_adapter *adap) +{ + return i2c_probe(adap, &addr_data, example_attach); +} + +static struct i2c_driver example_driver = { + .driver = { + .owner = THIS_MODULE, + .name = "example", + }, + .attach_adapter = example_attach_adapter, + .detach_client = __devexit_p(example_detach), + .suspend = example_suspend, + .resume = example_resume, +}; + + +Updating the client +------------------- + +The new style binding model will check against a list of supported +devices and their associated address supplied by the code registering +the busses. This means that the driver .attach_adapter and +.detach_adapter methods can be removed, along with the addr_data, +as follows: + +- static struct i2c_driver example_driver; + +- static unsigned short ignore[] = { I2C_CLIENT_END }; +- static unsigned short normal_addr[] = { OUR_ADDR, I2C_CLIENT_END }; + +- I2C_CLIENT_INSMOD; + +- static int example_attach_adapter(struct i2c_adapter *adap) +- { +- return i2c_probe(adap, &addr_data, example_attach); +- } + + static struct i2c_driver example_driver = { +- .attach_adapter = example_attach_adapter, +- .detach_client = __devexit_p(example_detach), + } + +Add the probe and remove methods to the i2c_driver, as so: + + static struct i2c_driver example_driver = { ++ .probe = example_probe, ++ .remove = __devexit_p(example_remove), + } + +Change the example_attach method to accept the new parameters +which include the i2c_client that it will be working with: + +- static int example_attach(struct i2c_adapter *adap, int addr, int kind) ++ static int example_probe(struct i2c_client *client, ++ const struct i2c_device_id *id) + +Change the name of example_attach to example_probe to align it with the +i2c_driver entry names. The rest of the probe routine will now need to be +changed as the i2c_client has already been setup for use. + +The necessary client fields have already been setup before +the probe function is called, so the following client setup +can be removed: + +- example->client.addr = addr; +- example->client.flags = 0; +- example->client.adapter = adap; +- +- strlcpy(client->i2c_client.name, "example", I2C_NAME_SIZE); + +The i2c_set_clientdata is now: + +- i2c_set_clientdata(&state->client, state); ++ i2c_set_clientdata(client, state); + +The call to i2c_attach_client is no longer needed, if the probe +routine exits successfully, then the driver will be automatically +attached by the core. Change the probe routine as so: + +- ret = i2c_attach_client(&state->i2c_client); +- if (ret < 0) { +- dev_err(dev, "failed to attach client\n"); +- kfree(state); +- return ret; +- } + + +Remove the storage of 'struct i2c_client' from the 'struct example_state' +as we are provided with the i2c_client in our example_probe. Instead we +store a pointer to it for when it is needed. + +struct example_state { +- struct i2c_client client; ++ struct i2c_client *client; + +the new i2c client as so: + +- struct device *dev = &adap->dev; /* to use for dev_ reports */ ++ struct device *dev = &i2c_client->dev; /* to use for dev_ reports */ + +And remove the change after our client is attached, as the driver no +longer needs to register a new client structure with the core: + +- dev = &state->i2c_client.dev; + +In the probe routine, ensure that the new state has the client stored +in it: + +static int example_probe(struct i2c_client *i2c_client, + const struct i2c_device_id *id) +{ + struct example_state *state; + struct device *dev = &i2c_client->dev; + int ret; + + state = kzalloc(sizeof(struct example_state), GFP_KERNEL); + if (state == NULL) { + dev_err(dev, "failed to create our state\n"); + return -ENOMEM; + } + ++ state->client = i2c_client; + +Update the detach method, by changing the name to _remove and +to delete the i2c_detach_client call. It is possible that you +can also remove the ret variable as it is not not needed for +any of the core functions. + +- static int __devexit example_detach(struct i2c_client *client) ++ static int __devexit example_remove(struct i2c_client *client) +{ + struct example_state *state = i2c_get_clientdata(client); + +- i2c_detach_client(client); + +And finally ensure that we have the correct ID table for the i2c-core +and other utilities: + ++ struct i2c_device_id example_idtable[] = { ++ { "example", 0 }, ++ { } ++}; ++ ++MODULE_DEVICE_TABLE(i2c, example_idtable); + +static struct i2c_driver example_driver = { + .driver = { + .owner = THIS_MODULE, + .name = "example", + }, ++ .id_table = example_ids, + + +Our driver should now look like this: + +struct example_state { + struct i2c_client *client; + .... +}; + +static int example_probe(struct i2c_client *client, + const struct i2c_device_id *id) +{ + struct example_state *state; + struct device *dev = &client->dev; + + state = kzalloc(sizeof(struct example_state), GFP_KERNEL); + if (state == NULL) { + dev_err(dev, "failed to create our state\n"); + return -ENOMEM; + } + + state->client = client; + i2c_set_clientdata(client, state); + + /* rest of the initialisation goes here. */ + + dev_info(dev, "example client created\n"); + + return 0; +} + +static int __devexit example_remove(struct i2c_client *client) +{ + struct example_state *state = i2c_get_clientdata(client); + + kfree(state); + return 0; +} + +static struct i2c_device_id example_idtable[] = { + { "example", 0 }, + { } +}; + +MODULE_DEVICE_TABLE(i2c, example_idtable); + +static struct i2c_driver example_driver = { + .driver = { + .owner = THIS_MODULE, + .name = "example", + }, + .id_table = example_idtable, + .probe = example_probe, + .remove = __devexit_p(example_remove), + .suspend = example_suspend, + .resume = example_resume, +}; diff --git a/Documentation/ia64/Makefile b/Documentation/ia64/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..b75db69ec483ade17893c46076e2b64cffcedb96 --- /dev/null +++ b/Documentation/ia64/Makefile @@ -0,0 +1,8 @@ +# kbuild trick to avoid linker error. Can be omitted if a module is built. +obj- := dummy.o + +# List of programs to build +hostprogs-y := aliasing-test + +# Tell kbuild to always build the programs +always := $(hostprogs-y) diff --git a/Documentation/ia64/kvm.txt b/Documentation/ia64/kvm.txt index bec9d815da33a0495c7ea4d2eebecf7f4c1ab2fc..914d07f49268b728ab5c1d8a6e7b23b59cef0128 100644 --- a/Documentation/ia64/kvm.txt +++ b/Documentation/ia64/kvm.txt @@ -50,9 +50,9 @@ Note: For step 2, please make sure that host page size == TARGET_PAGE_SIZE of qe /usr/local/bin/qemu-system-ia64 -smp xx -m 512 -hda $your_image (xx is the number of virtual processors for the guest, now the maximum value is 4) -5. Known possibile issue on some platforms with old Firmware. +5. Known possible issue on some platforms with old Firmware. -If meet strange host crashe issues, try to solve it through either of the following ways: +In the event of strange host crash issues, try to solve it through either of the following ways: (1): Upgrade your Firmware to the latest one. @@ -65,8 +65,8 @@ index 0b53344..f02b0f7 100644 mov ar.pfs = loc1 mov rp = loc0 ;; -- srlz.d // seralize restoration of psr.l -+ srlz.i // seralize restoration of psr.l +- srlz.d // serialize restoration of psr.l ++ srlz.i // serialize restoration of psr.l + ;; br.ret.sptk.many b0 END(ia64_pal_call_static) diff --git a/Documentation/ia64/paravirt_ops.txt b/Documentation/ia64/paravirt_ops.txt new file mode 100644 index 0000000000000000000000000000000000000000..39ded02ec33fc8a06c3e09d34ad1760d9e417b08 --- /dev/null +++ b/Documentation/ia64/paravirt_ops.txt @@ -0,0 +1,137 @@ +Paravirt_ops on IA64 +==================== + 21 May 2008, Isaku Yamahata + + +Introduction +------------ +The aim of this documentation is to help with maintainability and/or to +encourage people to use paravirt_ops/IA64. + +paravirt_ops (pv_ops in short) is a way for virtualization support of +Linux kernel on x86. Several ways for virtualization support were +proposed, paravirt_ops is the winner. +On the other hand, now there are also several IA64 virtualization +technologies like kvm/IA64, xen/IA64 and many other academic IA64 +hypervisors so that it is good to add generic virtualization +infrastructure on Linux/IA64. + + +What is paravirt_ops? +--------------------- +It has been developed on x86 as virtualization support via API, not ABI. +It allows each hypervisor to override operations which are important for +hypervisors at API level. And it allows a single kernel binary to run on +all supported execution environments including native machine. +Essentially paravirt_ops is a set of function pointers which represent +operations corresponding to low level sensitive instructions and high +level functionalities in various area. But one significant difference +from usual function pointer table is that it allows optimization with +binary patch. It is because some of these operations are very +performance sensitive and indirect call overhead is not negligible. +With binary patch, indirect C function call can be transformed into +direct C function call or in-place execution to eliminate the overhead. + +Thus, operations of paravirt_ops are classified into three categories. +- simple indirect call + These operations correspond to high level functionality so that the + overhead of indirect call isn't very important. + +- indirect call which allows optimization with binary patch + Usually these operations correspond to low level instructions. They + are called frequently and performance critical. So the overhead is + very important. + +- a set of macros for hand written assembly code + Hand written assembly codes (.S files) also need paravirtualization + because they include sensitive instructions or some of code paths in + them are very performance critical. + + +The relation to the IA64 machine vector +--------------------------------------- +Linux/IA64 has the IA64 machine vector functionality which allows the +kernel to switch implementations (e.g. initialization, ipi, dma api...) +depending on executing platform. +We can replace some implementations very easily defining a new machine +vector. Thus another approach for virtualization support would be +enhancing the machine vector functionality. +But paravirt_ops approach was taken because +- virtualization support needs wider support than machine vector does. + e.g. low level instruction paravirtualization. It must be + initialized very early before platform detection. + +- virtualization support needs more functionality like binary patch. + Probably the calling overhead might not be very large compared to the + emulation overhead of virtualization. However in the native case, the + overhead should be eliminated completely. + A single kernel binary should run on each environment including native, + and the overhead of paravirt_ops on native environment should be as + small as possible. + +- for full virtualization technology, e.g. KVM/IA64 or + Xen/IA64 HVM domain, the result would be + (the emulated platform machine vector. probably dig) + (pv_ops). + This means that the virtualization support layer should be under + the machine vector layer. + +Possibly it might be better to move some function pointers from +paravirt_ops to machine vector. In fact, Xen domU case utilizes both +pv_ops and machine vector. + + +IA64 paravirt_ops +----------------- +In this section, the concrete paravirt_ops will be discussed. +Because of the architecture difference between ia64 and x86, the +resulting set of functions is very different from x86 pv_ops. + +- C function pointer tables +They are not very performance critical so that simple C indirect +function call is acceptable. The following structures are defined at +this moment. For details see linux/include/asm-ia64/paravirt.h + - struct pv_info + This structure describes the execution environment. + - struct pv_init_ops + This structure describes the various initialization hooks. + - struct pv_iosapic_ops + This structure describes hooks to iosapic operations. + - struct pv_irq_ops + This structure describes hooks to irq related operations + - struct pv_time_op + This structure describes hooks to steal time accounting. + +- a set of indirect calls which need optimization +Currently this class of functions correspond to a subset of IA64 +intrinsics. At this moment the optimization with binary patch isn't +implemented yet. +struct pv_cpu_op is defined. For details see +linux/include/asm-ia64/paravirt_privop.h +Mostly they correspond to ia64 intrinsics 1-to-1. +Caveat: Now they are defined as C indirect function pointers, but in +order to support binary patch optimization, they will be changed +using GCC extended inline assembly code. + +- a set of macros for hand written assembly code (.S files) +For maintenance purpose, the taken approach for .S files is single +source code and compile multiple times with different macros definitions. +Each pv_ops instance must define those macros to compile. +The important thing here is that sensitive, but non-privileged +instructions must be paravirtualized and that some privileged +instructions also need paravirtualization for reasonable performance. +Developers who modify .S files must be aware of that. At this moment +an easy checker is implemented to detect paravirtualization breakage. +But it doesn't cover all the cases. + +Sometimes this set of macros is called pv_cpu_asm_op. But there is no +corresponding structure in the source code. +Those macros mostly 1:1 correspond to a subset of privileged +instructions. See linux/include/asm-ia64/native/inst.h. +And some functions written in assembly also need to be overrided so +that each pv_ops instance have to define some macros. Again see +linux/include/asm-ia64/native/inst.h. + + +Those structures must be initialized very early before start_kernel. +Probably initialized in head.S using multi entry point or some other trick. +For native case implementation see linux/arch/ia64/kernel/paravirt.c. diff --git a/Documentation/input/cs461x.txt b/Documentation/input/cs461x.txt index afe0d6543e093fa5dfa4758bbb0cbec90ff0bce3..202e9dbacec39a96990c5722c4b1ab832b939b61 100644 --- a/Documentation/input/cs461x.txt +++ b/Documentation/input/cs461x.txt @@ -31,7 +31,7 @@ The driver works with ALSA drivers simultaneously. For example, the xracer uses joystick as input device and PCM device as sound output in one time. There are no sound or input collisions detected. The source code have comments about them; but I've found the joystick can be initialized -separately of ALSA modules. So, you canm use only one joystick driver +separately of ALSA modules. So, you can use only one joystick driver without ALSA drivers. The ALSA drivers are not needed to compile or run this driver. diff --git a/Documentation/input/gameport-programming.txt b/Documentation/input/gameport-programming.txt index 14e0a8b70225f5cce93c2cf8bdb85a0aa984b8ee..03a74fc3b49679c0326a59faa43b2e423751e0c5 100644 --- a/Documentation/input/gameport-programming.txt +++ b/Documentation/input/gameport-programming.txt @@ -1,5 +1,3 @@ -$Id: gameport-programming.txt,v 1.3 2001/04/24 13:51:37 vojtech Exp $ - Programming gameport drivers ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ diff --git a/Documentation/input/input.txt b/Documentation/input/input.txt index ff8cea0225f90bdce6c28adc5b3af5816f9eea44..686ee9932dffd86fa78775859a97815ecc514be2 100644 --- a/Documentation/input/input.txt +++ b/Documentation/input/input.txt @@ -1,7 +1,6 @@ Linux Input drivers v1.0 (c) 1999-2001 Vojtech Pavlik Sponsored by SuSE - $Id: input.txt,v 1.8 2002/05/29 03:15:01 bradleym Exp $ ---------------------------------------------------------------------------- 0. Disclaimer diff --git a/Documentation/input/joystick-api.txt b/Documentation/input/joystick-api.txt index acbd32b88454dc5c48c7a10bb112757910d3c7e5..c507330740cd4fb14e37e617d01d95262057d129 100644 --- a/Documentation/input/joystick-api.txt +++ b/Documentation/input/joystick-api.txt @@ -5,8 +5,6 @@ 7 Aug 1998 - $Id: joystick-api.txt,v 1.2 2001/05/08 21:21:23 vojtech Exp $ - 1. Initialization ~~~~~~~~~~~~~~~~~ diff --git a/Documentation/input/joystick-parport.txt b/Documentation/input/joystick-parport.txt index ede5f33daad3dbc0f7346654a348fd4eb28d7387..1c856f32ff2c3bc880746533c149ec6cc146806f 100644 --- a/Documentation/input/joystick-parport.txt +++ b/Documentation/input/joystick-parport.txt @@ -2,7 +2,6 @@ (c) 1998-2000 Vojtech Pavlik (c) 1998 Andree Borrmann Sponsored by SuSE - $Id: joystick-parport.txt,v 1.6 2001/09/25 09:31:32 vojtech Exp $ ---------------------------------------------------------------------------- 0. Disclaimer diff --git a/Documentation/input/joystick.txt b/Documentation/input/joystick.txt index 389de9bd987894017bb25ddc95b911c98526bdcb..154d767b2acbc4be459044d78e7f63b975faa207 100644 --- a/Documentation/input/joystick.txt +++ b/Documentation/input/joystick.txt @@ -1,7 +1,6 @@ Linux Joystick driver v2.0.0 (c) 1996-2000 Vojtech Pavlik Sponsored by SuSE - $Id: joystick.txt,v 1.12 2002/03/03 12:13:07 jdeneux Exp $ ---------------------------------------------------------------------------- 0. Disclaimer diff --git a/Documentation/ioctl-number.txt b/Documentation/ioctl-number.txt index 3bb5f466a90db3e971b42fb26c60d716a30878ed..1c6b545635a27741abe8f3b5bb10490416bce0fa 100644 --- a/Documentation/ioctl-number.txt +++ b/Documentation/ioctl-number.txt @@ -105,7 +105,6 @@ Code Seq# Include File Comments 'T' all linux/soundcard.h conflict! 'T' all asm-i386/ioctls.h conflict! 'U' 00-EF linux/drivers/usb/usb.h -'U' F0-FF drivers/usb/auerswald.c 'V' all linux/vt.h 'W' 00-1F linux/watchdog.h conflict! 'W' 00-1F linux/wanrouter.h conflict! diff --git a/Documentation/ioctl/cdrom.txt b/Documentation/ioctl/cdrom.txt index 62d4af44ec4a2e0a4987d48687dc0bd1d01dcbf0..59df81c8da2b86dd71394ccb85ab34bc1cba4595 100644 --- a/Documentation/ioctl/cdrom.txt +++ b/Documentation/ioctl/cdrom.txt @@ -271,14 +271,14 @@ CDROMCLOSETRAY pendant of CDROMEJECT usage: - ioctl(fd, CDROMEJECT, 0); + ioctl(fd, CDROMCLOSETRAY, 0); inputs: none outputs: none error returns: - ENOSYS cd drive not capable of ejecting + ENOSYS cd drive not capable of closing the tray EBUSY other processes are accessing drive, or door is locked notes: diff --git a/Documentation/ioctl/ioctl-decoding.txt b/Documentation/ioctl/ioctl-decoding.txt index bfdf7f3ee4f05e0f52e08c8aee1ad55c248b8af4..e35efb0cec2e64a99538d24c2c7c7b38846abc26 100644 --- a/Documentation/ioctl/ioctl-decoding.txt +++ b/Documentation/ioctl/ioctl-decoding.txt @@ -1,6 +1,6 @@ To decode a hex IOCTL code: -Most architecures use this generic format, but check +Most architectures use this generic format, but check include/ARCH/ioctl.h for specifics, e.g. powerpc uses 3 bits to encode read/write and 13 bits for size. @@ -18,7 +18,7 @@ uses 3 bits to encode read/write and 13 bits for size. 7-0 function # - So for example 0x82187201 is a read with arg length of 0x218, +So for example 0x82187201 is a read with arg length of 0x218, character 'r' function 1. Grepping the source reveals this is: #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2]) diff --git a/Documentation/iostats.txt b/Documentation/iostats.txt index 5925c3cd030d55884b3f962ed40ced5a20709cf4..59a69ec67c408a54ee724df4d4a64a69a8317f68 100644 --- a/Documentation/iostats.txt +++ b/Documentation/iostats.txt @@ -143,7 +143,7 @@ disk and partition statistics are consistent again. Since we still don't keep record of the partition-relative address, an operation is attributed to the partition which contains the first sector of the request after the eventual merges. As requests can be merged across partition, this could lead -to some (probably insignificant) innacuracy. +to some (probably insignificant) inaccuracy. Additional notes ---------------- diff --git a/Documentation/isdn/README.mISDN b/Documentation/isdn/README.mISDN new file mode 100644 index 0000000000000000000000000000000000000000..cd8bf920e77bcac0ec8d4068db18441bd28083d5 --- /dev/null +++ b/Documentation/isdn/README.mISDN @@ -0,0 +1,6 @@ +mISDN is a new modular ISDN driver, in the long term it should replace +the old I4L driver architecture for passiv ISDN cards. +It was designed to allow a broad range of applications and interfaces +but only have the basic function in kernel, the interface to the user +space is based on sockets with a own address family AF_ISDN. + diff --git a/Documentation/ja_JP/HOWTO b/Documentation/ja_JP/HOWTO index 488c77fa3aae138c41168408d983791819f5a7fb..0775cf4798b22f89d484f171f3a79726712ed695 100644 --- a/Documentation/ja_JP/HOWTO +++ b/Documentation/ja_JP/HOWTO @@ -11,14 +11,14 @@ for non English (read: Japanese) speakers and is not intended as a fork. So if you have any comments or updates for this file, please try to update the original English file first. -Last Updated: 2007/11/16 +Last Updated: 2008/08/21 ================================== これは、 -linux-2.6.24/Documentation/HOWTO +linux-2.6.27/Documentation/HOWTO の和訳です。 翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ > -翻訳日: 2007/11/10 +翻訳日: 2008/8/5 翻訳者: Tsugikazu Shibata 校正者: 松倉さん 小林 雅典さん (Masanori Kobayasi) @@ -287,13 +287,15 @@ Linux カーネルの開発プロセスは現在幾つかの異なるメイン に安定した状態にあると判断したときにリリースされます。目標は毎週新 しい -rc カーネルをリリースすることです。 - - 以下の URL で各 -rc リリースに存在する既知の後戻り問題のリスト - が追跡されます- - http://kernelnewbies.org/known_regressions - - このプロセスはカーネルが 「準備ができた」と考えられるまで継続しま す。このプロセスはだいたい 6週間継続します。 + - 各リリースでの既知の後戻り問題(regression: このリリースの中で新規 + に作り込まれた問題を指す) はその都度 Linux-kernel メーリングリスト + に投稿されます。ゴールとしては、カーネルが 「準備ができた」と宣言 + する前にこのリストの長さをゼロに減らすことですが、現実には、数個の + 後戻り問題がリリース時にたびたび残ってしまいます。 + Andrew Morton が Linux-kernel メーリングリストにカーネルリリースについ て書いたことをここで言っておくことは価値があります- 「カーネルがいつリリースされるかは誰も知りません。なぜなら、これは現 @@ -303,18 +305,20 @@ Andrew Morton が Linux-kernel メーリングリストにカーネルリリー 2.6.x.y -stable カーネルツリー --------------------------- -バージョンに4つ目の数字がついたカーネルは -stable カーネルです。これに -は、2.6.x カーネルで見つかったセキュリティ問題や重大な後戻りに対する比 -較的小さい重要な修正が含まれます。 +バージョン番号が4つの数字に分かれているカーネルは -stable カーネルです。 +これには、2.6.x カーネルで見つかったセキュリティ問題や重大な後戻りに対 +する比較的小さい重要な修正が含まれます。 これは、開発/実験的バージョンのテストに協力することに興味が無く、 最新の安定したカーネルを使いたいユーザに推奨するブランチです。 -もし、2.6.x.y カーネルが存在しない場合には、番号が一番大きい 2.6.x -が最新の安定版カーネルです。 +もし、2.6.x.y カーネルが存在しない場合には、番号が一番大きい 2.6.x が +最新の安定版カーネルです。 -2.6.x.y は "stable" チーム でメンテされており、だ -いたい隔週でリリースされています。 +2.6.x.y は "stable" チーム でメンテされており、必 +要に応じてリリースされます。通常のリリース期間は 2週間毎ですが、差し迫っ +た問題がなければもう少し長くなることもあります。セキュリティ関連の問題 +の場合はこれに対してだいたいの場合、すぐにリリースがされます。 カーネルツリーに入っている、Documentation/stable_kernel_rules.txt ファ イルにはどのような種類の変更が -stable ツリーに受け入れ可能か、またリ @@ -341,7 +345,9 @@ linux-kernel メーリングリストで収集された多数のパッチと同 メインラインへ入れるように Linus にプッシュします。 メインカーネルツリーに含めるために Linus に送る前に、すべての新しいパッ -チが -mm ツリーでテストされることが強く推奨されます。 +チが -mm ツリーでテストされることが強く推奨されています。マージウィン +ドウが開く前に -mm ツリーに現れなかったパッチはメインラインにマージさ +れることは困難になります。 これらのカーネルは安定して動作すべきシステムとして使うのには適切ではあ りませんし、カーネルブランチの中でももっとも動作にリスクが高いものです。 @@ -395,13 +401,15 @@ linux-kernel メーリングリストで収集された多数のパッチと同 - pcmcia, Dominik Brodowski git.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6.git - - SCSI, James Bottomley + - SCSI, James Bottomley git.kernel.org:/pub/scm/linux/kernel/git/jejb/scsi-misc-2.6.git + - x86, Ingo Molnar + git://git.kernel.org/pub/scm/linux/kernel/git/x86/linux-2.6-x86.git + quilt ツリー- - - USB, PCI ドライバコアと I2C, Greg Kroah-Hartman + - USB, ドライバコアと I2C, Greg Kroah-Hartman kernel.org/pub/linux/kernel/people/gregkh/gregkh-2.6/ - - x86-64 と i386 の仲間 Andi Kleen その他のカーネルツリーは http://git.kernel.org/ と MAINTAINERS ファ イルに一覧表があります。 @@ -412,13 +420,32 @@ linux-kernel メーリングリストで収集された多数のパッチと同 bugzilla.kernel.org は Linux カーネル開発者がカーネルのバグを追跡する 場所です。ユーザは見つけたバグの全てをこのツールで報告すべきです。 どう kernel bugzilla を使うかの詳細は、以下を参照してください- - http://test.kernel.org/bugzilla/faq.html - + http://bugzilla.kernel.org/page.cgi?id=faq.html メインカーネルソースディレクトリにあるファイル REPORTING-BUGS はカーネ ルバグらしいものについてどうレポートするかの良いテンプレートであり、問 題の追跡を助けるためにカーネル開発者にとってどんな情報が必要なのかの詳 細が書かれています。 +バグレポートの管理 +------------------- + +あなたのハッキングのスキルを訓練する最高の方法のひとつに、他人がレポー +トしたバグを修正することがあります。あなたがカーネルをより安定化させる +こに寄与するということだけでなく、あなたは 現実の問題を修正することを +学び、自分のスキルも強化でき、また他の開発者があなたの存在に気がつき +ます。バグを修正することは、多くの開発者の中から自分が功績をあげる最善 +の道です、なぜなら多くの人は他人のバグの修正に時間を浪費することを好ま +ないからです。 + +すでにレポートされたバグのために仕事をするためには、 +http://bugzilla.kernel.org に行ってください。もし今後のバグレポートに +ついてアドバイスを受けたいのであれば、bugme-new メーリングリスト(新し +いバグレポートだけがここにメールされる) または bugme-janitor メーリン +グリスト(bugzilla の変更毎にここにメールされる)を購読できます。 + + http://lists.linux-foundation.org/mailman/listinfo/bugme-new + http://lists.linux-foundation.org/mailman/listinfo/bugme-janitors + メーリングリスト ------------- diff --git a/Documentation/ja_JP/SubmitChecklist b/Documentation/ja_JP/SubmitChecklist new file mode 100644 index 0000000000000000000000000000000000000000..6c42e071d7233cf065be56a13403aeb404927e75 --- /dev/null +++ b/Documentation/ja_JP/SubmitChecklist @@ -0,0 +1,111 @@ +NOTE: +This is a version of Documentation/SubmitChecklist into Japanese. +This document is maintained by Takenori Nagano +and the JF Project team . +If you find any difference between this document and the original file +or a problem with the translation, +please contact the maintainer of this file or JF project. + +Please also note that the purpose of this file is to be easier to read +for non English (read: Japanese) speakers and is not intended as a +fork. So if you have any comments or updates of this file, please try +to update the original English file first. + +Last Updated: 2008/07/14 +================================== +これは、 +linux-2.6.26/Documentation/SubmitChecklist の和訳です。 + +翻訳団体: JF プロジェクト < http://www.linux.or.jp/JF/ > +翻訳日: 2008/07/14 +翻訳者: Takenori Nagano +校正者: Masanori Kobayashi さん +================================== + + +Linux カーネルパッチ投稿者向けチェックリスト +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +本書では、パッチをより素早く取り込んでもらいたい開発者が実践すべき基本的な事柄 +をいくつか紹介します。ここにある全ての事柄は、Documentation/SubmittingPatches +などのLinuxカーネルパッチ投稿に際しての心得を補足するものです。 + + 1: 妥当なCONFIGオプションや変更されたCONFIGオプション、つまり =y, =m, =n + 全てで正しくビルドできることを確認してください。その際、gcc及びリンカが + warningやerrorを出していないことも確認してください。 + + 2: allnoconfig, allmodconfig オプションを用いて正しくビルドできることを + 確認してください。 + + 3: 手許のクロスコンパイルツールやOSDLのPLMのようなものを用いて、複数の + アーキテクチャにおいても正しくビルドできることを確認してください。 + + 4: 64bit長の'unsigned long'を使用しているppc64は、クロスコンパイルでの + チェックに適当なアーキテクチャです。 + + 5: カーネルコーディングスタイルに準拠しているかどうか確認してください(!) + + 6: CONFIGオプションの追加・変更をした場合には、CONFIGメニューが壊れていない + ことを確認してください。 + + 7: 新しくKconfigのオプションを追加する際には、必ずそのhelpも記述してください。 + + 8: 適切なKconfigの依存関係を考えながら慎重にチェックしてください。 + ただし、この作業はマシンを使ったテストできちんと行うのがとても困難です。 + うまくやるには、自分の頭で考えることです。 + + 9: sparseを利用してちゃんとしたコードチェックをしてください。 + +10: 'make checkstack' と 'make namespacecheck' を利用し、問題が発見されたら + 修正してください。'make checkstack' は明示的に問題を示しませんが、どれか + 1つの関数が512バイトより大きいスタックを使っていれば、修正すべき候補と + なります。 + +11: グローバルなkernel API を説明する kernel-doc をソースの中に含めてください。 + ( staticな関数においては必須ではありませんが、含めてもらっても結構です ) + そして、'make htmldocs' もしくは 'make mandocs' を利用して追記した + ドキュメントのチェックを行い、問題が見つかった場合には修正を行ってください。 + +12: CONFIG_PREEMPT, CONFIG_DEBUG_PREEMPT, CONFIG_DEBUG_SLAB, + CONFIG_DEBUG_PAGEALLOC, CONFIG_DEBUG_MUTEXES, CONFIG_DEBUG_SPINLOCK, + CONFIG_DEBUG_SPINLOCK_SLEEP これら全てを同時に有効にして動作確認を + 行ってください。 + +13: CONFIG_SMP, CONFIG_PREEMPT を有効にした場合と無効にした場合の両方で + ビルドした上、動作確認を行ってください。 + +14: もしパッチがディスクのI/O性能などに影響を与えるようであれば、 + 'CONFIG_LBD'オプションを有効にした場合と無効にした場合の両方で + テストを実施してみてください。 + +15: lockdepの機能を全て有効にした上で、全てのコードパスを評価してください。 + +16: /proc に新しいエントリを追加した場合には、Documentation/ 配下に + 必ずドキュメントを追加してください。 + +17: 新しいブートパラメータを追加した場合には、 + 必ずDocumentation/kernel-parameters.txt に説明を追加してください。 + +18: 新しくmoduleにパラメータを追加した場合には、MODULE_PARM_DESC()を + 利用して必ずその説明を記述してください。 + +19: 新しいuserspaceインタフェースを作成した場合には、Documentation/ABI/ に + Documentation/ABI/README を参考にして必ずドキュメントを追加してください。 + +20: 'make headers_check'を実行して全く問題がないことを確認してください。 + +21: 少なくともslabアロケーションとpageアロケーションに失敗した場合の + 挙動について、fault-injectionを利用して確認してください。 + Documentation/fault-injection/ を参照してください。 + + 追加したコードがかなりの量であったならば、サブシステム特有の + fault-injectionを追加したほうが良いかもしれません。 + +22: 新たに追加したコードは、`gcc -W'でコンパイルしてください。 + このオプションは大量の不要なメッセージを出力しますが、 + "warning: comparison between signed and unsigned" のようなメッセージは、 + バグを見つけるのに役に立ちます。 + +23: 投稿したパッチが -mm パッチセットにマージされた後、全ての既存のパッチや + VM, VFS およびその他のサブシステムに関する様々な変更と、現時点でも共存 + できることを確認するテストを行ってください。 diff --git a/Documentation/kdump/kdump.txt b/Documentation/kdump/kdump.txt index 9691c7f5166c1ea60acfbc383799dc5ec4dcbd21..0705040531a534c2c153c1289fe0febf92926a61 100644 --- a/Documentation/kdump/kdump.txt +++ b/Documentation/kdump/kdump.txt @@ -65,26 +65,26 @@ Install kexec-tools 2) Download the kexec-tools user-space package from the following URL: -http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools-testing.tar.gz +http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/kexec-tools.tar.gz -This is a symlink to the latest version, which at the time of writing is -20061214, the only release of kexec-tools-testing so far. As other versions -are released, the older ones will remain available at -http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/ +This is a symlink to the latest version. -Note: Latest kexec-tools-testing git tree is available at +The latest kexec-tools git tree is available at: -git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools-testing.git +git://git.kernel.org/pub/scm/linux/kernel/git/horms/kexec-tools.git or -http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools-testing.git;a=summary +http://www.kernel.org/git/?p=linux/kernel/git/horms/kexec-tools.git + +More information about kexec-tools can be found at +http://www.kernel.org/pub/linux/kernel/people/horms/kexec-tools/README.html 3) Unpack the tarball with the tar command, as follows: - tar xvpzf kexec-tools-testing.tar.gz + tar xvpzf kexec-tools.tar.gz 4) Change to the kexec-tools directory, as follows: - cd kexec-tools-testing-VERSION + cd kexec-tools-VERSION 5) Configure the package, as follows: diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 09ad7450647bc81dff32a3eaf7ea3c0858f4a896..1150444a21ab64140f13e706797f16664e28244f 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -87,7 +87,8 @@ parameter is applicable: SH SuperH architecture is enabled. SMP The kernel is an SMP kernel. SPARC Sparc architecture is enabled. - SWSUSP Software suspend is enabled. + SWSUSP Software suspend (hibernation) is enabled. + SUSPEND System suspend states are enabled. TS Appropriate touchscreen support is enabled. USB USB support is enabled. USBHID USB Human Interface Device support is enabled. @@ -147,10 +148,12 @@ and is between 256 and 4096 characters. It is defined in the file default: 0 acpi_sleep= [HW,ACPI] Sleep options - Format: { s3_bios, s3_mode, s3_beep, old_ordering } + Format: { s3_bios, s3_mode, s3_beep, s4_nohwsig, old_ordering } See Documentation/power/video.txt for s3_bios and s3_mode. s3_beep is for debugging; it makes the PC's speaker beep as soon as the kernel's real-mode entry point is called. + s4_nohwsig prevents ACPI hardware signature from being + used during resume from hibernation. old_ordering causes the ACPI 1.0 ordering of the _PTS control method, wrt putting devices into low power states, to be enforced (the ACPI 2.0 ordering of _PTS is @@ -362,6 +365,8 @@ and is between 256 and 4096 characters. It is defined in the file no delay (0). Format: integer + bootmem_debug [KNL] Enable bootmem allocator debug messages. + bttv.card= [HW,V4L] bttv (bt848 + bt878 based grabber cards) bttv.radio= Most important insmod options are available as kernel args too. @@ -774,8 +779,22 @@ and is between 256 and 4096 characters. It is defined in the file hisax= [HW,ISDN] See Documentation/isdn/README.HiSax. - hugepages= [HW,X86-32,IA-64] Maximal number of HugeTLB pages. - hugepagesz= [HW,IA-64,PPC] The size of the HugeTLB pages. + hugepages= [HW,X86-32,IA-64] HugeTLB pages to allocate at boot. + hugepagesz= [HW,IA-64,PPC,X86-64] The size of the HugeTLB pages. + On x86-64 and powerpc, this option can be specified + multiple times interleaved with hugepages= to reserve + huge pages of different sizes. Valid pages sizes on + x86-64 are 2M (when the CPU supports "pse") and 1G + (when the CPU supports the "pdpe1gb" cpuinfo flag) + Note that 1GB pages can only be allocated at boot time + using hugepages= and not freed afterwards. + default_hugepagesz= + [same as hugepagesz=] The size of the default + HugeTLB page size. This is the size represented by + the legacy /proc/ hugepages APIs, used for SHM, and + default size when mounting hugetlbfs filesystems. + Defaults to the default architecture's huge page size + if not specified. i8042.direct [HW] Put keyboard port into non-translated mode i8042.dumbkbd [HW] Pretend that controller can only read data from @@ -1055,6 +1074,9 @@ and is between 256 and 4096 characters. It is defined in the file * [no]ncq: Turn on or off NCQ. + * nohrst, nosrst, norst: suppress hard, soft + and both resets. + If there are multiple matching configurations changing the same attribute, the last one is used. @@ -1206,7 +1228,7 @@ and is between 256 and 4096 characters. It is defined in the file or memmap=0x10000$0x18690000 - memtest= [KNL,X86_64] Enable memtest + memtest= [KNL,X86] Enable memtest Format: range: 0,4 : pattern number default : 0 @@ -1225,6 +1247,14 @@ and is between 256 and 4096 characters. It is defined in the file mga= [HW,DRM] + mminit_loglevel= + [KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this + parameter allows control of the logging verbosity for + the additional memory initialisation checks. A value + of 0 disables mminit logging and a level of 4 will + log everything. Information is printed at KERN_DEBUG + so loglevel=8 may also need to be specified. + mousedev.tap_time= [MOUSE] Maximum time between finger touching and leaving touchpad surface for touch to be considered @@ -1279,6 +1309,13 @@ and is between 256 and 4096 characters. It is defined in the file This usage is only documented in each driver source file if at all. + nf_conntrack.acct= + [NETFILTER] Enable connection tracking flow accounting + 0 to disable accounting + 1 to enable accounting + Default value depends on CONFIG_NF_CT_ACCT that is + going to be removed in 2.6.29. + nfsaddrs= [NFS] See Documentation/filesystems/nfsroot.txt. @@ -2027,6 +2064,9 @@ and is between 256 and 4096 characters. It is defined in the file snd-ymfpci= [HW,ALSA] + softlockup_panic= + [KNL] Should the soft-lockup detector generate panics. + sonypi.*= [HW] Sony Programmable I/O Control Device driver See Documentation/sonypi.txt @@ -2091,6 +2131,12 @@ and is between 256 and 4096 characters. It is defined in the file tdfx= [HW,DRM] + test_suspend= [SUSPEND] + Specify "mem" (for Suspend-to-RAM) or "standby" (for + standby suspend) as the system sleep state to briefly + enter during system startup. The system is woken from + this state using a wakeup-capable RTC alarm. + thash_entries= [KNL,NET] Set number of hash buckets for TCP connection @@ -2118,13 +2164,6 @@ and is between 256 and 4096 characters. It is defined in the file : poll all this frequency 0: no polling (default) - tipar.timeout= [HW,PPT] - Set communications timeout in tenths of a second - (default 15). - - tipar.delay= [HW,PPT] - Set inter-bit delay in microseconds (default 10). - tmscsim= [HW,SCSI] See comment before function dc390_setup() in drivers/scsi/tmscsim.c. @@ -2158,6 +2197,10 @@ and is between 256 and 4096 characters. It is defined in the file Note that genuine overcurrent events won't be reported either. + unknown_nmi_panic + [X86-32,X86-64] + Set unknown_nmi_panic=1 early on boot. + usbcore.autosuspend= [USB] The autosuspend time delay (in seconds) used for newly-detected USB devices (default 2). This diff --git a/Documentation/keys.txt b/Documentation/keys.txt index d5c7a57d17007fa0f43558b270b0e4c302d5f8aa..b56aacc1fff864022dbdf67aac997d54f0d14f32 100644 --- a/Documentation/keys.txt +++ b/Documentation/keys.txt @@ -864,7 +864,7 @@ payload contents" for more information. request_key_with_auxdata() respectively. These two functions return with the key potentially still under - construction. To wait for contruction completion, the following should be + construction. To wait for construction completion, the following should be called: int wait_for_key_construction(struct key *key, bool intr); diff --git a/Documentation/laptops/thinkpad-acpi.txt b/Documentation/laptops/thinkpad-acpi.txt index 64b3f146e4b09aa4d2cd312e97689f9eba503347..71f0fe1fc1b0f341996fa3fbef5c59b6af8ebd46 100644 --- a/Documentation/laptops/thinkpad-acpi.txt +++ b/Documentation/laptops/thinkpad-acpi.txt @@ -1,7 +1,7 @@ ThinkPad ACPI Extras Driver - Version 0.20 - April 09th, 2008 + Version 0.21 + May 29th, 2008 Borislav Deianov Henrique de Moraes Holschuh @@ -44,7 +44,7 @@ detailed description): - LCD brightness control - Volume control - Fan control and monitoring: fan speed, fan enable/disable - - Experimental: WAN enable and disable + - WAN enable and disable A compatibility table by model and feature is maintained on the web site, http://ibm-acpi.sf.net/. I appreciate any success or failure @@ -621,7 +621,8 @@ Bluetooth --------- procfs: /proc/acpi/ibm/bluetooth -sysfs device attribute: bluetooth_enable +sysfs device attribute: bluetooth_enable (deprecated) +sysfs rfkill class: switch "tpacpi_bluetooth_sw" This feature shows the presence and current state of a ThinkPad Bluetooth device in the internal ThinkPad CDC slot. @@ -643,8 +644,12 @@ Sysfs notes: 0: disables Bluetooth / Bluetooth is disabled 1: enables Bluetooth / Bluetooth is enabled. - Note: this interface will be probably be superseded by the - generic rfkill class, so it is NOT to be considered stable yet. + Note: this interface has been superseded by the generic rfkill + class. It has been deprecated, and it will be removed in year + 2010. + + rfkill controller switch "tpacpi_bluetooth_sw": refer to + Documentation/rfkill.txt for details. Video output control -- /proc/acpi/ibm/video -------------------------------------------- @@ -1370,16 +1375,12 @@ with EINVAL, try to set pwm1_enable to 1 and pwm1 to at least 128 (255 would be the safest choice, though). -EXPERIMENTAL: WAN ------------------ +WAN +--- procfs: /proc/acpi/ibm/wan -sysfs device attribute: wwan_enable - -This feature is marked EXPERIMENTAL because the implementation -directly accesses hardware registers and may not work as expected. USE -WITH CAUTION! To use this feature, you need to supply the -experimental=1 parameter when loading the module. +sysfs device attribute: wwan_enable (deprecated) +sysfs rfkill class: switch "tpacpi_wwan_sw" This feature shows the presence and current state of a W-WAN (Sierra Wireless EV-DO) device. @@ -1404,8 +1405,12 @@ Sysfs notes: 0: disables WWAN card / WWAN card is disabled 1: enables WWAN card / WWAN card is enabled. - Note: this interface will be probably be superseded by the - generic rfkill class, so it is NOT to be considered stable yet. + Note: this interface has been superseded by the generic rfkill + class. It has been deprecated, and it will be removed in year + 2010. + + rfkill controller switch "tpacpi_wwan_sw": refer to + Documentation/rfkill.txt for details. Multiple Commands, Module Parameters ------------------------------------ diff --git a/Documentation/leds-class.txt b/Documentation/leds-class.txt index 18860ad9935a7876746c00660f36b9fd90529499..6399557cdab3d6542a0feea0c0cd2c6b2af5ffad 100644 --- a/Documentation/leds-class.txt +++ b/Documentation/leds-class.txt @@ -59,7 +59,7 @@ Hardware accelerated blink of LEDs Some LEDs can be programmed to blink without any CPU interaction. To support this feature, a LED driver can optionally implement the -blink_set() function (see ). If implemeted, triggers can +blink_set() function (see ). If implemented, triggers can attempt to use it before falling back to software timers. The blink_set() function should return 0 if the blink setting is supported, or -EINVAL otherwise, which means that LED blinking will be handled by software. diff --git a/Documentation/lguest/lguest.c b/Documentation/lguest/lguest.c index 82fafe0429fed8dc441411059be52b33154dd8a8..7228369d1014b956ff3c8843d8ef642a225682b3 100644 --- a/Documentation/lguest/lguest.c +++ b/Documentation/lguest/lguest.c @@ -36,11 +36,13 @@ #include #include #include +#include #include "linux/lguest_launcher.h" #include "linux/virtio_config.h" #include "linux/virtio_net.h" #include "linux/virtio_blk.h" #include "linux/virtio_console.h" +#include "linux/virtio_rng.h" #include "linux/virtio_ring.h" #include "asm-x86/bootparam.h" /*L:110 We can ignore the 39 include files we need for this program, but I do @@ -64,8 +66,8 @@ typedef uint8_t u8; #endif /* We can have up to 256 pages for devices. */ #define DEVICE_PAGES 256 -/* This will occupy 2 pages: it must be a power of 2. */ -#define VIRTQUEUE_NUM 128 +/* This will occupy 3 pages: it must be a power of 2. */ +#define VIRTQUEUE_NUM 256 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows * this, and although I wouldn't recommend it, it works quite nicely here. */ @@ -74,12 +76,19 @@ static bool verbose; do { if (verbose) printf(args); } while(0) /*:*/ -/* The pipe to send commands to the waker process */ -static int waker_fd; +/* File descriptors for the Waker. */ +struct { + int pipe[2]; + int lguest_fd; +} waker_fds; + /* The pointer to the start of guest memory. */ static void *guest_base; /* The maximum guest physical address allowed, and maximum possible. */ static unsigned long guest_limit, guest_max; +/* The pipe for signal hander to write to. */ +static int timeoutpipe[2]; +static unsigned int timeout_usec = 500; /* a per-cpu variable indicating whose vcpu is currently running */ static unsigned int __thread cpu_id; @@ -155,11 +164,14 @@ struct virtqueue /* Last available index we saw. */ u16 last_avail_idx; - /* The routine to call when the Guest pings us. */ - void (*handle_output)(int fd, struct virtqueue *me); + /* The routine to call when the Guest pings us, or timeout. */ + void (*handle_output)(int fd, struct virtqueue *me, bool timeout); /* Outstanding buffers */ unsigned int inflight; + + /* Is this blocked awaiting a timer? */ + bool blocked; }; /* Remember the arguments to the program so we can "reboot" */ @@ -190,6 +202,9 @@ static void *_convert(struct iovec *iov, size_t size, size_t align, return iov->iov_base; } +/* Wrapper for the last available index. Makes it easier to change. */ +#define lg_last_avail(vq) ((vq)->last_avail_idx) + /* The virtio configuration space is defined to be little-endian. x86 is * little-endian too, but it's nice to be explicit so we have these helpers. */ #define cpu_to_le16(v16) (v16) @@ -199,6 +214,33 @@ static void *_convert(struct iovec *iov, size_t size, size_t align, #define le32_to_cpu(v32) (v32) #define le64_to_cpu(v64) (v64) +/* Is this iovec empty? */ +static bool iov_empty(const struct iovec iov[], unsigned int num_iov) +{ + unsigned int i; + + for (i = 0; i < num_iov; i++) + if (iov[i].iov_len) + return false; + return true; +} + +/* Take len bytes from the front of this iovec. */ +static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len) +{ + unsigned int i; + + for (i = 0; i < num_iov; i++) { + unsigned int used; + + used = iov[i].iov_len < len ? iov[i].iov_len : len; + iov[i].iov_base += used; + iov[i].iov_len -= used; + len -= used; + } + assert(len == 0); +} + /* The device virtqueue descriptors are followed by feature bitmasks. */ static u8 *get_feature_bits(struct device *dev) { @@ -254,6 +296,7 @@ static void *map_zeroed_pages(unsigned int num) PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0); if (addr == MAP_FAILED) err(1, "Mmaping %u pages of /dev/zero", num); + close(fd); return addr; } @@ -540,69 +583,64 @@ static void add_device_fd(int fd) * watch, but handing a file descriptor mask through to the kernel is fairly * icky. * - * Instead, we fork off a process which watches the file descriptors and writes + * Instead, we clone off a thread which watches the file descriptors and writes * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host * stop running the Guest. This causes the Launcher to return from the * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset * the LHREQ_BREAK and wake us up again. * * This, of course, is merely a different *kind* of icky. + * + * Given my well-known antipathy to threads, I'd prefer to use processes. But + * it's easier to share Guest memory with threads, and trivial to share the + * devices.infds as the Launcher changes it. */ -static void wake_parent(int pipefd, int lguest_fd) +static int waker(void *unused) { - /* Add the pipe from the Launcher to the fdset in the device_list, so - * we watch it, too. */ - add_device_fd(pipefd); + /* Close the write end of the pipe: only the Launcher has it open. */ + close(waker_fds.pipe[1]); for (;;) { fd_set rfds = devices.infds; unsigned long args[] = { LHREQ_BREAK, 1 }; + unsigned int maxfd = devices.max_infd; + + /* We also listen to the pipe from the Launcher. */ + FD_SET(waker_fds.pipe[0], &rfds); + if (waker_fds.pipe[0] > maxfd) + maxfd = waker_fds.pipe[0]; /* Wait until input is ready from one of the devices. */ - select(devices.max_infd+1, &rfds, NULL, NULL, NULL); - /* Is it a message from the Launcher? */ - if (FD_ISSET(pipefd, &rfds)) { - int fd; - /* If read() returns 0, it means the Launcher has - * exited. We silently follow. */ - if (read(pipefd, &fd, sizeof(fd)) == 0) - exit(0); - /* Otherwise it's telling us to change what file - * descriptors we're to listen to. Positive means - * listen to a new one, negative means stop - * listening. */ - if (fd >= 0) - FD_SET(fd, &devices.infds); - else - FD_CLR(-fd - 1, &devices.infds); - } else /* Send LHREQ_BREAK command. */ - pwrite(lguest_fd, args, sizeof(args), cpu_id); + select(maxfd+1, &rfds, NULL, NULL, NULL); + + /* Message from Launcher? */ + if (FD_ISSET(waker_fds.pipe[0], &rfds)) { + char c; + /* If this fails, then assume Launcher has exited. + * Don't do anything on exit: we're just a thread! */ + if (read(waker_fds.pipe[0], &c, 1) != 1) + _exit(0); + continue; + } + + /* Send LHREQ_BREAK command to snap the Launcher out of it. */ + pwrite(waker_fds.lguest_fd, args, sizeof(args), cpu_id); } + return 0; } /* This routine just sets up a pipe to the Waker process. */ -static int setup_waker(int lguest_fd) -{ - int pipefd[2], child; - - /* We create a pipe to talk to the Waker, and also so it knows when the - * Launcher dies (and closes pipe). */ - pipe(pipefd); - child = fork(); - if (child == -1) - err(1, "forking"); - - if (child == 0) { - /* We are the Waker: close the "writing" end of our copy of the - * pipe and start waiting for input. */ - close(pipefd[1]); - wake_parent(pipefd[0], lguest_fd); - } - /* Close the reading end of our copy of the pipe. */ - close(pipefd[0]); +static void setup_waker(int lguest_fd) +{ + /* This pipe is closed when Launcher dies, telling Waker. */ + if (pipe(waker_fds.pipe) != 0) + err(1, "Creating pipe for Waker"); + + /* Waker also needs to know the lguest fd */ + waker_fds.lguest_fd = lguest_fd; - /* Here is the fd used to talk to the waker. */ - return pipefd[1]; + if (clone(waker, malloc(4096) + 4096, CLONE_VM | SIGCHLD, NULL) == -1) + err(1, "Creating Waker"); } /* @@ -661,19 +699,22 @@ static unsigned get_vq_desc(struct virtqueue *vq, unsigned int *out_num, unsigned int *in_num) { unsigned int i, head; + u16 last_avail; /* Check it isn't doing very strange things with descriptor numbers. */ - if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num) + last_avail = lg_last_avail(vq); + if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num) errx(1, "Guest moved used index from %u to %u", - vq->last_avail_idx, vq->vring.avail->idx); + last_avail, vq->vring.avail->idx); /* If there's nothing new since last we looked, return invalid. */ - if (vq->vring.avail->idx == vq->last_avail_idx) + if (vq->vring.avail->idx == last_avail) return vq->vring.num; /* Grab the next descriptor number they're advertising, and increment * the index we've seen. */ - head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num]; + head = vq->vring.avail->ring[last_avail % vq->vring.num]; + lg_last_avail(vq)++; /* If their number is silly, that's a fatal mistake. */ if (head >= vq->vring.num) @@ -821,8 +862,8 @@ static bool handle_console_input(int fd, struct device *dev) unsigned long args[] = { LHREQ_BREAK, 0 }; /* Close the fd so Waker will know it has to * exit. */ - close(waker_fd); - /* Just in case waker is blocked in BREAK, send + close(waker_fds.pipe[1]); + /* Just in case Waker is blocked in BREAK, send * unbreak now. */ write(fd, args, sizeof(args)); exit(2); @@ -839,7 +880,7 @@ static bool handle_console_input(int fd, struct device *dev) /* Handling output for console is simple: we just get all the output buffers * and write them to stdout. */ -static void handle_console_output(int fd, struct virtqueue *vq) +static void handle_console_output(int fd, struct virtqueue *vq, bool timeout) { unsigned int head, out, in; int len; @@ -854,6 +895,24 @@ static void handle_console_output(int fd, struct virtqueue *vq) } } +/* This is called when we no longer want to hear about Guest changes to a + * virtqueue. This is more efficient in high-traffic cases, but it means we + * have to set a timer to check if any more changes have occurred. */ +static void block_vq(struct virtqueue *vq) +{ + struct itimerval itm; + + vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY; + vq->blocked = true; + + itm.it_interval.tv_sec = 0; + itm.it_interval.tv_usec = 0; + itm.it_value.tv_sec = 0; + itm.it_value.tv_usec = timeout_usec; + + setitimer(ITIMER_REAL, &itm, NULL); +} + /* * The Network * @@ -861,22 +920,39 @@ static void handle_console_output(int fd, struct virtqueue *vq) * and write them (ignoring the first element) to this device's file descriptor * (/dev/net/tun). */ -static void handle_net_output(int fd, struct virtqueue *vq) +static void handle_net_output(int fd, struct virtqueue *vq, bool timeout) { - unsigned int head, out, in; + unsigned int head, out, in, num = 0; int len; struct iovec iov[vq->vring.num]; + static int last_timeout_num; /* Keep getting output buffers from the Guest until we run out. */ while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) { if (in) errx(1, "Input buffers in output queue?"); - /* Check header, but otherwise ignore it (we told the Guest we - * supported no features, so it shouldn't have anything - * interesting). */ - (void)convert(&iov[0], struct virtio_net_hdr); - len = writev(vq->dev->fd, iov+1, out-1); + len = writev(vq->dev->fd, iov, out); + if (len < 0) + err(1, "Writing network packet to tun"); add_used_and_trigger(fd, vq, head, len); + num++; + } + + /* Block further kicks and set up a timer if we saw anything. */ + if (!timeout && num) + block_vq(vq); + + /* We never quite know how long should we wait before we check the + * queue again for more packets. We start at 500 microseconds, and if + * we get fewer packets than last time, we assume we made the timeout + * too small and increase it by 10 microseconds. Otherwise, we drop it + * by one microsecond every time. It seems to work well enough. */ + if (timeout) { + if (num < last_timeout_num) + timeout_usec += 10; + else if (timeout_usec > 1) + timeout_usec--; + last_timeout_num = num; } } @@ -887,7 +963,6 @@ static bool handle_tun_input(int fd, struct device *dev) unsigned int head, in_num, out_num; int len; struct iovec iov[dev->vq->vring.num]; - struct virtio_net_hdr *hdr; /* First we need a network buffer from the Guests's recv virtqueue. */ head = get_vq_desc(dev->vq, iov, &out_num, &in_num); @@ -896,25 +971,23 @@ static bool handle_tun_input(int fd, struct device *dev) * early, the Guest won't be ready yet. Wait until the device * status says it's ready. */ /* FIXME: Actually want DRIVER_ACTIVE here. */ - if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) - warn("network: no dma buffer!"); + + /* Now tell it we want to know if new things appear. */ + dev->vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY; + wmb(); + /* We'll turn this back on if input buffers are registered. */ return false; } else if (out_num) errx(1, "Output buffers in network recv queue?"); - /* First element is the header: we set it to 0 (no features). */ - hdr = convert(&iov[0], struct virtio_net_hdr); - hdr->flags = 0; - hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE; - /* Read the packet from the device directly into the Guest's buffer. */ - len = readv(dev->fd, iov+1, in_num-1); + len = readv(dev->fd, iov, in_num); if (len <= 0) err(1, "reading network"); /* Tell the Guest about the new packet. */ - add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len); + add_used_and_trigger(fd, dev->vq, head, len); verbose("tun input packet len %i [%02x %02x] (%s)\n", len, ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1], @@ -927,11 +1000,18 @@ static bool handle_tun_input(int fd, struct device *dev) /*L:215 This is the callback attached to the network and console input * virtqueues: it ensures we try again, in case we stopped console or net * delivery because Guest didn't have any buffers. */ -static void enable_fd(int fd, struct virtqueue *vq) +static void enable_fd(int fd, struct virtqueue *vq, bool timeout) { add_device_fd(vq->dev->fd); - /* Tell waker to listen to it again */ - write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd)); + /* Snap the Waker out of its select loop. */ + write(waker_fds.pipe[1], "", 1); +} + +static void net_enable_fd(int fd, struct virtqueue *vq, bool timeout) +{ + /* We don't need to know again when Guest refills receive buffer. */ + vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY; + enable_fd(fd, vq, timeout); } /* When the Guest tells us they updated the status field, we handle it. */ @@ -951,7 +1031,7 @@ static void update_device_status(struct device *dev) for (vq = dev->vq; vq; vq = vq->next) { memset(vq->vring.desc, 0, vring_size(vq->config.num, getpagesize())); - vq->last_avail_idx = 0; + lg_last_avail(vq) = 0; } } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) { warnx("Device %s configuration FAILED", dev->name); @@ -960,10 +1040,10 @@ static void update_device_status(struct device *dev) verbose("Device %s OK: offered", dev->name); for (i = 0; i < dev->desc->feature_len; i++) - verbose(" %08x", get_feature_bits(dev)[i]); + verbose(" %02x", get_feature_bits(dev)[i]); verbose(", accepted"); for (i = 0; i < dev->desc->feature_len; i++) - verbose(" %08x", get_feature_bits(dev) + verbose(" %02x", get_feature_bits(dev) [dev->desc->feature_len+i]); if (dev->ready) @@ -1000,7 +1080,7 @@ static void handle_output(int fd, unsigned long addr) if (strcmp(vq->dev->name, "console") != 0) verbose("Output to %s\n", vq->dev->name); if (vq->handle_output) - vq->handle_output(fd, vq); + vq->handle_output(fd, vq, false); return; } } @@ -1014,6 +1094,29 @@ static void handle_output(int fd, unsigned long addr) strnlen(from_guest_phys(addr), guest_limit - addr)); } +static void handle_timeout(int fd) +{ + char buf[32]; + struct device *i; + struct virtqueue *vq; + + /* Clear the pipe */ + read(timeoutpipe[0], buf, sizeof(buf)); + + /* Check each device and virtqueue: flush blocked ones. */ + for (i = devices.dev; i; i = i->next) { + for (vq = i->vq; vq; vq = vq->next) { + if (!vq->blocked) + continue; + + vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY; + vq->blocked = false; + if (vq->handle_output) + vq->handle_output(fd, vq, true); + } + } +} + /* This is called when the Waker wakes us up: check for incoming file * descriptors. */ static void handle_input(int fd) @@ -1024,16 +1127,20 @@ static void handle_input(int fd) for (;;) { struct device *i; fd_set fds = devices.infds; + int num; + num = select(devices.max_infd+1, &fds, NULL, NULL, &poll); + /* Could get interrupted */ + if (num < 0) + continue; /* If nothing is ready, we're done. */ - if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0) + if (num == 0) break; /* Otherwise, call the device(s) which have readable file * descriptors and a method of handling them. */ for (i = devices.dev; i; i = i->next) { if (i->handle_input && FD_ISSET(i->fd, &fds)) { - int dev_fd; if (i->handle_input(fd, i)) continue; @@ -1043,13 +1150,12 @@ static void handle_input(int fd) * buffers to deliver into. Console also uses * it when it discovers that stdin is closed. */ FD_CLR(i->fd, &devices.infds); - /* Tell waker to ignore it too, by sending a - * negative fd number (-1, since 0 is a valid - * FD number). */ - dev_fd = -i->fd - 1; - write(waker_fd, &dev_fd, sizeof(dev_fd)); } } + + /* Is this the timeout fd? */ + if (FD_ISSET(timeoutpipe[0], &fds)) + handle_timeout(fd); } } @@ -1098,7 +1204,7 @@ static struct lguest_device_desc *new_dev_desc(u16 type) /* Each device descriptor is followed by the description of its virtqueues. We * specify how many descriptors the virtqueue is to have. */ static void add_virtqueue(struct device *dev, unsigned int num_descs, - void (*handle_output)(int fd, struct virtqueue *me)) + void (*handle_output)(int, struct virtqueue *, bool)) { unsigned int pages; struct virtqueue **i, *vq = malloc(sizeof(*vq)); @@ -1114,6 +1220,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs, vq->last_avail_idx = 0; vq->dev = dev; vq->inflight = 0; + vq->blocked = false; /* Initialize the configuration. */ vq->config.num = num_descs; @@ -1246,6 +1353,24 @@ static void setup_console(void) } /*:*/ +static void timeout_alarm(int sig) +{ + write(timeoutpipe[1], "", 1); +} + +static void setup_timeout(void) +{ + if (pipe(timeoutpipe) != 0) + err(1, "Creating timeout pipe"); + + if (fcntl(timeoutpipe[1], F_SETFL, + fcntl(timeoutpipe[1], F_GETFL) | O_NONBLOCK) != 0) + err(1, "Making timeout pipe nonblocking"); + + add_device_fd(timeoutpipe[0]); + signal(SIGALRM, timeout_alarm); +} + /*M:010 Inter-guest networking is an interesting area. Simplest is to have a * --sharenet= option which opens or creates a named pipe. This can be * used to send packets to another guest in a 1:1 manner. @@ -1264,10 +1389,25 @@ static void setup_console(void) static u32 str2ip(const char *ipaddr) { - unsigned int byte[4]; + unsigned int b[4]; + + if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4) + errx(1, "Failed to parse IP address '%s'", ipaddr); + return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3]; +} - sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]); - return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3]; +static void str2mac(const char *macaddr, unsigned char mac[6]) +{ + unsigned int m[6]; + if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x", + &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6) + errx(1, "Failed to parse mac address '%s'", macaddr); + mac[0] = m[0]; + mac[1] = m[1]; + mac[2] = m[2]; + mac[3] = m[3]; + mac[4] = m[4]; + mac[5] = m[5]; } /* This code is "adapted" from libbridge: it attaches the Host end of the @@ -1288,6 +1428,7 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name) errx(1, "interface %s does not exist!", if_name); strncpy(ifr.ifr_name, br_name, IFNAMSIZ); + ifr.ifr_name[IFNAMSIZ-1] = '\0'; ifr.ifr_ifindex = ifidx; if (ioctl(fd, SIOCBRADDIF, &ifr) < 0) err(1, "can't add %s to bridge %s", if_name, br_name); @@ -1296,64 +1437,75 @@ static void add_to_bridge(int fd, const char *if_name, const char *br_name) /* This sets up the Host end of the network device with an IP address, brings * it up so packets will flow, the copies the MAC address into the hwaddr * pointer. */ -static void configure_device(int fd, const char *devname, u32 ipaddr, - unsigned char hwaddr[6]) +static void configure_device(int fd, const char *tapif, u32 ipaddr) { struct ifreq ifr; struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr; - /* Don't read these incantations. Just cut & paste them like I did! */ memset(&ifr, 0, sizeof(ifr)); - strcpy(ifr.ifr_name, devname); + strcpy(ifr.ifr_name, tapif); + + /* Don't read these incantations. Just cut & paste them like I did! */ sin->sin_family = AF_INET; sin->sin_addr.s_addr = htonl(ipaddr); if (ioctl(fd, SIOCSIFADDR, &ifr) != 0) - err(1, "Setting %s interface address", devname); + err(1, "Setting %s interface address", tapif); ifr.ifr_flags = IFF_UP; if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0) - err(1, "Bringing interface %s up", devname); - - /* SIOC stands for Socket I/O Control. G means Get (vs S for Set - * above). IF means Interface, and HWADDR is hardware address. - * Simple! */ - if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0) - err(1, "getting hw address for %s", devname); - memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6); + err(1, "Bringing interface %s up", tapif); } -/*L:195 Our network is a Host<->Guest network. This can either use bridging or - * routing, but the principle is the same: it uses the "tun" device to inject - * packets into the Host as if they came in from a normal network card. We - * just shunt packets between the Guest and the tun device. */ -static void setup_tun_net(const char *arg) +static int get_tun_device(char tapif[IFNAMSIZ]) { - struct device *dev; struct ifreq ifr; - int netfd, ipfd; - u32 ip; - const char *br_name = NULL; - struct virtio_net_config conf; + int netfd; + + /* Start with this zeroed. Messy but sure. */ + memset(&ifr, 0, sizeof(ifr)); /* We open the /dev/net/tun device and tell it we want a tap device. A * tap device is like a tun device, only somehow different. To tell * the truth, I completely blundered my way through this code, but it * works now! */ netfd = open_or_die("/dev/net/tun", O_RDWR); - memset(&ifr, 0, sizeof(ifr)); - ifr.ifr_flags = IFF_TAP | IFF_NO_PI; + ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR; strcpy(ifr.ifr_name, "tap%d"); if (ioctl(netfd, TUNSETIFF, &ifr) != 0) err(1, "configuring /dev/net/tun"); + + if (ioctl(netfd, TUNSETOFFLOAD, + TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0) + err(1, "Could not set features for tun device"); + /* We don't need checksums calculated for packets coming in this * device: trust us! */ ioctl(netfd, TUNSETNOCSUM, 1); + memcpy(tapif, ifr.ifr_name, IFNAMSIZ); + return netfd; +} + +/*L:195 Our network is a Host<->Guest network. This can either use bridging or + * routing, but the principle is the same: it uses the "tun" device to inject + * packets into the Host as if they came in from a normal network card. We + * just shunt packets between the Guest and the tun device. */ +static void setup_tun_net(char *arg) +{ + struct device *dev; + int netfd, ipfd; + u32 ip = INADDR_ANY; + bool bridging = false; + char tapif[IFNAMSIZ], *p; + struct virtio_net_config conf; + + netfd = get_tun_device(tapif); + /* First we create a new network device. */ dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input); /* Network devices need a receive and a send queue, just like * console. */ - add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd); + add_virtqueue(dev, VIRTQUEUE_NUM, net_enable_fd); add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output); /* We need a socket to perform the magic network ioctls to bring up the @@ -1364,28 +1516,50 @@ static void setup_tun_net(const char *arg) /* If the command line was --tunnet=bridge: do bridging. */ if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) { - ip = INADDR_ANY; - br_name = arg + strlen(BRIDGE_PFX); - add_to_bridge(ipfd, ifr.ifr_name, br_name); - } else /* It is an IP address to set up the device with */ + arg += strlen(BRIDGE_PFX); + bridging = true; + } + + /* A mac address may follow the bridge name or IP address */ + p = strchr(arg, ':'); + if (p) { + str2mac(p+1, conf.mac); + add_feature(dev, VIRTIO_NET_F_MAC); + *p = '\0'; + } + + /* arg is now either an IP address or a bridge name */ + if (bridging) + add_to_bridge(ipfd, tapif, arg); + else ip = str2ip(arg); - /* Set up the tun device, and get the mac address for the interface. */ - configure_device(ipfd, ifr.ifr_name, ip, conf.mac); + /* Set up the tun device. */ + configure_device(ipfd, tapif, ip); - /* Tell Guest what MAC address to use. */ - add_feature(dev, VIRTIO_NET_F_MAC); add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY); + /* Expect Guest to handle everything except UFO */ + add_feature(dev, VIRTIO_NET_F_CSUM); + add_feature(dev, VIRTIO_NET_F_GUEST_CSUM); + add_feature(dev, VIRTIO_NET_F_GUEST_TSO4); + add_feature(dev, VIRTIO_NET_F_GUEST_TSO6); + add_feature(dev, VIRTIO_NET_F_GUEST_ECN); + add_feature(dev, VIRTIO_NET_F_HOST_TSO4); + add_feature(dev, VIRTIO_NET_F_HOST_TSO6); + add_feature(dev, VIRTIO_NET_F_HOST_ECN); set_config(dev, sizeof(conf), &conf); /* We don't need the socket any more; setup is done. */ close(ipfd); - verbose("device %u: tun net %u.%u.%u.%u\n", - devices.device_num++, - (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip); - if (br_name) - verbose("attached to bridge: %s\n", br_name); + devices.device_num++; + + if (bridging) + verbose("device %u: tun %s attached to bridge: %s\n", + devices.device_num, tapif, arg); + else + verbose("device %u: tun %s: %s\n", + devices.device_num, tapif, arg); } /* Our block (disk) device should be really simple: the Guest asks for a block @@ -1550,7 +1724,7 @@ static bool handle_io_finish(int fd, struct device *dev) } /* When the Guest submits some I/O, we just need to wake the I/O thread. */ -static void handle_virtblk_output(int fd, struct virtqueue *vq) +static void handle_virtblk_output(int fd, struct virtqueue *vq, bool timeout) { struct vblk_info *vblk = vq->dev->priv; char c = 0; @@ -1621,6 +1795,64 @@ static void setup_block_file(const char *filename) verbose("device %u: virtblock %llu sectors\n", devices.device_num, le64_to_cpu(conf.capacity)); } + +/* Our random number generator device reads from /dev/random into the Guest's + * input buffers. The usual case is that the Guest doesn't want random numbers + * and so has no buffers although /dev/random is still readable, whereas + * console is the reverse. + * + * The same logic applies, however. */ +static bool handle_rng_input(int fd, struct device *dev) +{ + int len; + unsigned int head, in_num, out_num, totlen = 0; + struct iovec iov[dev->vq->vring.num]; + + /* First we need a buffer from the Guests's virtqueue. */ + head = get_vq_desc(dev->vq, iov, &out_num, &in_num); + + /* If they're not ready for input, stop listening to this file + * descriptor. We'll start again once they add an input buffer. */ + if (head == dev->vq->vring.num) + return false; + + if (out_num) + errx(1, "Output buffers in rng?"); + + /* This is why we convert to iovecs: the readv() call uses them, and so + * it reads straight into the Guest's buffer. We loop to make sure we + * fill it. */ + while (!iov_empty(iov, in_num)) { + len = readv(dev->fd, iov, in_num); + if (len <= 0) + err(1, "Read from /dev/random gave %i", len); + iov_consume(iov, in_num, len); + totlen += len; + } + + /* Tell the Guest about the new input. */ + add_used_and_trigger(fd, dev->vq, head, totlen); + + /* Everything went OK! */ + return true; +} + +/* And this creates a "hardware" random number device for the Guest. */ +static void setup_rng(void) +{ + struct device *dev; + int fd; + + fd = open_or_die("/dev/random", O_RDONLY); + + /* The device responds to return from I/O thread. */ + dev = new_device("rng", VIRTIO_ID_RNG, fd, handle_rng_input); + + /* The device has one virtqueue, where the Guest places inbufs. */ + add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd); + + verbose("device %u: rng\n", devices.device_num++); +} /* That's the end of device setup. */ /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */ @@ -1628,11 +1860,12 @@ static void __attribute__((noreturn)) restart_guest(void) { unsigned int i; - /* Closing pipes causes the Waker thread and io_threads to die, and - * closing /dev/lguest cleans up the Guest. Since we don't track all - * open fds, we simply close everything beyond stderr. */ + /* Since we don't track all open fds, we simply close everything beyond + * stderr. */ for (i = 3; i < FD_SETSIZE; i++) close(i); + + /* The exec automatically gets rid of the I/O and Waker threads. */ execv(main_args[0], main_args); err(1, "Could not exec %s", main_args[0]); } @@ -1663,7 +1896,7 @@ static void __attribute__((noreturn)) run_guest(int lguest_fd) /* ERESTART means that we need to reboot the guest */ } else if (errno == ERESTART) { restart_guest(); - /* EAGAIN means the Waker wanted us to look at some input. + /* EAGAIN means a signal (timeout). * Anything else means a bug or incompatible change. */ } else if (errno != EAGAIN) err(1, "Running guest failed"); @@ -1691,13 +1924,14 @@ static struct option opts[] = { { "verbose", 0, NULL, 'v' }, { "tunnet", 1, NULL, 't' }, { "block", 1, NULL, 'b' }, + { "rng", 0, NULL, 'r' }, { "initrd", 1, NULL, 'i' }, { NULL }, }; static void usage(void) { errx(1, "Usage: lguest [--verbose] " - "[--tunnet=(|bridge:)\n" + "[--tunnet=(:|bridge::)\n" "|--block=|--initrd=]...\n" " vmlinux [args...]"); } @@ -1765,6 +1999,9 @@ int main(int argc, char *argv[]) case 'b': setup_block_file(optarg); break; + case 'r': + setup_rng(); + break; case 'i': initrd_name = optarg; break; @@ -1783,6 +2020,9 @@ int main(int argc, char *argv[]) /* We always have a console device */ setup_console(); + /* We can timeout waiting for Guest network transmit. */ + setup_timeout(); + /* Now we load the kernel */ start = load_kernel(open_or_die(argv[optind+1], O_RDONLY)); @@ -1826,10 +2066,10 @@ int main(int argc, char *argv[]) * /dev/lguest file descriptor. */ lguest_fd = tell_kernel(pgdir, start); - /* We fork off a child process, which wakes the Launcher whenever one - * of the input file descriptors needs attention. We call this the - * Waker, and we'll cover it in a moment. */ - waker_fd = setup_waker(lguest_fd); + /* We clone off a thread, which wakes the Launcher whenever one of the + * input file descriptors needs attention. We call this the Waker, and + * we'll cover it in a moment. */ + setup_waker(lguest_fd); /* Finally, run the Guest. This doesn't return. */ run_guest(lguest_fd); diff --git a/Documentation/local_ops.txt b/Documentation/local_ops.txt index 4269a1105b378fafcc689435a2531b9d9d4287db..f4f8b1c6c8ba45ba6ec351aa92c40e798024983c 100644 --- a/Documentation/local_ops.txt +++ b/Documentation/local_ops.txt @@ -36,7 +36,7 @@ It can be done by slightly modifying the standard atomic operations : only their UP variant must be kept. It typically means removing LOCK prefix (on i386 and x86_64) and any SMP sychronization barrier. If the architecture does not have a different behavior between SMP and UP, including asm-generic/local.h -in your archtecture's local.h is sufficient. +in your architecture's local.h is sufficient. The local_t type is defined as an opaque signed long by embedding an atomic_long_t inside a structure. This is made so a cast from this type to a diff --git a/Documentation/md.txt b/Documentation/md.txt index a8b430627473aa243995ab6f6e173b9cf1ff819e..1da9d1b1793f3436b3561a48de7fbcd8c893e74e 100644 --- a/Documentation/md.txt +++ b/Documentation/md.txt @@ -236,6 +236,11 @@ All md devices contain: writing the word for the desired state, however some states cannot be explicitly set, and some transitions are not allowed. + Select/poll works on this file. All changes except between + active_idle and active (which can be frequent and are not + very interesting) are notified. active->active_idle is + reported if the metadata is externally managed. + clear No devices, no size, no level Writing is equivalent to STOP_ARRAY ioctl @@ -292,6 +297,10 @@ Each directory contains: writemostly - device will only be subject to read requests if there are no other options. This applies only to raid1 arrays. + blocked - device has failed, metadata is "external", + and the failure hasn't been acknowledged yet. + Writes that would write to this device if + it were not faulty are blocked. spare - device is working, but not a full member. This includes spares that are in the process of being recovered to @@ -301,6 +310,12 @@ Each directory contains: Writing "remove" removes the device from the array. Writing "writemostly" sets the writemostly flag. Writing "-writemostly" clears the writemostly flag. + Writing "blocked" sets the "blocked" flag. + Writing "-blocked" clear the "blocked" flag and allows writes + to complete. + + This file responds to select/poll. Any change to 'faulty' + or 'blocked' causes an event. errors An approximate count of read errors that have been detected on @@ -332,7 +347,7 @@ Each directory contains: for storage of data. This will normally be the same as the component_size. This can be written while assembling an array. If a value less than the current component_size is - written, component_size will be reduced to this value. + written, it will be rejected. An active md device will also contain and entry for each active device @@ -381,6 +396,19 @@ also have 'check' and 'repair' will start the appropriate process providing the current state is 'idle'. + This file responds to select/poll. Any important change in the value + triggers a poll event. Sometimes the value will briefly be + "recover" if a recovery seems to be needed, but cannot be + achieved. In that case, the transition to "recover" isn't + notified, but the transition away is. + + degraded + This contains a count of the number of devices by which the + arrays is degraded. So an optimal array with show '0'. A + single failed/missing drive will show '1', etc. + This file responds to select/poll, any increase or decrease + in the count of missing devices will trigger an event. + mismatch_count When performing 'check' and 'repair', and possibly when performing 'resync', md will count the number of errors that are diff --git a/Documentation/moxa-smartio b/Documentation/moxa-smartio index fe24ecc6372e6b3482c3f39972ab9f70077d7b70..5337e80a5b96c6341e523394be6fedc58b87f6ed 100644 --- a/Documentation/moxa-smartio +++ b/Documentation/moxa-smartio @@ -1,14 +1,22 @@ ============================================================================= - - MOXA Smartio Family Device Driver Ver 1.1 Installation Guide - for Linux Kernel 2.2.x and 2.0.3x - Copyright (C) 1999, Moxa Technologies Co, Ltd. + MOXA Smartio/Industio Family Device Driver Installation Guide + for Linux Kernel 2.4.x, 2.6.x + Copyright (C) 2008, Moxa Inc. ============================================================================= +Date: 01/21/2008 + Content 1. Introduction 2. System Requirement 3. Installation + 3.1 Hardware installation + 3.2 Driver files + 3.3 Device naming convention + 3.4 Module driver configuration + 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x. + 3.6 Custom configuration + 3.7 Verify driver installation 4. Utilities 5. Setserial 6. Troubleshooting @@ -16,27 +24,48 @@ Content ----------------------------------------------------------------------------- 1. Introduction - The Smartio family Linux driver, Ver. 1.1, supports following multiport + The Smartio/Industio/UPCI family Linux driver supports following multiport boards. - -C104P/H/HS, C104H/PCI, C104HS/PCI, CI-104J 4 port multiport board. - -C168P/H/HS, C168H/PCI 8 port multiport board. - - This driver has been modified a little and cleaned up from the Moxa - contributed driver code and merged into Linux 2.2.14pre. In particular - official major/minor numbers have been assigned which are different to - those the original Moxa supplied driver used. + - 2 ports multiport board + CP-102U, CP-102UL, CP-102UF + CP-132U-I, CP-132UL, + CP-132, CP-132I, CP132S, CP-132IS, + CI-132, CI-132I, CI-132IS, + (C102H, C102HI, C102HIS, C102P, CP-102, CP-102S) + + - 4 ports multiport board + CP-104EL, + CP-104UL, CP-104JU, + CP-134U, CP-134U-I, + C104H/PCI, C104HS/PCI, + CP-114, CP-114I, CP-114S, CP-114IS, CP-114UL, + C104H, C104HS, + CI-104J, CI-104JS, + CI-134, CI-134I, CI-134IS, + (C114HI, CT-114I, C104P) + POS-104UL, + CB-114, + CB-134I + + - 8 ports multiport board + CP-118EL, CP-168EL, + CP-118U, CP-168U, + C168H/PCI, + C168H, C168HS, + (C168P), + CB-108 This driver and installation procedure have been developed upon Linux Kernel - 2.2.5 and backward compatible to 2.0.3x. This driver supports Intel x86 and - Alpha hardware platform. In order to maintain compatibility, this version - has also been properly tested with RedHat, OpenLinux, TurboLinux and - S.u.S.E Linux. However, if compatibility problem occurs, please contact - Moxa at support@moxa.com.tw. + 2.4.x and 2.6.x. This driver supports Intel x86 hardware platform. In order + to maintain compatibility, this version has also been properly tested with + RedHat, Mandrake, Fedora and S.u.S.E Linux. However, if compatibility problem + occurs, please contact Moxa at support@moxa.com.tw. In addition to device driver, useful utilities are also provided in this version. They are - - msdiag Diagnostic program for detecting installed Moxa Smartio boards. + - msdiag Diagnostic program for displaying installed Moxa + Smartio/Industio boards. - msmon Monitor program to observe data count and line status signals. - msterm A simple terminal program which is useful in testing serial ports. @@ -47,8 +76,7 @@ Content GNU General Public License in this version. Please refer to GNU General Public License announcement in each source code file for more detail. - In Moxa's ftp sites, you may always find latest driver at - ftp://ftp.moxa.com or ftp://ftp.moxa.com.tw. + In Moxa's Web sites, you may always find latest driver at http://web.moxa.com. This version of driver can be installed as Loadable Module (Module driver) or built-in into kernel (Static driver). You may refer to following @@ -61,18 +89,27 @@ Content ----------------------------------------------------------------------------- 2. System Requirement - - Hardware platform: Intel x86 or Alpha machine - - Kernel version: 2.0.3x or 2.2.x + - Hardware platform: Intel x86 machine + - Kernel version: 2.4.x or 2.6.x - gcc version 2.72 or later - Maximum 4 boards can be installed in combination ----------------------------------------------------------------------------- 3. Installation + 3.1 Hardware installation + 3.2 Driver files + 3.3 Device naming convention + 3.4 Module driver configuration + 3.5 Static driver configuration for Linux kernel 2.4.x, 2.6.x. + 3.6 Custom configuration + 3.7 Verify driver installation + + 3.1 Hardware installation - There are two types of buses, ISA and PCI, for Smartio family multiport - board. + There are two types of buses, ISA and PCI, for Smartio/Industio + family multiport board. ISA board --------- @@ -81,47 +118,57 @@ Content installation procedure in User's Manual before proceed any further. Please make sure the JP1 is open after the ISA board is set properly. - PCI board - --------- + PCI/UPCI board + -------------- You may need to adjust IRQ usage in BIOS to avoid from IRQ conflict with other ISA devices. Please refer to hardware installation procedure in User's Manual in advance. - IRQ Sharing + PCI IRQ Sharing ----------- Each port within the same multiport board shares the same IRQ. Up to - 4 Moxa Smartio Family multiport boards can be installed together on - one system and they can share the same IRQ. + 4 Moxa Smartio/Industio PCI Family multiport boards can be installed + together on one system and they can share the same IRQ. + - 3.2 Driver files and device naming convention + 3.2 Driver files The driver file may be obtained from ftp, CD-ROM or floppy disk. The first step, anyway, is to copy driver file "mxser.tgz" into specified directory. e.g. /moxa. The execute commands as below. + # cd / + # mkdir moxa # cd /moxa - # tar xvf /dev/fd0 + # tar xvf /dev/fd0 + or + + # cd / + # mkdir moxa # cd /moxa # cp /mnt/cdrom//mxser.tgz . # tar xvfz mxser.tgz + + 3.3 Device naming convention + You may find all the driver and utilities files in /moxa/mxser. Following installation procedure depends on the model you'd like to - run the driver. If you prefer module driver, please refer to 3.3. - If static driver is required, please refer to 3.4. + run the driver. If you prefer module driver, please refer to 3.4. + If static driver is required, please refer to 3.5. Dialin and callout port ----------------------- - This driver remains traditional serial device properties. There're + This driver remains traditional serial device properties. There are two special file name for each serial port. One is dial-in port which is named "ttyMxx". For callout port, the naming convention is "cumxx". Device naming when more than 2 boards installed ----------------------------------------------- - Naming convention for each Smartio multiport board is pre-defined - as below. + Naming convention for each Smartio/Industio multiport board is + pre-defined as below. Board Num. Dial-in Port Callout port 1st board ttyM0 - ttyM7 cum0 - cum7 @@ -129,6 +176,12 @@ Content 3rd board ttyM16 - ttyM23 cum16 - cum23 4th board ttyM24 - ttym31 cum24 - cum31 + + !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Under Kernel 2.6 the cum Device is Obsolete. So use ttyM* + device instead. + !!!!!!!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + Board sequence -------------- This driver will activate ISA boards according to the parameter set @@ -138,69 +191,131 @@ Content For PCI boards, their sequence will be after ISA boards and C168H/PCI has higher priority than C104H/PCI boards. - 3.3 Module driver configuration + 3.4 Module driver configuration Module driver is easiest way to install. If you prefer static driver installation, please skip this paragraph. - 1. Find "Makefile" in /moxa/mxser, then run - # make install + + ------------- Prepare to use the MOXA driver-------------------- + 3.4.1 Create tty device with correct major number + Before using MOXA driver, your system must have the tty devices + which are created with driver's major number. We offer one shell + script "msmknod" to simplify the procedure. + This step is only needed to be executed once. But you still + need to do this procedure when: + a. You change the driver's major number. Please refer the "3.7" + section. + b. Your total installed MOXA boards number is changed. Maybe you + add/delete one MOXA board. + c. You want to change the tty name. This needs to modify the + shell script "msmknod" + + The procedure is: + # cd /moxa/mxser/driver + # ./msmknod + + This shell script will require the major number for dial-in + device and callout device to create tty device. You also need + to specify the total installed MOXA board number. Default major + numbers for dial-in device and callout device are 30, 35. If + you need to change to other number, please refer section "3.7" + for more detailed procedure. + Msmknod will delete any special files occupying the same device + naming. + + 3.4.2 Build the MOXA driver and utilities + Before using the MOXA driver and utilities, you need compile the + all the source code. This step is only need to be executed once. + But you still re-compile the source code if you modify the source + code. For example, if you change the driver's major number (see + "3.7" section), then you need to do this step again. + + Find "Makefile" in /moxa/mxser, then run + + # make clean; make install + + !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!! + For Red Hat 9, Red Hat Enterprise Linux AS3/ES3/WS3 & Fedora Core1: + # make clean; make installsp1 + + For Red Hat Enterprise Linux AS4/ES4/WS4: + # make clean; make installsp2 + !!!!!!!!!! NOTE !!!!!!!!!!!!!!!!! The driver files "mxser.o" and utilities will be properly compiled - and copied to system directories respectively.Then run + and copied to system directories respectively. - # insmod mxser + ------------- Load MOXA driver-------------------- + 3.4.3 Load the MOXA driver - to activate the modular driver. You may run "lsmod" to check - if "mxser.o" is activated. + # modprobe mxser - 2. Create special files by executing "msmknod". - # cd /moxa/mxser/driver - # ./msmknod + will activate the module driver. You may run "lsmod" to check + if "mxser" is activated. If the MOXA board is ISA board, the + is needed. Please refer to section "3.4.5" for more + information. + + + ------------- Load MOXA driver on boot -------------------- + 3.4.4 For the above description, you may manually execute + "modprobe mxser" to activate this driver and run + "rmmod mxser" to remove it. + However, it's better to have a boot time configuration to + eliminate manual operation. Boot time configuration can be + achieved by rc file. We offer one "rc.mxser" file to simplify + the procedure under "moxa/mxser/driver". - Default major numbers for dial-in device and callout device are - 174, 175. Msmknod will delete any special files occupying the same - device naming. + But if you use ISA board, please modify the "modprobe ..." command + to add the argument (see "3.4.5" section). After modifying the + rc.mxser, please try to execute "/moxa/mxser/driver/rc.mxser" + manually to make sure the modification is ok. If any error + encountered, please try to modify again. If the modification is + completed, follow the below step. - 3. Up to now, you may manually execute "insmod mxser" to activate - this driver and run "rmmod mxser" to remove it. However, it's - better to have a boot time configuration to eliminate manual - operation. - Boot time configuration can be achieved by rc file. Run following - command for setting rc files. + Run following command for setting rc files. # cd /moxa/mxser/driver # cp ./rc.mxser /etc/rc.d # cd /etc/rc.d - You may have to modify part of the content in rc.mxser to specify - parameters for ISA board. Please refer to rc.mxser for more detail. - Find "rc.serial". If "rc.serial" doesn't exist, create it by vi. - Add "rc.mxser" in last line. Next, open rc.local by vi - and append following content. + Check "rc.serial" is existed or not. If "rc.serial" doesn't exist, + create it by vi, run "chmod 755 rc.serial" to change the permission. + Add "/etc/rc.d/rc.mxser" in last line, - if [ -f /etc/rc.d/rc.serial ]; then - sh /etc/rc.d/rc.serial - fi + Reboot and check if moxa.o activated by "lsmod" command. - 4. Reboot and check if mxser.o activated by "lsmod" command. - 5. If you'd like to drive Smartio ISA boards in the system, you'll - have to add parameter to specify CAP address of given board while - activating "mxser.o". The format for parameters are as follows. + 3.4.5. If you'd like to drive Smartio/Industio ISA boards in the system, + you'll have to add parameter to specify CAP address of given + board while activating "mxser.o". The format for parameters are + as follows. - insmod mxser ioaddr=0x???,0x???,0x???,0x??? + modprobe mxser ioaddr=0x???,0x???,0x???,0x??? | | | | | | | +- 4th ISA board | | +------ 3rd ISA board | +------------ 2nd ISA board +------------------- 1st ISA board - 3.4 Static driver configuration + 3.5 Static driver configuration for Linux kernel 2.4.x and 2.6.x + + Note: To use static driver, you must install the linux kernel + source package. + + 3.5.1 Backup the built-in driver in the kernel. + # cd /usr/src/linux/drivers/char + # mv mxser.c mxser.c.old + + For Red Hat 7.x user, you need to create link: + # cd /usr/src + # ln -s linux-2.4 linux - 1. Create link + 3.5.2 Create link # cd /usr/src/linux/drivers/char # ln -s /moxa/mxser/driver/mxser.c mxser.c - 2. Add CAP address list for ISA boards + 3.5.3 Add CAP address list for ISA boards. For PCI boards user, + please skip this step. + In module mode, the CAP address for ISA board is given by parameter. In static driver configuration, you'll have to assign it within driver's source code. If you will not @@ -222,73 +337,55 @@ Content static int mxserBoardCAP[] = {0x280, 0x180, 0x00, 0x00}; - 3. Modify tty_io.c - # cd /usr/src/linux/drivers/char/ - # vi tty_io.c - Find pty_init(), insert "mxser_init()" as + 3.5.4 Setup kernel configuration - pty_init(); - mxser_init(); + Configure the kernel: - 4. Modify tty.h - # cd /usr/src/linux/include/linux - # vi tty.h - Find extern int tty_init(void), insert "mxser_init()" as + # cd /usr/src/linux + # make menuconfig - extern int tty_init(void); - extern int mxser_init(void); - - 5. Modify Makefile - # cd /usr/src/linux/drivers/char - # vi Makefile - Find L_OBJS := tty_io.o ...... random.o, add - "mxser.o" at last of this line as - L_OBJS := tty_io.o ....... mxser.o + You will go into a menu-driven system. Please select [Character + devices][Non-standard serial port support], enable the [Moxa + SmartIO support] driver with "[*]" for built-in (not "[M]"), then + select [Exit] to exit this program. - 6. Rebuild kernel - The following are for Linux kernel rebuilding,for your reference only. + 3.5.5 Rebuild kernel + The following are for Linux kernel rebuilding, for your + reference only. For appropriate details, please refer to the Linux document. - If 'lilo' utility is installed, please use 'make zlilo' to rebuild - kernel. If 'lilo' is not installed, please follow the following steps. - a. cd /usr/src/linux - b. make clean /* take a few minutes */ - c. make bzImage /* take probably 10-20 minutes */ - d. Backup original boot kernel. /* optional step */ - e. cp /usr/src/linux/arch/i386/boot/bzImage /boot/vmlinuz + b. make clean /* take a few minutes */ + c. make dep /* take a few minutes */ + d. make bzImage /* take probably 10-20 minutes */ + e. make install /* copy boot image to correct position */ f. Please make sure the boot kernel (vmlinuz) is in the - correct position. If you use 'lilo' utility, you should - check /etc/lilo.conf 'image' item specified the path - which is the 'vmlinuz' path, or you will load wrong - (or old) boot kernel image (vmlinuz). - g. chmod 400 /vmlinuz - h. lilo - i. rdev -R /vmlinuz 1 - j. sync - - Note that if the result of "make zImage" is ERROR, then you have to - go back to Linux configuration Setup. Type "make config" in directory - /usr/src/linux or "setup". - - Since system include file, /usr/src/linux/include/linux/interrupt.h, - is modified each time the MOXA driver is installed, kernel rebuilding - is inevitable. And it takes about 10 to 20 minutes depends on the - machine. - - 7. Make utility - # cd /moxa/mxser/utility - # make install - - 8. Make special file + correct position. + g. If you use 'lilo' utility, you should check /etc/lilo.conf + 'image' item specified the path which is the 'vmlinuz' path, + or you will load wrong (or old) boot kernel image (vmlinuz). + After checking /etc/lilo.conf, please run "lilo". + + Note that if the result of "make bzImage" is ERROR, then you have to + go back to Linux configuration Setup. Type "make menuconfig" in + directory /usr/src/linux. + + + 3.5.6 Make tty device and special file # cd /moxa/mxser/driver # ./msmknod - 9. Reboot + 3.5.7 Make utility + # cd /moxa/mxser/utility + # make clean; make install + + 3.5.8 Reboot - 3.5 Custom configuration + + + 3.6 Custom configuration Although this driver already provides you default configuration, you - still can change the device name and major number.The instruction to + still can change the device name and major number. The instruction to change these parameters are shown as below. Change Device name @@ -306,33 +403,37 @@ Content 2 free major numbers for this driver. There are 3 steps to change major numbers. - 1. Find free major numbers + 3.6.1 Find free major numbers In /proc/devices, you may find all the major numbers occupied in the system. Please select 2 major numbers that are available. e.g. 40, 45. - 2. Create special files + 3.6.2 Create special files Run /moxa/mxser/driver/msmknod to create special files with specified major numbers. - 3. Modify driver with new major number + 3.6.3 Modify driver with new major number Run vi to open /moxa/mxser/driver/mxser.c. Locate the line contains "MXSERMAJOR". Change the content as below. #define MXSERMAJOR 40 #define MXSERCUMAJOR 45 - 4. Run # make install in /moxa/mxser/driver. + 3.6.4 Run "make clean; make install" in /moxa/mxser/driver. - 3.6 Verify driver installation + 3.7 Verify driver installation You may refer to /var/log/messages to check the latest status log reported by this driver whenever it's activated. + ----------------------------------------------------------------------------- 4. Utilities There are 3 utilities contained in this driver. They are msdiag, msmon and msterm. These 3 utilities are released in form of source code. They should be compiled into executable file and copied into /usr/bin. + Before using these utilities, please load driver (refer 3.4 & 3.5) and + make sure you had run the "msmknod" utility. + msdiag - Diagnostic -------------------- - This utility provides the function to detect what Moxa Smartio multiport - board exists in the system. + This utility provides the function to display what Moxa Smartio/Industio + board found by driver in the system. msmon - Port Monitoring ----------------------- @@ -353,12 +454,13 @@ Content application, for example, sending AT command to a modem connected to the port or used as a terminal for login purpose. Note that this is only a dumb terminal emulation without handling full screen operation. + ----------------------------------------------------------------------------- 5. Setserial Supported Setserial parameters are listed as below. - uart set UART type(16450-->disable FIFO, 16550A-->enable FIFO) + uart set UART type(16450-->disable FIFO, 16550A-->enable FIFO) close_delay set the amount of time(in 1/100 of a second) that DTR should be kept low while being closed. closing_wait set the amount of time(in 1/100 of a second) that the @@ -366,7 +468,13 @@ Content being closed, before the receiver is disable. spd_hi Use 57.6kb when the application requests 38.4kb. spd_vhi Use 115.2kb when the application requests 38.4kb. + spd_shi Use 230.4kb when the application requests 38.4kb. + spd_warp Use 460.8kb when the application requests 38.4kb. spd_normal Use 38.4kb when the application requests 38.4kb. + spd_cust Use the custom divisor to set the speed when the + application requests 38.4kb. + divisor This option set the custom divison. + baud_base This option set the base baud rate. ----------------------------------------------------------------------------- 6. Troubleshooting @@ -375,8 +483,9 @@ Content possible. If all the possible solutions fail, please contact our technical support team to get more help. - Error msg: More than 4 Moxa Smartio family boards found. Fifth board and - after are ignored. + + Error msg: More than 4 Moxa Smartio/Industio family boards found. Fifth board + and after are ignored. Solution: To avoid this problem, please unplug fifth and after board, because Moxa driver supports up to 4 boards. @@ -384,7 +493,7 @@ Content Error msg: Request_irq fail, IRQ(?) may be conflict with another device. Solution: Other PCI or ISA devices occupy the assigned IRQ. If you are not sure - which device causes the situation,please check /proc/interrupts to find + which device causes the situation, please check /proc/interrupts to find free IRQ and simply change another free IRQ for Moxa board. Error msg: Board #: C1xx Series(CAP=xxx) interrupt number invalid. @@ -397,15 +506,18 @@ Content Moxa ISA board needs an interrupt vector.Please refer to user's manual "Hardware Installation" chapter to set interrupt vector. - Error msg: Couldn't install MOXA Smartio family driver! + Error msg: Couldn't install MOXA Smartio/Industio family driver! Solution: Load Moxa driver fail, the major number may conflict with other devices. - Please refer to previous section 3.5 to change a free major number for + Please refer to previous section 3.7 to change a free major number for Moxa driver. - Error msg: Couldn't install MOXA Smartio family callout driver! + Error msg: Couldn't install MOXA Smartio/Industio family callout driver! Solution: Load Moxa callout driver fail, the callout device major number may - conflict with other devices. Please refer to previous section 3.5 to + conflict with other devices. Please refer to previous section 3.7 to change a free callout device major number for Moxa driver. + + ----------------------------------------------------------------------------- + diff --git a/Documentation/networking/Makefile b/Documentation/networking/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..6d8af1ac56c410f11d0e85863a180884082c21ee --- /dev/null +++ b/Documentation/networking/Makefile @@ -0,0 +1,8 @@ +# kbuild trick to avoid linker error. Can be omitted if a module is built. +obj- := dummy.o + +# List of programs to build +hostprogs-y := ifenslave + +# Tell kbuild to always build the programs +always := $(hostprogs-y) diff --git a/Documentation/networking/bonding.txt b/Documentation/networking/bonding.txt index a0cda062bc33b6e1de3dd2bb60d5ff62bdf97cd4..688dfe1e6b70f75a36d84f30dda2234c53664be0 100644 --- a/Documentation/networking/bonding.txt +++ b/Documentation/networking/bonding.txt @@ -289,35 +289,73 @@ downdelay fail_over_mac Specifies whether active-backup mode should set all slaves to - the same MAC address (the traditional behavior), or, when - enabled, change the bond's MAC address when changing the - active interface (i.e., fail over the MAC address itself). - - Fail over MAC is useful for devices that cannot ever alter - their MAC address, or for devices that refuse incoming - broadcasts with their own source MAC (which interferes with - the ARP monitor). - - The down side of fail over MAC is that every device on the - network must be updated via gratuitous ARP, vs. just updating - a switch or set of switches (which often takes place for any - traffic, not just ARP traffic, if the switch snoops incoming - traffic to update its tables) for the traditional method. If - the gratuitous ARP is lost, communication may be disrupted. - - When fail over MAC is used in conjuction with the mii monitor, - devices which assert link up prior to being able to actually - transmit and receive are particularly susecptible to loss of - the gratuitous ARP, and an appropriate updelay setting may be - required. - - A value of 0 disables fail over MAC, and is the default. A - value of 1 enables fail over MAC. This option is enabled - automatically if the first slave added cannot change its MAC - address. This option may be modified via sysfs only when no - slaves are present in the bond. - - This option was added in bonding version 3.2.0. + the same MAC address at enslavement (the traditional + behavior), or, when enabled, perform special handling of the + bond's MAC address in accordance with the selected policy. + + Possible values are: + + none or 0 + + This setting disables fail_over_mac, and causes + bonding to set all slaves of an active-backup bond to + the same MAC address at enslavement time. This is the + default. + + active or 1 + + The "active" fail_over_mac policy indicates that the + MAC address of the bond should always be the MAC + address of the currently active slave. The MAC + address of the slaves is not changed; instead, the MAC + address of the bond changes during a failover. + + This policy is useful for devices that cannot ever + alter their MAC address, or for devices that refuse + incoming broadcasts with their own source MAC (which + interferes with the ARP monitor). + + The down side of this policy is that every device on + the network must be updated via gratuitous ARP, + vs. just updating a switch or set of switches (which + often takes place for any traffic, not just ARP + traffic, if the switch snoops incoming traffic to + update its tables) for the traditional method. If the + gratuitous ARP is lost, communication may be + disrupted. + + When this policy is used in conjuction with the mii + monitor, devices which assert link up prior to being + able to actually transmit and receive are particularly + susecptible to loss of the gratuitous ARP, and an + appropriate updelay setting may be required. + + follow or 2 + + The "follow" fail_over_mac policy causes the MAC + address of the bond to be selected normally (normally + the MAC address of the first slave added to the bond). + However, the second and subsequent slaves are not set + to this MAC address while they are in a backup role; a + slave is programmed with the bond's MAC address at + failover time (and the formerly active slave receives + the newly active slave's MAC address). + + This policy is useful for multiport devices that + either become confused or incur a performance penalty + when multiple ports are programmed with the same MAC + address. + + + The default policy is none, unless the first slave cannot + change its MAC address, in which case the active policy is + selected by default. + + This option may be modified via sysfs only when no slaves are + present in the bond. + + This option was added in bonding version 3.2.0. The "follow" + policy was added in bonding version 3.3.0. lacp_rate @@ -338,7 +376,8 @@ max_bonds Specifies the number of bonding devices to create for this instance of the bonding driver. E.g., if max_bonds is 3, and the bonding driver is not already loaded, then bond0, bond1 - and bond2 will be created. The default value is 1. + and bond2 will be created. The default value is 1. Specifying + a value of 0 will load bonding, but will not create any devices. miimon @@ -501,6 +540,17 @@ mode swapped with the new curr_active_slave that was chosen. +num_grat_arp + + Specifies the number of gratuitous ARPs to be issued after a + failover event. One gratuitous ARP is issued immediately after + the failover, subsequent ARPs are sent at a rate of one per link + monitor interval (arp_interval or miimon, whichever is active). + + The valid range is 0 - 255; the default value is 1. This option + affects only the active-backup mode. This option was added for + bonding version 3.3.0. + primary A string (eth0, eth2, etc) specifying which slave is the @@ -581,7 +631,7 @@ xmit_hash_policy in environments where a layer3 gateway device is required to reach most destinations. - This algorithm is 802.3ad complient. + This algorithm is 802.3ad compliant. layer3+4 diff --git a/Documentation/networking/can.txt b/Documentation/networking/can.txt index 641d2afacffa33094a5ee7a52e6646ec7c089220..297ba7b1ccaf953ff85e486baa0a7547450db31c 100644 --- a/Documentation/networking/can.txt +++ b/Documentation/networking/can.txt @@ -186,7 +186,7 @@ solution for a couple of reasons: The Linux network devices (by default) just can handle the transmission and reception of media dependent frames. Due to the - arbritration on the CAN bus the transmission of a low prio CAN-ID + arbitration on the CAN bus the transmission of a low prio CAN-ID may be delayed by the reception of a high prio CAN frame. To reflect the correct* traffic on the node the loopback of the sent data has to be performed right after a successful transmission. If @@ -481,7 +481,7 @@ solution for a couple of reasons: - stats_timer: To calculate the Socket CAN core statistics (e.g. current/maximum frames per second) this 1 second timer is invoked at can.ko module start time by default. This timer can be - disabled by using stattimer=0 on the module comandline. + disabled by using stattimer=0 on the module commandline. - debug: (removed since SocketCAN SVN r546) diff --git a/Documentation/networking/dm9000.txt b/Documentation/networking/dm9000.txt new file mode 100644 index 0000000000000000000000000000000000000000..65df3dea55613bd581dd787305054b7062657507 --- /dev/null +++ b/Documentation/networking/dm9000.txt @@ -0,0 +1,167 @@ +DM9000 Network driver +===================== + +Copyright 2008 Simtec Electronics, + Ben Dooks + + +Introduction +------------ + +This file describes how to use the DM9000 platform-device based network driver +that is contained in the files drivers/net/dm9000.c and drivers/net/dm9000.h. + +The driver supports three DM9000 variants, the DM9000E which is the first chip +supported as well as the newer DM9000A and DM9000B devices. It is currently +maintained and tested by Ben Dooks, who should be CC: to any patches for this +driver. + + +Defining the platform device +---------------------------- + +The minimum set of resources attached to the platform device are as follows: + + 1) The physical address of the address register + 2) The physical address of the data register + 3) The IRQ line the device's interrupt pin is connected to. + +These resources should be specified in that order, as the ordering of the +two address regions is important (the driver expects these to be address +and then data). + +An example from arch/arm/mach-s3c2410/mach-bast.c is: + +static struct resource bast_dm9k_resource[] = { + [0] = { + .start = S3C2410_CS5 + BAST_PA_DM9000, + .end = S3C2410_CS5 + BAST_PA_DM9000 + 3, + .flags = IORESOURCE_MEM, + }, + [1] = { + .start = S3C2410_CS5 + BAST_PA_DM9000 + 0x40, + .end = S3C2410_CS5 + BAST_PA_DM9000 + 0x40 + 0x3f, + .flags = IORESOURCE_MEM, + }, + [2] = { + .start = IRQ_DM9000, + .end = IRQ_DM9000, + .flags = IORESOURCE_IRQ | IORESOURCE_IRQ_HIGHLEVEL, + } +}; + +static struct platform_device bast_device_dm9k = { + .name = "dm9000", + .id = 0, + .num_resources = ARRAY_SIZE(bast_dm9k_resource), + .resource = bast_dm9k_resource, +}; + +Note the setting of the IRQ trigger flag in bast_dm9k_resource[2].flags, +as this will generate a warning if it is not present. The trigger from +the flags field will be passed to request_irq() when registering the IRQ +handler to ensure that the IRQ is setup correctly. + +This shows a typical platform device, without the optional configuration +platform data supplied. The next example uses the same resources, but adds +the optional platform data to pass extra configuration data: + +static struct dm9000_plat_data bast_dm9k_platdata = { + .flags = DM9000_PLATF_16BITONLY, +}; + +static struct platform_device bast_device_dm9k = { + .name = "dm9000", + .id = 0, + .num_resources = ARRAY_SIZE(bast_dm9k_resource), + .resource = bast_dm9k_resource, + .dev = { + .platform_data = &bast_dm9k_platdata, + } +}; + +The platform data is defined in include/linux/dm9000.h and described below. + + +Platform data +------------- + +Extra platform data for the DM9000 can describe the IO bus width to the +device, whether or not an external PHY is attached to the device and +the availability of an external configuration EEPROM. + +The flags for the platform data .flags field are as follows: + +DM9000_PLATF_8BITONLY + + The IO should be done with 8bit operations. + +DM9000_PLATF_16BITONLY + + The IO should be done with 16bit operations. + +DM9000_PLATF_32BITONLY + + The IO should be done with 32bit operations. + +DM9000_PLATF_EXT_PHY + + The chip is connected to an external PHY. + +DM9000_PLATF_NO_EEPROM + + This can be used to signify that the board does not have an + EEPROM, or that the EEPROM should be hidden from the user. + +DM9000_PLATF_SIMPLE_PHY + + Switch to using the simpler PHY polling method which does not + try and read the MII PHY state regularly. This is only available + when using the internal PHY. See the section on link state polling + for more information. + + The config symbol DM9000_FORCE_SIMPLE_PHY_POLL, Kconfig entry + "Force simple NSR based PHY polling" allows this flag to be + forced on at build time. + + +PHY Link state polling +---------------------- + +The driver keeps track of the link state and informs the network core +about link (carrier) availablilty. This is managed by several methods +depending on the version of the chip and on which PHY is being used. + +For the internal PHY, the original (and currently default) method is +to read the MII state, either when the status changes if we have the +necessary interrupt support in the chip or every two seconds via a +periodic timer. + +To reduce the overhead for the internal PHY, there is now the option +of using the DM9000_FORCE_SIMPLE_PHY_POLL config, or DM9000_PLATF_SIMPLE_PHY +platform data option to read the summary information without the +expensive MII accesses. This method is faster, but does not print +as much information. + +When using an external PHY, the driver currently has to poll the MII +link status as there is no method for getting an interrupt on link change. + + +DM9000A / DM9000B +----------------- + +These chips are functionally similar to the DM9000E and are supported easily +by the same driver. The features are: + + 1) Interrupt on internal PHY state change. This means that the periodic + polling of the PHY status may be disabled on these devices when using + the internal PHY. + + 2) TCP/UDP checksum offloading, which the driver does not currently support. + + +ethtool +------- + +The driver supports the ethtool interface for access to the driver +state information, the PHY state and the EEPROM. diff --git a/Documentation/networking/e1000.txt b/Documentation/networking/e1000.txt index 61b171cf5313c9b94c3e4fe185a9ff9edf9b5cbc..2df71861e578b6ebcb2b94371d4a32fbdf7fca61 100644 --- a/Documentation/networking/e1000.txt +++ b/Documentation/networking/e1000.txt @@ -513,21 +513,11 @@ Additional Configurations Intel(R) PRO/1000 PT Dual Port Server Connection Intel(R) PRO/1000 PT Dual Port Server Adapter Intel(R) PRO/1000 PF Dual Port Server Adapter - Intel(R) PRO/1000 PT Quad Port Server Adapter + Intel(R) PRO/1000 PT Quad Port Server Adapter NAPI ---- - NAPI (Rx polling mode) is supported in the e1000 driver. NAPI is enabled - or disabled based on the configuration of the kernel. To override - the default, use the following compile-time flags. - - To enable NAPI, compile the driver module, passing in a configuration option: - - make CFLAGS_EXTRA=-DE1000_NAPI install - - To disable NAPI, compile the driver module, passing in a configuration option: - - make CFLAGS_EXTRA=-DE1000_NO_NAPI install + NAPI (Rx polling mode) is enabled in the e1000 driver. See www.cyberus.ca/~hadi/usenix-paper.tgz for more information on NAPI. diff --git a/Documentation/networking/ifenslave.c b/Documentation/networking/ifenslave.c index a12059886755c7d2b5ff346eaaf495f9376a589a..1b96ccda3836507b18e14a60744b7bfa16de1c83 100644 --- a/Documentation/networking/ifenslave.c +++ b/Documentation/networking/ifenslave.c @@ -1081,7 +1081,7 @@ static int set_if_addr(char *master_ifname, char *slave_ifname) } - ipaddr = ifr.ifr_addr.sa_data; + ipaddr = (unsigned char *)ifr.ifr_addr.sa_data; v_print("Interface '%s': set IP %s to %d.%d.%d.%d\n", slave_ifname, ifra[i].desc, ipaddr[0], ipaddr[1], ipaddr[2], ipaddr[3]); diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt index 946b66e1b65214f4becc5d2563f73180fe331837..d84932650fd3e926cc11d5fa0bcaee6cc8a8cd33 100644 --- a/Documentation/networking/ip-sysctl.txt +++ b/Documentation/networking/ip-sysctl.txt @@ -551,8 +551,9 @@ icmp_echo_ignore_broadcasts - BOOLEAN icmp_ratelimit - INTEGER Limit the maximal rates for sending ICMP packets whose type matches icmp_ratemask (see below) to specific targets. - 0 to disable any limiting, otherwise the maximal rate in jiffies(1) - Default: 100 + 0 to disable any limiting, + otherwise the minimal space between responses in milliseconds. + Default: 1000 icmp_ratemask - INTEGER Mask made of ICMP types for which rates are being limited. @@ -1023,11 +1024,23 @@ max_addresses - INTEGER autoconfigured addresses. Default: 16 +disable_ipv6 - BOOLEAN + Disable IPv6 operation. + Default: FALSE (enable IPv6 operation) + +accept_dad - INTEGER + Whether to accept DAD (Duplicate Address Detection). + 0: Disable DAD + 1: Enable DAD (default) + 2: Enable DAD, and disable IPv6 operation if MAC-based duplicate + link-local address has been found. + icmp/*: ratelimit - INTEGER Limit the maximal rates for sending ICMPv6 packets. - 0 to disable any limiting, otherwise the maximal rate in jiffies(1) - Default: 100 + 0 to disable any limiting, + otherwise the minimal space between responses in milliseconds. + Default: 1000 IPv6 Update by: diff --git a/Documentation/networking/ixgb.txt b/Documentation/networking/ixgb.txt index 7c98277777ebcc14ee7c30991873cc6c92296d28..a0d0ffb5e584c1ae1b24a49552bfaef4c3b4684a 100644 --- a/Documentation/networking/ixgb.txt +++ b/Documentation/networking/ixgb.txt @@ -1,7 +1,7 @@ -Linux* Base Driver for the Intel(R) PRO/10GbE Family of Adapters -================================================================ +Linux Base Driver for 10 Gigabit Intel(R) Network Connection +============================================================= -November 17, 2004 +October 9, 2007 Contents @@ -9,94 +9,151 @@ Contents - In This Release - Identifying Your Adapter +- Building and Installation - Command Line Parameters - Improving Performance +- Additional Configurations +- Known Issues/Troubleshooting - Support + In This Release =============== -This file describes the Linux* Base Driver for the Intel(R) PRO/10GbE Family -of Adapters, version 1.0.x. +This file describes the ixgb Linux Base Driver for the 10 Gigabit Intel(R) +Network Connection. This driver includes support for Itanium(R)2-based +systems. + +For questions related to hardware requirements, refer to the documentation +supplied with your 10 Gigabit adapter. All hardware requirements listed apply +to use with Linux. + +The following features are available in this kernel: + - Native VLANs + - Channel Bonding (teaming) + - SNMP + +Channel Bonding documentation can be found in the Linux kernel source: +/Documentation/networking/bonding.txt + +The driver information previously displayed in the /proc filesystem is not +supported in this release. Alternatively, you can use ethtool (version 1.6 +or later), lspci, and ifconfig to obtain the same information. + +Instructions on updating ethtool can be found in the section "Additional +Configurations" later in this document. -For questions related to hardware requirements, refer to the documentation -supplied with your Intel PRO/10GbE adapter. All hardware requirements listed -apply to use with Linux. Identifying Your Adapter ======================== -To verify your Intel adapter is supported, find the board ID number on the -adapter. Look for a label that has a barcode and a number in the format -A12345-001. +The following Intel network adapters are compatible with the drivers in this +release: + +Controller Adapter Name Physical Layer +---------- ------------ -------------- +82597EX Intel(R) PRO/10GbE LR/SR/CX4 10G Base-LR (1310 nm optical fiber) + Server Adapters 10G Base-SR (850 nm optical fiber) + 10G Base-CX4(twin-axial copper cabling) + +For more information on how to identify your adapter, go to the Adapter & +Driver ID Guide at: + + http://support.intel.com/support/network/sb/CS-012904.htm + + +Building and Installation +========================= + +select m for "Intel(R) PRO/10GbE support" located at: + Location: + -> Device Drivers + -> Network device support (NETDEVICES [=y]) + -> Ethernet (10000 Mbit) (NETDEV_10000 [=y]) +1. make modules && make modules_install + +2. Load the module: + +    modprobe ixgb = + + The insmod command can be used if the full + path to the driver module is specified. For example: + + insmod /lib/modules//kernel/drivers/net/ixgb/ixgb.ko + + With 2.6 based kernels also make sure that older ixgb drivers are + removed from the kernel, before loading the new module: -Use the above information and the Adapter & Driver ID Guide at: + rmmod ixgb; modprobe ixgb - http://support.intel.com/support/network/adapter/pro100/21397.htm +3. Assign an IP address to the interface by entering the following, where + x is the interface number: -For the latest Intel network drivers for Linux, go to: + ifconfig ethx + +4. Verify that the interface works. Enter the following, where + is the IP address for another machine on the same subnet as the interface + that is being tested: + + ping - http://downloadfinder.intel.com/scripts-df/support_intel.asp Command Line Parameters ======================= -If the driver is built as a module, the following optional parameters are -used by entering them on the command line with the modprobe or insmod command -using this syntax: +If the driver is built as a module, the following optional parameters are +used by entering them on the command line with the modprobe command using +this syntax: modprobe ixgb [