Skip to content
Commit 095bb6e4 authored by Michał Kępień's avatar Michał Kępień Committed by Miquel Raynal
Browse files

mtdchar: add MEMREAD ioctl

User-space applications making use of MTD devices via /dev/mtd*
character devices currently have limited capabilities for reading data:

  - only deprecated methods of accessing OOB layout information exist,

  - there is no way to explicitly specify MTD operation mode to use; it
    is auto-selected based on the MTD file mode (MTD_FILE_MODE_*) set
    for the character device; in particular, this prevents using
    MTD_OPS_AUTO_OOB for reads,

  - all existing user-space interfaces which cause mtd_read() or
    mtd_read_oob() to be called (via mtdchar_read() and
    mtdchar_read_oob(), respectively) return success even when those
    functions return -EUCLEAN or -EBADMSG; this renders user-space
    applications using these interfaces unaware of any corrected
    bitflips or uncorrectable ECC errors detected during reads.

Note that the existing MEMWRITE ioctl allows the MTD operation mode to
be explicitly set, allowing user-space applications to write page data
and OOB data without requiring them to know anything about the OOB
layout of the MTD device they are writing to (MTD_OPS_AUTO_OOB).  Also,
the MEMWRITE ioctl does not mangle the return value of mtd_write_oob().

Add a new ioctl, MEMREAD, which addresses the above issues.  It is
intended to be a read-side counterpart of the existing MEMWRITE ioctl.
Similarly to the latter, the read operation is performed in a loop which
processes at most mtd->erasesize bytes in each iteration.  This is done
to prevent unbounded memory allocations caused by calling kmalloc() with
the 'size' argument taken directly from the struct mtd_read_req provided
by user space.  However, the new ioctl is implemented so that the values
it returns match those that would have been returned if just a single
mtd_read_oob() call was issued to handle the entire read operation in
one go.

Note that while just returning -EUCLEAN or -EBADMSG to user space would
already be a valid and useful indication of the ECC algorithm detecting
errors during a read operation, that signal would not be granular enough
to cover all use cases.  For example, knowing the maximum number of
bitflips detected in a single ECC step during a read operation performed
on a given page may be useful when dealing with an MTD partition whose
ECC layout varies across pages (e.g. a partition consisting of a
bootloader area using a "custom" ECC layout followed by data pages using
a "standard" ECC layout).  To address that, include ECC statistics in
the structure returned to user space by the new MEMREAD ioctl.

Link: https://www.infradead.org/pipermail/linux-mtd/2016-April/067085.html



Suggested-by: default avatarBoris Brezillon <boris.brezillon@collabora.com>
Signed-off-by: default avatarMichał Kępień <kernel@kempniu.pl>
Acked-by: default avatarRichard Weinberger <richard@nod.at>
Signed-off-by: default avatarMiquel Raynal <miquel.raynal@bootlin.com>
Link: https://lore.kernel.org/linux-mtd/20220629125737.14418-5-kernel@kempniu.pl
parent 7bea6056
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment