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Abstract

Vanilla image completion approaches exhibit sensitivity to large missing regions,
attributed to the limited availability of reference information for plausible genera-
tion. To mitigate this, existing methods incorporate the extra cue as a guidance for
image completion. Despite improvements, these approaches are often restricted
to employing a single modality (e.g., segmentation or sketch maps), which lacks
scalability in leveraging multi-modality for more plausible completion. In this
paper, we propose a novel, simple yet effective method for Multi-modal Guided
Image Completion, dubbed MaGIC, which not only supports a wide range of
single modality as the guidance (e.g., text, canny edge, sketch, segmentation, depth,
and pose), but also adapts to arbitrarily customized combination of these modal-
ities (i.e., arbitrary multi-modality) for image completion. For building MaGIC,
we first introduce a modality-specific conditional U-Net (MCU-Net) that injects
single-modal signal into a U-Net denoiser for single-modal guided image comple-
tion. Then, we devise a consistent modality blending (CMB) method to leverage
modality signals encoded in multiple learned MCU-Nets through gradient guidance
in latent space. Our CMB is training-free, thereby avoids the cumbersome joint
re-training of different modalities, which is the secret of MaGIC to achieve excep-
tional flexibility in accommodating new modalities for completion. Experiments
show the superiority of MaGIC over state-of-the-art methods and its generalization
to various completion tasks. Our project with code and models is available at
yeates.github.io/MaGIC-Page/.

Image completion with text and structural guidance

?

Prompt: ”Snow mountains in the distance and beautiful lakes.” Large-scale image completion

Canny EdgePose Depth Sketch (Scribble)

Prompt: ”a  thumbs up boy and a smiling E.T.” Real-world image editing

Input images

Figure 1: Illustration of our MaGIC for image completion tasks including outpainting (first row) and
real user-input editing (second row) under multi-modality guidance.
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1 Introduction

Image completion (Criminisi et al., 2003; Li et al., 2022; Lugmayr et al., 2022), involving the
concealment of a portion of an image and prompting a model to imaginatively restore it, has long
been a subject of extensive research with many applications, such as object removal (Suvorov
et al., 2022; Criminisi et al., 2003), image compositing (Levin et al., 2004), photo restoration (Wan
et al., 2020), etc. Typical image completion approaches (Li et al., 2022; Suvorov et al., 2022) are
prone to struggle with complex or large masking regions due to inadequate reference information.
This limitation causes ambiguity to completion model over restoration or elimination and leads to
noticeable artifacts in completed images, degrading the quality.

An intuitive solution to overcome the above limitation is to incorporate user-input (Horita et al.,
2022; Yu et al., 2019; Zheng et al., 2022a) or prediction-based (Nazeri et al., 2019; Yu et al., 2022;
Guo et al., 2021; Dong et al., 2022) guidance, e.g., text (Avrahami et al., 2023; Xie et al., 2022;
Nichol et al., 2022; Wang et al., 2023), edge (Nazeri et al., 2019; Guo et al., 2021; Yu et al., 2022),
or segmentation (Yu et al., 2022; Liao et al., 2020; Zheng et al., 2022b), into image completion.
However, these approaches are limited to performing image completion under only single-modality
guidance, which is inflexible in employing the multi-modality, especially more than two modalities
simultaneously, for plausible generation and leads to limited application scenarios.

Recently, denoising diffusion probabilistic model (Ho et al., 2020) has been widely employed and
demonstrated superior performances in text-to-image synthesis (Rombach et al., 2022; Gu et al.,
2022; Ramesh et al., 2022) and text-driven image manipulation fields (Kim et al., 2022; Avrahami
et al., 2022; Kawar et al., 2023). In addition to text, many approaches (Bansal et al., 2023; Yu et al.,
2023; Chen et al., 2023; Avrahami et al., 2022) have explored the integration of extra guidance
modality, such as segmentation, sketch, pose, and even position of generated object, into diffusion
models in a training-free way. These methods involve designing energy loss associated with the
input guidance and guiding its gradient on the latent codes during inference, yet they tend to fail in
maintaining fine-grained structural information, resulting in insufficient control over the generated
results. Meanwhile, several training-required approaches (Mou et al., 2023; Zhang & Agrawala,
2023) have further enhanced the control of input modality over diffusion models by introducing
an auxiliary conditional network to encode modality and directly add the encoded features to the
intermediate features of frozen diffusion models. These methods bring in fresh insights and pave the
way for incorporating guidance signals into image completion. Nevertheless, simply transferring
these ideas to multi-modality image completion is not trivial, as the introduction of each new modality
necessitates the joint training of all auxiliary conditional networks. How to effectively integrate
multi-modality guidance for image completion in a scalable and flexible manner remains an open
problem.

In this paper, we propose MaGIC, a novel, simple yet effective framework for Multi-modality Guided
Image Completion, especially when there are more than two modalities at the same time. MaGIC is
designed to be scalable and flexible, allowing it to merge various modalities, including but not limited
to text, canny edge, sketch, segmentation, depth, and pose, in an arbitrary combination as guidance for
image completion (see Fig. 1 and Fig. 2). To build MaGIC, there are two core ingredients, including
a modality-specific conditional U-Net (MCU-Net) and a consistent modality blending (CMB) method,
performed in two stages.

Specifically, the proposed MCU-Net, composed of a standard U-Net denoiser from the pre-trained
stable diffusion (Rombach et al., 2022) and a simple encoding network, which injects a single
modality guidance signal into the U-Net denoiser to attain single-modal guided completion. The
MCU-Net will be individually finetuned under each single modality, in the first stage. Then, to
achieve multi-modality guidance, the CMB algorithm is proposed in the second stage to flexibly
aggregate guidance signals from any combination of previously learned MCU-Nets. The CMB
leverages guidance loss to gradually narrow the distances between the intermediate features from the
original pretrained U-Net denoiser and multiple MCU-Nets during denoising sample stage, which
ensures that the former features do not deviate too much from the original feature distribution during
multi-modality guidance. Compared with the naive approach of achieving multi-modality guided
completion by jointly re-training a unified model, our CMB is training-free and allows for the flexible
addition or removal of guidance modalities, avoiding cumbersome re-training and preserving the
feature distribution of the original U-Net denoiser.

2



Ground truthMulti-modality guidance Output

a panda is 
fighting with 

Cowboy in the 
bar

Lego 
superman car

Arctic glacier 
background, 

Selfie, glasses 
women on the 

left, Miss pretty 
dog on the right

Figure 2: Illustration of our MaGIC for real user-input editing task using various combination of
multi-modality as guidance.

To verify the proposed MaGIC, we conduct extensive experiments on various tasks including image
inpainting, outpainting, and real user-input editing, using the COCO (Lin et al., 2014), Places2 (Zhou
et al., 2018), and in-the-wild data. Our results demonstrate the superiority of MaGIC over image
completion and controllable generation baselines in terms of image quality. In addition, we find
that, surprisingly, the CMB of our MaGIC is also well applicable for multi-modality guided image
generation, showing its generality and potential for generative tasks. Fig. 3 illustrates the architecture
of our approach.

In summary, our contributions are four-fold: (i) we propose a novel approach of MaGIC for flexible
and scalable multi-modality guided image completion. To the best of our knowledge, MaGIC is the
first to widely support arbitrary multi-modality guided image completion; (ii) we present a simple yet
effective MCU-Net to effectively and adaptively inject a modality as guidance for image completion;
(iii) we introduce a novel CMB algorithm that combines arbitrary multiple modalities for image
completion without the need for additional training and (iv) using MaGIC, we achieve performance
superior to that of other state-of-the-art approaches.

2 RelatedWork

Auxiliary-based image completion. The auxiliary-based image completion methods aim to enhance
the structure and texture of completed images by incorporating predicted or human-provided prior
information. Early approaches primarily focus on using a single modality (e.g., edge (Nazeri et al.,
2019; Guo et al., 2021; Dong et al., 2022; Zheng et al., 2022a) or segmentation (Zheng et al., 2022b;
Liao et al., 2020)) as the auxiliary guidance for image completion. Recently, inspired by the superior-
performing diffusion models (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al., 2022),
text-based auxiliary solutions have been proposed for image completion (Wang et al., 2023; Avrahami
et al., 2023; Nichol et al., 2022; Avrahami et al., 2022), providing more user-friendly image editing
applications.

However, prompt text alone is not sufficient. Due to the above methods are constrained by the training
requirements of auxiliary guidance, making them difficult to flexibly add more types of modalities as
guidance for completion. Our MaGIC can incorporate random combination of multiple modalities for
more plausible completion result (see Fig. 1 again). It is versatile, requiring only the optimization of
single-modality conditional networks, and allows for plug-and-play integration into the conditional
image completion process without the need for additional cumbersome joint re-training.

3



Controllable image generation with diffusion models. Diffusion models (Ho et al., 2020; Dhariwal
& Nichol, 2021; Rombach et al., 2022; Song et al., 2023) have drawn extensive attention in image
generation owing to their remarkable results and stable training. These methods can be broadly
categorized into train-required and train-free approaches. The former achieve powerful generation
control by training on large-scale data or fine-tuning a conditional control sub-network on pre-trained
diffusion models (e.g., (Rombach et al., 2022)). Recent research (Zhang & Agrawala, 2023; Mou
et al., 2023) has introduced various modalities (e.g., keypose point maps, sketch maps, etc) for
generation. However, it fails to simultaneously use multi-modality as guidance. Differently, train-free
solutions (Yu et al., 2023; Chen et al., 2023; Bansal et al., 2023; Jeong et al., 2023) leverage the
multi-step nature of diffusion models, explicitly introducing guidance signals during the iterative
denoising process and achieving style (Jeong et al., 2023), layout (Chen et al., 2023; Bansal et al.,
2023), face identity (Bansal et al., 2023; Yu et al., 2023), segmentation map (Bansal et al., 2023;
Yu et al., 2023) guidance without fine-tuning. Yet, they struggle to leverage fine-grained structural
guidance (e.g., canny edge) as conditions, potentially resulting in degraded guidance (Yu et al., 2023).

Our MaGIC is inspired by the above image generation approaches, but different in two aspects. First,
MaGIC achieves multi-modality guidance without joint re-training while improving the effectiveness
of fine-grained structure guidance. In addition, MaGIC goes beyond controllable generation and can
be applied to guided completion and real-world editing tasks.

3 MaGIC: Multi-modality Guided Image Completion

Masked images xm = x ⊙ m are obtained by corrupting images x with binary masks m ∈ {0, 1}H×W×1,
where x ∈ RH×W×3 are original RGB images with width W and height H. Given a known region
xm = x ⊙ (1 − m), the goal of image completion is to learn a function p(xm|xm) that completes the
missing mask area with visually realistic and structurally coherent content. To mitigate the inherent
ambiguity of completion model, the direction of restoration or elimination is controlled through
the auxiliary guidance C. In the following sections, we start by outlining necessary diffusion steps
in 3.1) for formulating our method, then elaborate on MaGIC, addressing auxiliary guidance via our
proposed MCU-Net in 3.2 and multi-modality integration by our CMB algorithm in 3.3.

3.1 Preliminaries

Diffusion models. Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) are generative
models that learn the true distribution p(xT ) by iteratively denoising a randomly sampled noise image
xT . In each denoising step, a U-Net model is trained to predict the noise ϵ based on the objective
function,

Φ(xt, t, θ) = min(Ex0,t,ϵ∼N(0,I)∥ϵ − ϵ
t
θ(xt)∥22), (1)

where xt =
√
αt x0 +

√
1 − αtϵ represents the intermediate noised image obtained after applying noise

t times to the clean image x0, and αt =
∏t

s=1(1 − βs) is a series of fixed hyperparameters based on
the variance schedule βs, s ∈ [1,T ]. The model can be further generalized to conditional generation
(Dhariwal & Nichol, 2021; Ho & Salimans, 2021), with predicted noise becoming ϵθ(xt, t,C).

Stable diffusion. We consider stable diffusion (SD) inpainting model (Rombach et al., 2022) as the
main backbone in the subsequent method sections. Instead of beginning with isotropic Gaussian
noise samples in pixel space, the SD model first maps clean images to their corresponding latent
space Z through E(·). Here, E(·) is an autoencoder with a left inverse D, ensuring x = D ◦ E(x).
Owing to the lower inference overhead of U-Net in the latent space, SD has emerged as an important
class of recent image generators based on diffusion (Rombach et al., 2022; Saharia et al., 2022; Zhang
& Agrawala, 2023; Avrahami et al., 2023). Specifically, the initial latent codes of iterative denoising
process employ random zT ∼ Z ∈ R

H
s ×

W
s ×3, where s signifies s-fold reduction in spatial dimensions.

The mask and encoding masked image serve as conditions for the U-Net, modifying the objective
function in Eq. 1 to

Φ(zt, t,m↓, xm↓, θ) = min(Ez0,t,ϵ∼N(0,I)∥ϵ − ϵ
t
θ(zt,m↓, xm↓)∥22), (2)

where m↓ ∈ R
H
s ×

W
s ×1 denotes the s-fold nearest-neighbor downsampling of the input mask m, and

xm↓ = E(xm) indicates embedded masked image in latent space. Denoising diffusion implicit model
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Figure 3: Illustration of our method. We initiate the inference process with a randomly initialized
latent zT . This latent is denoised T times, with the concatenation of the masked image and mask
acting as conditioning for both MCU-Net and frozen U-Net denoiser. Through CMB, we fuse diverse
modality guidance signals, aiding the frozen original U-Net θ∗ to iteratively produce the desired
content. The content is finally transformed into pixel space via a decoder network, resulting in the
completed RGB output.

(DDIM) (Song et al., 2021) defines the each step of denoising as a non-Markovian process while
retaining the same training objective as DDPM. Accordingly, the sampling process is formulated as,

zt−1 =
√
αt−1(

zt −
√

1 − αtϵ
t
θ(zt,m↓, xm↓)
√
αt

) +
√

1 − αt−1 − σ
2
t · ϵ

t
θ(zt,m↓, xm↓) + σtϵt, (3)

where the noise ϵt follows the standard normal distribution N(0, I) and is independent of xt, and
σt = η

√
(1 − αt−1)/(1 − αt)

√
1 − αt/αt−1. By gradually denoising over T timesteps, the content of

missing region is hallucinated in the latent space, producing a conditional sample z0 ∼ p(zT |m↓, xm↓).
z0 is then transformed into the pixel space as x̂ = D(z0) via the left-inverse decoder network D
corresponding to the autoencoder E(·), finally resulting in the completion outcome x̂ ∈ RH×W×3.

3.2 MCU-Net: Modality-specific Conditional U-Net

skip connectionswitch

Auxiliary 
Guidance

element-wise
addition

 QK
V

Depth
Map

Text
Sketch

Map

Pose
Map

Semantic
Map

Canny Edge
Map

 QK
V

cross attention

 QK
V

U
-N
et

D
en
oi
se
r

Figure 4: Illustration of MCU-Net.

The first stage in MaGIC is to learn image completion
under single-modality guidance. For this purpose,
we propose a simple yet effective modality-specific
conditional U-Net (MCU-Net). Particularly, for the
auxiliary guidance ci ∈ C (C = {ci}Ni=1 denotes the
set of N auxiliary guidance), MCU-Net consists of a
standard U-Net denoiser θci (Rombach et al., 2022)
and an encoding network τci . For simplicity, we will
omit i in the following sections.

The encoding network τc is employed to extract multi-
scale guidance signals, represented as F l

c, where
l ∈ {0, · · · , L} and L denotes the number of times
the feature map scale is reduced within the U-Net
denoiser. Afterwards, F l

c is injected to the latent in
MCU-Net to obtain modality-guided feature. In spe-
cific, we denote the latent in MCU-Net as wt,c (c ∈ C)
to distinguish it from the original diffusion model’s
zt. As illustrated in Fig. 4, to inject guidance signals
into the latent wt,c, we add F l

c to intermediate feature maps F l
enc of the encoder of MCU-Net, resulting

in guided feature map F̂ l
c = F l

enc + F l
c, l ∈ [0, L]. And we incorporate the text modality in a manner
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consistent with SD, which integrates its information into intermediate features via a cross-attention
mechanism.

To utilize generative capability of pre-trained SD, we freeze the original U-Net denoiser when training
MCU-Net, allowing the unlocked encoding network τc to learn guidance signal extraction and fit the
pre-trained denoiser.

3.3 CMB: ConsistentModality Blending

Despite achieving image completion under single-modality with MCU-Net, it is not trivial to integrate
multiple MCU-Nets for multi-modality image completion. A naive way is to jointly re-train these
learned MCU-Nets, which is cumbersome and inflexible for multi-modality image completion. To
deal with this, we propose the novel consistent modality blending (CMB), a training-free algorithm
to integrate guidance signals from different auxiliary modalities without requiring additional joint
re-training. A great benefit of CMB is that, the multi-modality guidance latent code in MCU-Net
remains aligned with the internal knowledge of SD model, without affecting its original ability. As
shown in Fig. 3, the guidance signals from arbitrary combination of independent single-modality
models (i.e., MCU-Nets) in gradient aspect gradually control the image completion process with
input modalities.

Specifically, given a series of MCU-Nets trained independently on multiple modalities C, we can
extract the guidance signals Fc. A simple way for integrating different modalities is to directly update
intermediate feature maps Fenc by adding accumulated guidance signals as F̂C ← Fenc +

∑
c∈C Fc.

However, we argue that this simple manner we called feature-level addition is impractical, as the
denoiser is trained solely on the distribution of F̂c = Fenc + Fc. Drawing inspiration from recent
advancements in classifier-guidance diffusion (Dhariwal & Nichol, 2021), we introduce a converse
amplification strategy. This technique enables the intermediate feature maps F∗ of a original U-Net
to more closely approximate each guided feature map F̂c.

Algorithm 1 Usage of CMB in MaGIC
Require: Given the input masked image xm, mask m, a
series of MCU-Net parameters θc, the number of times
of converse amplification P, and the number of iteration
steps of back-propagation Q.
1: m↓ = downsample(m)
2: xm↓ = E(xm)
3: zT ∼ N(0, I)
4: wT,c ∼ N(0, I),∀c ∈ C
5: for t = T, · · · , 1 do
6: if t ≤ T − P then
7: ϵθ∗ , F∗ ← θ∗(zt, t,m↓, xm↓)
8: zt−1 = sampler(zt, ϵθ∗ ) (Eq. 3)
9: continue

10: end if
11: for 1, · · · ,Q do
12: ϵθ, F̂C ← θC(wt,C, t,m↓, xm↓)
13: wt−1,C = sampler(wt,C, ϵθ) (Eq. 3)
14: ϵθ∗ , F∗ ← θ∗(zt, t,m↓, xm↓)
15: z′t−1 = sampler(zt, ϵθ∗ ) (Eq. 3)
16: zt−1 = z′t−1 − σtγ∇ztℓ(F̂C, F∗) (Eq. 5)
17: end for
18: end for
19: return D(z0)

Converse Amplification. We use F∗ to denote
the intermediate features from the original U-
Net θ∗ which is not equipped with an guidance
encoding network, while F̂c to denote guided
features from MCU-Net θc of modality c. No-
tably, U-Net θ∗ and MCU-Net θc undergo a par-
allel denoising process. At each step t, every la-
tent is denoised using the DDIM sampler (Song
et al., 2021). In the original U-Net θ∗, we denote
the denoised latent as the intermediate latent
z′t−1.

We bias F∗ towards F̂c by calculating their Eu-
clidean distance in each scale l:

ℓ(F̂C, F∗) =
1
L

∑
c∈C

δc∥F̂ l
c − F l

∗∥
2
2 (4)

where δc are scale factors to weight the strength
leads to either improved alignment to guidance
modality c or greater diversity in the outputs.
N = |C| indicates the modality number of auxil-
iary guidance set. Then we use distance to adjust
latent code of the original SD model. Specifi-
cally, at each denoising step, we obtain F̂C and
F∗ firstly, then the gradient of their distance is calculated through back-propagation to update the
denoised latent z′t−1:

zt−1 = z′t−1 − σtγ∇ztℓ(F̂C, F∗) (5)

Owing to CMB, it is not necessary to jointly re-train the learned MCU-Nets, making MaGIC flexible
in merging arbitrary multi-modality for completion. Alg. 1 shows the procedure of CMB for MaGIC.
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Figure 5: Qualitative comparison for image completion using single modality as guidance. ∗ indicates
the use of latent-level blending (Avrahami et al., 2023) to preserve pixels in unmasked regions.

4 Experiments

In this work, we study three research questions, RQ1, RQ2 and RQ3:

RQ1: Can our MCU-Net effectively perform image completion guided by various modalities?
RQ2: Can our MaGIC with CMB seamlessly integrate guidance from multiple modalities to produce
credible completion results?
RQ3: How do different module designs (e.g., adjustments in hyperparameters and inference pro-
cesses) impact the overall effectiveness?

4.1 Experimental settings

In our experiments, we select several edge-based image completion methods, including EC (Nazeri
et al., 2019), CTSDG (Guo et al., 2021), ZITS (Dong et al., 2022), and state-of-the-art (SOTA)
techniques such as LAMA (Suvorov et al., 2022), LDM (Rombach et al., 2022), and MAT (Li
et al., 2022). We also include controllable image generation baselines such as ControlNet (Zhang
& Agrawala, 2023) and T2I-Adapter (Mou et al., 2023) in our qualitative comparison, as they can
be easily adapted to the image completion task with the concept of Blended Diffusion (Avrahami
et al., 2022; 2023). For fair comparison, we apply the same set of image mask pairs across all tests,
and, for comparisons involving auxiliary guidance, we ensure that each method receives identical
guidance map instructions. The masks used in testing are designed to uniformly span a masking ratio
range from 0 to 100%. The evaluation adopts both image metrics (i.e., FID and P/U-IDS (Zhao et al.,
2021)) and text-to-image metric (i.e., PickScore (Kirstain et al., 2023)) which gauges the fidelity of
generated content based on learned human preferences. Acknowledging the pluralistic outcomes
of our method, we conduct tests on a total of five images to determine mean scores and standard
deviations. For all diffusion-based methods, the denoising step T is set to 50. For further details on
the experimental configuration, please see the supplementary material.

4.2 Image Completion with Single-Modality Guidance usingMCU-Net

To answer RQ1, we compare our approach with state-of-the-art (SOTA) inpainting methods (Suvorov
et al., 2022; Li et al., 2022) and SOTA single modality guidance image generation methods. We
employ latent-level blending (Avrahami et al., 2023) to preserve pixels in unmasked regions for
image generation methods such as ControlNet (Zhang & Agrawala, 2023) and T2I-Adapter (Mou
et al., 2023). As depicted in the Fig. 5, our method generates content without noticeable artifacts,
maintaining stronger spatial context consistency. Conversely, T2I-Adapter generates a stone house on
the road (1st row in Fig. 5) and ControlNet puts a dancer on the soccer field (2nd row in Fig. 5).

Quantitatively, the scores of edge-based methods on COCO and Places2 are displayed in Tab. 1.
Across all metrics, our method demonstrates significant improvements, indicating that our MCU-Net
can effectively generate content under the guidance of various single modalities.
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COCO Places2

Method FID↓ PickScore↑ / % FID↓ U-IDS↑ / % P-IDS↑ / %

EC (Nazeri et al., 2019) ♠ 76.64 23.14 25.08 12.89 2.86
CTSDG (Guo et al., 2021) ♠ 97.05 24.03 42.81 0 0
ZITS (Dong et al., 2022) ♠ 61.27 28.09 18.96 18.75 7.20

Our MCU-Net† 47.70±0.29 30.79±0.10 10.74±0.07 23.83±0.30 10.18±0.48
Our MCU-Net r 39.43±0.26 37.12±0.11 9.09±0.04 25.34±0.29 10.64±0.46
Our MCU-Net ♣ 41.91±0.20 34.96±0.17 10.27±0.06 24.21±0.24 9.93±0.38
Our MCU-Net ♠ 41.15±0.27 34.94±0.06 8.32±0.02 26.23±0.07 10.96±0.33

Table 1: Comparison of using single auxiliary modality as guidance for image completion. ♠: ground
truth edge map as guidance, r: estimated depth map as guidance, ♣: segmentation map as guidance,
↑: the higher the better, ↓: the lower the better, †: completion without any guidance.

COCO

Method MMG FID ↓ PickScore ↑ / %
MaGIC w/ FLA
(35 steps)

! 37.78±0.32 44.19±0.23

MaGIC w/ FLA
(50 steps)

! 41.53±0.19 35.85±0.08

MaGIC† % 47.70±0.29 30.79±0.10
MaGIC w/ CMB ! 37.65±0.22 49.57±0.17

(a) Comparison of CMB with simple FLA.

COCO

Method MMG FID ↓ PickScore ↑ / %
CoMod % 68.01 25.12
TFill % 58.55 24.63
FcF % 48.92 26.43
LAMA % 48.63 29.06
MAT % 45.51 27.10
MaGIC† % 47.70±0.29 30.79±0.10
MaGIC ! 37.65±0.22 49.57±0.17

(b) Comparison of MaGIC with SOTA methods.

Table 2: Comparisons of CMB and FLA and MaGIC with others. MMG: multi-modality guidance.

4.3 Image Completion withMulti-Modality Guidance usingMaGIC

We further decompose RQ2 into two smaller questions, RQ2.1 (Is CMB effective?) and RQ2.2 (How
does MaGIC perform?)

Answering RQ2.1. CMB aims to integrate different modalities as guidance for image completion in
a training-free fashion. Compared with CMB, a simple way is to aggregate feature maps Fc (c ∈ C)
by addition (i.e., feature-level addition or FLA for short) to produce F̂C as F̂C ← Fenc +

∑
c∈C Fc. To

show the effectiveness of CMB, we compare it with FLA on COCO as in Tab. 2a. Note that, we
experiment FLA with 30 and 50 steps, respectively. To guarantee an equitable assessment across all
auxiliary modalities, we opt for a wide-ranging set of modalities. Given that specific modalities (e.g.,
pose) may not be applicable to all test images (e.g., certain landscape images), we ensure that our test
suite incorporates a diverse range of modalities. This includes segmentation map, depth map, Canny
edge map, sketch map, and a prompt text. As displayed in Tab. 2a, the proposed CMB significantly
surpasses FLA with naive addition, evidencing the effectiveness of CMB in merging multi-modality
for completion. Interestingly, the performance of FLA with 50 steps is counter-intuitively lower
than that with 35 steps, suggesting that this simple method may overly manipulate the latent code.
This indicates that direct addition of different MCU-Net feature maps for multi-modality guidance is
impractical. By contrast, our CMB efficaciously integrates the signals from multi-modal guidance.

Answering RQ2.2. To validate the effectiveness of our MaGIC, we compare it with state-of-the-art
image completion methods, including LAMA (Suvorov et al., 2022) and MAT (Li et al., 2022), on
COCO. As in Tab. 2b, our guidance-free inpainting model denoted as MaGIC† is comparable to
SOTA inpainting baselines MAT and LAMA. When employing multi-modality, (segmentation, canny
edge, sketch, depth, and text) as guidance, our MaGIC gains significant improvements. In comparison
to MaGIC†, we obtain gains of 21% in FID and 61% in PickScore. Notably, the PickScore implies
that, from the perspective of learned human preference, our completed images have a 49.57% chance
of being more faithful to the ground truth image caption than the original images.
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text seg depth canny sketch FID ↓ PickScore ↑ / %
! ! ! ! ! 35.42±0.10 47.81±0.34

! 41.91±0.20 34.96±0.17
! 39.43±0.26 37.12±0.11

! 41.15±0.27 34.94±0.06
! ! 41.38±0.22 35.99±0.13

! ! 42.59±0.19 34.98±0.16
! 39.96±0.12 48.58±0.25
! ! ! ! ! 37.65±0.22 49.57±0.17

(a) Ablation on different modalities.

P Q FID↓ PickScore↑ / %
30 1 38.50±0.23 48.11±0.21
30 10 38.20±0.28 48.60±0.12
10 5 40.40±0.25 45.98±0.12
20 5 38.37±0.34 48.72±0.15
30 5 37.65±0.22 49.57±0.17
40 5 36.78±0.22 50.64±0.20
50 5 36.60±0.12 50.52±0.07

(b) Hyperparameter analysis of CMB.

Table 3: Ablation studies on the multi-modality complementary and the hyper-parameters of CMB.

4.4 Ablation Study

To answer RQ3, we conduct rich ablations on COCO as follows.

Impact of modalities. To delve into auxiliary modalities, we investigate their individual contributions.
We distinguish among five modalities used in our experiments: edge and sketch for fine-grained
structural control, segmentation and depth for coarse-grained spatial-semantic control, and text for
content-specific cue. As in Tab. 3a, the guidance from text significantly enhances image quality
(FID) and generated content (PickScore). Interestingly, excluding text, the performance of com-
bined modalities appears balanced, suggesting optimal generation quality when modalities provide
complementary information. When using all modalities, the performance is the best.

Joint multi-modality re-training. Our method allows multi-modality guidance without the need for
additional joint training. However, exploring the joint re-training of all modality-specific conditional
U-Nets with classifier-free guidance style can help identify the upper bound performance.

Building such a model necessitates a fuser mechanism to blend diverse input modalities. To ensure
effectiveness, we integrated CoAdapterFuser (Mou et al., 2023), aligning with our design goals.
Addressing the lack of a paired dataset with extensive labels across various modalities was also
essential. We extracted 650,000 images from the Laion dataset and generated four modalities (canny
edge map, depth map, sketch map, and semantic map) using open-source tools. During joint re-
training, we randomly dropped out each modality at a 0.5 probability. This training process is
memory-intensive, necessitating a reduction in batch size to a quarter of single-modality training. The
model underwent 180,000 iterations. As evidenced by its lower FID, shown in the first row of Tab. 3a,
the unified model achieves higher fidelity than our training-free method. However, it encounters
issues such as the need for paired training data, difficulty in adding new modality, and substantial
computational requirements for joint training.

Guidance in iteration. The proposed CMB algorithm involves two important hyperparameters, i.e.,
the number P of denoising steps incorporating CMB and the iteration times Q of gradient descent
performed in each CMB operation. We study the impact of different P and Q on the multimodal
conditioning completion task as in Tab. 3b. From Tab. 3b, we can observe that with Q fixed, the
performance is almost consistently improved as increasing the number P of denoising steps (from
10 to 50) equipped for CMB. Interestingly, given the fact in Tab. 2a that incorporating guidance
through simple FLA could impair the performance of completion, the results further demonstrate
the effectiveness of CMB. In addition, we can also observe from Tab. 3b that, different Q (e.g., 1
to 5 to 10) leads to different performance. We argue that, increasing the iteration times to 5 in a
reasonable manner based on 1 should yield better metrics as more guidance information is introduced.
Yet, the subsequent decline when further increasing Q to 10 in performance can be attributed to the
presence of more noise in hidden space during early stages of the denoising process. For the trade-off
between inference time and image completion performance, we set the values of P and Q to 30 and 5,
respectively.

5 Conclusion and Limitation

In this paper we propose a novel, simple yet effective method, named MaGIC, for multi-modality
image completion. Specifically, we first introduce the MCU-Net that is used to achieve single-
modality image completion by injecting the modality signal. Then, we devise a novel CMB algorithm
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that integrates multi-modality for more plausible image completion. On extensive experiments, we
show that MaGIC shows superior performance. Moreover, it is generally applicable to various image
completion tasks such as in/out-painting and local editing, and even the image generation task.

MaGIC is proposed to facilitate image completion with multi-modality. Yet, there exist two limitations.
First, the ability to generate high-frequency details is tied to the backbone completion model, which
means even with ample detailed guidance, achieving desired fidelity may not be guaranteed. This
can be improved by adopting more powerful backbones if necessary. In addition, our MaGIC is
less efficient than current single-step completion models, with inference time increasing in line with
guidance modalities. This is a common issue for diffusion models, and we leave it for future research.
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Antonio Criminisi, Patrick Pérez, and Kentaro Toyama. Object removal by exemplar-based inpainting.
In CVPR, 2003.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
NeurIPS, 2021.

Qiaole Dong, Chenjie Cao, and Yanwei Fu. Incremental transformer structure enhanced image
inpainting with masking positional encoding. In CVPR, 2022.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining
Guo. Vector quantized diffusion model for text-to-image synthesis. In CVPR, 2022.

Xiefan Guo, Hongyu Yang, and Di Huang. Image inpainting via conditional texture and structure
dual generation. In ICCV, 2021.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS Workshop, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Daichi Horita, Jiaolong Yang, Dong Chen, Yuki Koyama, and Kiyoharu Aizawa. A structure-guided
diffusion model for large-hole diverse image completion. arXiv:2211.10437, 2022.

Jaeseok Jeong, Mingi Kwon, and Youngjung Uh. Training-free style transfer emerges from h-space
in diffusion models. In ICLR, 2023.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. In CVPR, 2023.

10

https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose


Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models for
robust image manipulation. In CVPR, 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-
a-pic: An open dataset of user preferences for text-to-image generation. arXiv:2305.01569,
2023.

Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair Weiss. Seamless image stitching in the gradient
domain. In ECCV, 2004.

Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. MAT: mask-aware transformer for
large hole image inpainting. In CVPR, 2022.

Liang Liao, Jing Xiao, Zheng Wang, Chia-Wen Lin, and Shin’ichi Satoh. Guidance and evaluation:
Semantic-aware image inpainting for mixed scenes. In ECCV, 2020.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: common objects in context. In ECCV, 2014.

Andreas Lugmayr, Martin Danelljan, Andrés Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
Repaint: Inpainting using denoising diffusion probabilistic models. In CVPR, 2022.

Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan, and Xiaohu Qie.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. arXiv:2302.08453, 2023.

Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Z. Qureshi, and Mehran Ebrahimi. Edgeconnect:
Structure guided image inpainting using edge prediction. In ICCVW, 2019.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
McGrew, Ilya Sutskever, and Mark Chen. GLIDE: towards photorealistic image generation and
editing with text-guided diffusion models. In ICML, 2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv:2204.06125, 2022.
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A Implementation Details

A.1 Different Image-based Conditions And Hyper-parameters

Our experiments include 6 types of image-based conditions:

• Canny edge & Sketch. We utilize the training set of COCO (Lin et al., 2014), which contains
123K images, as the training data to train MCU-Net separately under canny and sketch
guidance. The corresponding canny edge and sketch are generated by Canny algorithm
(Canny, 1986) with default thresholds, and PiDiNet (Su et al., 2021) with a threshold of 0.5,
respectively.

• Segmentation. We utilize training set of COCO-Stuff (Caesar et al., 2018) as training data,
which includes 123K images and corresponding semantic segmentation annotations. It
covers 80 thing classes, 91 stuff classes and 1 ”unlabeled” class, providing a comprehensive
range of semantic information for MCU-Net training.

• Depth. In order to obtain sufficient volume of data to train MCU-Net under this conditions
with abstract representation, we select 650K images from LAION-AESTHETICS dataset
(Schuhmann et al., 2022). And we adopt MiDaS (Ranftl et al., 2022) on them to generate
depth maps.

• Pose. We also pick images from LAION-AESTHETICS (Schuhmann et al., 2022) to
construct training data for MCU-Net under pose guidance. The key distinction from building
training dataset for depth guidance is that the selected images must contain at least one
person for pose generation. To achieve this, we employ MM-Pose (Contributors, 2020), an
open-source toolbox for pose estimation, to filter out images that do not meet the requirement,
and generate pose for the retained images. In the end, we gather a total of 600k image-pose
pairs to train MCU-Net under this condition.

• Text. Within our default backbone, the SD-2.1 Inpainting, the prompt text is conditioned as
the key and value of the cross-attention mechanism in the U-Net denoiser. It’s noteworthy
that this backbone is pretrained with the prompt text in the classifier-free way (Ho &
Salimans, 2021). Consequently, in this work, we opt to use the backbone directly, thus
bypassing the necessity to fine-tune an MCU-Net for text guidance.

All our experiments are conducted using 8 NVIDIA A100-40G GPUs. We set the batch size to 64
and employed the Adam optimizer (Kingma & Ba, 2015) with the learning rate of 1e-5 for training
10 epochs. These settings remain consistent across all conditions.

A.2 Acquisition of Conditions

To facilitate a reliable and convenient comparison of model performance, we employed the conditions
provided by the dataset directly or leveraged existing tools (Yang et al., 2022; Contributors, 2020;
Ranftl et al., 2022) to estimate them. We then evaluated the model performances using quantitative
metrics on completing the corresponding masked RGB images. It is important to note that our
method also supports the input of manually designed guidance conditions (as shown in Fig. 1,
Fig. 13, Fig. 14 and Fig. 15). However, when manually design dense guidance conditions like
segmentation and depth maps, it’s crucial to ensure their consistency with the information retained
in the unmasked regions, particularly in the case of depth maps where values represent the distance
between pixels and the camera. Fortunately, sparse conditions like sketch or pose maps can offer
sufficient guidance information. We intend to release our code for condition generation, enabling
users to obtain modalities including sketch, pose and segmentation maps effortlessly for image editing
purposes.

A.3 Architecture of Encoding Network τci

The condition encoding network is designed to be simple and lightweight, and serves the purpose of
extracting the multi-scale guidance signals from the input condition image. These guidance signals
are aligned in size with the intermediate feature maps of the MCU-Net’s encoder. As this is not the
main focus of our work, we have referred to the design of T2I-Adapter (Mou et al., 2023). Specifically,
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it consists of four feature extraction blocks with a downsample module placed between each pair of
adjacent blocks, and each feature extraction block is composed of one convolution layer and two
residual blocks.

A.4 Experimental Setting
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Figure 6: Illustration of mask ratio.

In order to evaluate all baselines and our proposed method
in a fair manner, the same image-mask pairs are used in
quantitative experiments. Additionally, testing mask sam-
ples are obtained based on a uniform distribution ranging
from 0% to 100% to encompass the majority of mask ra-
tios encountered in real-world scenarios. The testing mask
is randomly generated based on the algorithm from (Li
et al., 2022), with the histogram of the testing mask ratio
of COCO dataset visualized in Fig. 6.

All quantitative experiments are conducted on the COCO (Lin et al., 2014) and Places (Zhou et al.,
2018) datasets. Evaluation of the methods involves using the first 1000 images in the COCO validation
set and the first 5000 images in the Places validation set. Masks from COCO are replicated five times
for the Places dataset. For auxiliary guided completion, the Canny algorithm (Canny, 1986) and
PiDiNet (Su et al., 2021) are employed to obtain the canny edge map and sketch map, respectively.
MiDaS (Ranftl et al., 2022) is adopted to acquire depth maps for both datasets. COCO serves as
a dataset with semantic segmentation and prompt text annotations. As the Places dataset lacks
ground-truth labels, the semantic segmentation map is estimated using CIRKD (Yang et al., 2022).

B Application Results

B.1 Real User-input Image Editing

We highlight the adaptability of our method in handling user-input image editing tasks designed
to manipulate real-world images based on user intention, as demonstrated in Fig. 13. This figure
emphasizes our method’s capacity to modify the structure or semantics of local regions using user-
input guidance such as scribble, pose map and prompt text, while fully maintaining the integrity of
the unmasked region.

B.2 Image Outpainting

Our method can also be used to extend an image, like generating a panorama from a small part of
the image content. As demonstrated in Fig. 14 and Fig. 15, our method showcases its capability
to outpaint a photograph or a painting guided by text and sketch map. Remarkably, our method
exhibit the ability to generate suitable content that is harmonious even with the broader context of a
panoramic image.

C More Experimental Results And Studies

C.1 Quantitative Comparisons with Conditional Text-to-ImageMethods

Contemporary methods like ControlNet and T2I-Adapter have demonstrated remarkable achievements
in controllable image generation. For a direct comparison, we employ latent-level blending to utilize
these methods for image completion, maintaining the experimental settings of earlier Experiments.
As Table 4 reveals, our MaGIC significantly surpasses baseline models in FID, U-IDS, P-IDS, and
PickScore for most guidance types. In multi-modality guidance, we enhance T2I-Adapter with
multi-adapter controlling Mou et al. (2023) (feature-level addition), resulting in T2I-Adapter⋄. For
the COCO dataset, we employ five modalities: canny edge, depth, segmentation, sketch map, and
text. For the Places dataset, we utilize canny edge, depth, segmentation, and sketch map, as it lacks
manually-crafted captions. Our MaGIC outperforms T2I-Adapter⋄ by 44.68% in PickScore on
COCO, and shows improvements of 37.07%, 71.40%, and 230.30% in FID, U-IDS, and P-IDS,
respectively, on Places, as detailed in the last two rows of Table 4.
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COCO Places2

Method FID↓ PickScore↑ / % FID↓ U-IDS↑ / % P-IDS↑ / %

ZITS ♠ 61.27 28.09 18.96 18.75 7.20
T2I-Adapter ♠ 48.23 30.10 10.39 19.44 5.66
ControlNet ♠ 37.17 37.30 10.35 18.45 4.58
Ours ♠ 41.15 34.94 8.32 26.23 10.96

T2I-Adapter r 50.92 30.22 18.10 14.91 4.56
ControlNet r 46.13 32.52 15.96 14.46 3.18
Ours r 39.43 37.12 9.09 25.34 10.64

T2I-Adapter ♣ 50.65 28.10 15.36 15.99 4.30
ControlNet ♣ 58.27 26.11 18.13 13.68 3.24
Ours ♣ 41.91 34.96 10.27 24.21 9.93

T2I-Adapter ⋄ 39.08 34.26 14.27 14.76 3.30
Ours ⋄ 37.65 49.57 8.98 25.30 10.90

Table 4: Quantitative comparisons with conditional image completion and text-to-image methods.
♠: ground truth edge map as guidance, r: estimated depth map as guidance, ♣: segmentation
map as guidance, ⋄: using segmentation, depth, canny, sketch, and text (on COCO) for guidance
simultaneously.

COCO Places2

Method CLIP↑ / % PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

ZITS ♠ 28.33 14.31 0.2767 0.5382 21.07 0.6888 0.2614
T2I-Adapter ♠ 28.59 18.26 0.6272 0.3409 18.34 0.6537 0.3208
ControlNet ♠ 28.97 19.22 0.6871 0.3183 18.59 0.6647 0.3220
Ours ♠ 29.37 18.13 0.6188 0.3467 19.00 0.6569 0.3111

T2I-Adapter r 28.05 17.84 0.5894 0.3729 17.57 0.5765 0.3805
ControlNet r 28.22 18.16 0.6275 0.3583 17.49 0.5967 0.3703
Ours r 29.11 17.47 0.5960 0.3628 17.91 0.6109 0.3432

T2I-Adapter ♣ 28.10 17.55 0.5635 0.3830 17.33 0.5529 0.3923
ControlNet ♣ 26.48 16.98 0.5587 0.4023 17.22 0.5568 0.3948
Ours ♣ 28.87 17.01 0.5681 0.3799 17.44 0.5860 0.3591

T2I-Adapter ⋄ 30.23 19.45 0.6748 0.3217 19.17 0.6626 0.3255
Ours ⋄ 31.29 17.49 0.5921 0.3717 17.85 0.6085 0.3439

Table 5: Additional quantitative comparison results in terms of CLIP score and traditional recon-
struction metrics. ♠: ground truth edge map as guidance, r: estimated depth map as guidance, ♣:
segmentation map as guidance, ⋄: using segmentation, depth, canny, sketch, and text (on COCO) for
guidance simultaneously.

While traditional reconstruction metrics, such as PSNR, SSIM, and LPIPS, rely on pixel-wise
similarity to the ground truth and tend to favor blurry outputs, as noted by Zhao et al. (2021) and Li
et al. (2022), they are not optimal for quantitatively assessing image completion. Nevertheless, we
include these traditional metrics for reference. Additionally, we provide the CLIP Score as an extra
measure for a more comprehensive evaluation in the Table 5.

C.2 Qualitative Comparisons inMultimodal Conditioning

As illustrated in Figure 9, we perform qualitative, side-by-side comparisons with T2I-Adapter⋄.
For our MaGIC⋄, we produce five diverse results. Under the guidance of four modalities, MaGIC
demonstrates strong controllability and high-fidelity outputs, aligning with our quantitative findings.
In contrast, while T2I-Adapter⋄ effectively adheres the layout or shape to guidance, it fails to generate
images of above-average quality with realistic details. This shortfall is attributed to the feature-level
addition approach, leading to an out-of-distribution effect in the SD U-Net.
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C.3 Study in Feature-level Addition

Figure 7: t-SNE visualization of features output
from U-Net encoder.

Although we claim that FLA (feature-level addi-
tion) is a simple yet imperfect method for com-
bining multiple modalities, and demonstrate the
effectiveness of our CMB by comparative exper-
iments, a comprehensive understanding of these
two methods remains elusive. To this end, we
opt to visualize the feature distributions stem-
ming from T2I-Adapter with single-modality
training and multi-modality utilization strate-
gies, including FLA or our proposed CMB.

In specific, we choose the feature from the mid-
dle denoising step (i.e., the 25th step of DDIM
sampler) and output from U-Net encoder. The
t-SNE visualization result is shown in Figure 7, and different colors represents features from dif-
ferent sources, while the associated numbers indicate the index and cluster center of each feature
type. Numbers ranging from small to large represent features obtained from T2I-Adapter-Canny (0),
T2I-Adapter-Depth (1), T2I-Adapter-Segmentation (2), T2I-Adapter-Sketch (3), T2I-Adapter-CMB
(4) and T2I-Adapter-FLA (5), respectively, where the first four indicate the trained single-modality
while the last two are two methods of combining these four modalities.

We can draw two conclusions from Figure 7:

1. Features derived from different single-modality models (0, 1, 2 and 3) show significant dis-
tribution disparities, and FLA (5) directly adds modality features resulting in the distribution
deviation of obtained feature from all others. This observation aligns with our assertion in
the main manuscript that “we called feature-level addition is impractical, as the denoiser is
trained solely on the distribution of F̂c = Fenc + Fc”.

2. In contrast to FLA, the distribution of features obtained through CMB (4) is surrounded by
other single-modality distributions. This phenomenon is coherent with Equation 4 and 5,
where the distribution of obtained features is “pulled” by the distributions of the other four
single-modalities.

A lovely cat sits on the bench, and a beautiful girl is singing.

Stormtrooper is standing in a kitchen with ladder.

Depth + Pose Guidance

Depth + Pose Guidance

Figure 8: Failed cases when adopting CMB on T2I-Adapter.
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C.4 Failure Cases

Figure 8 shows two failed instances of applying CMB on T2I-Adapter for multi-modalities guidance.
Here we present a more complex testing scenario involving non-overlapping information between
two modalities. In the first case, we use Anything-4.0 as the backbone and there are two mistakes
in the generated image: the misshapen cat and the incorrectly positioned bench under the girl. The
former discrepancy possibly arises from the pose adapter contributing stronger features compared
to those from the depth adapter, consequently affecting the representation of the latter information,
which is not accurately reflected in the generated image. The issue might be alleviated by training
depth adapter more stronger or increasing δdepth while decreasing δpose (see Equation 4 for details).
While the latter mistake is the inherent challenge in SD, and many related works Chen et al. (2023);
Chefer et al. (2023) could be referenced for potential mitigation steategies. In the second example, the
generated image depicts a wall as the background, leading to the complete loss of depth information
from the depth map.

These instances underscore that the inherent problems of SD persist despite employing CMB. Fur-
thermore, in scenarios where information correlation between different modalities is low, evident
issues such as information loss and errors in generated images become more pronounced. Through
these failed cases, it can be seen that the inherent challenges of SD cannot be eliminated by CMB.
Furthermore, in scenarios where information correlation between different modalities is low, evident
issues such as information loss and errors in generated images become more pronounced.

C.5 Study in Adaptability and Image Generation Application

Our proposed MaGIC has the ability to adapt to a variety of backbone diffusion models, including
but not limited to, the image generation model Anything-4.0, Stable Diffusion-1.5 (also employed
by T2I-adapter and ControlNet), and the image completion model Stable Diffusion Inpainting-2.1
(the default in MaGIC). In order to elucidate the differences among these backbone diffusion models,
a qualitative experiment was carried out, focusing primarily on the anime-style image generation
model Anything-4.0, image generation model Stable Diffusion (SD), the mask-aware T2I-adapter
(Mou et al., 2023; Avrahami et al., 2023), and our own MaGIC.

As portrayed in Fig. 10(a) and (b), our MaGIC method exhibits exceptional generalizability to image
generation backbones. These backbones can produce convincing results guided by factors such as
sketch, depth, segmentation, and the canny edge map. T2I-Adapter (Mou et al., 2023) is a conditional
image generation framework based on Stable Diffusion-1.5. To equip T2I-Adapter with CMB for
the completion of a masked image, we implemented a technique known as latent-level blending
(Avrahami et al., 2023). As evidenced in Fig. 10(c) and (d), incorporating blending into T2I-Adapter
can preserve the unmasked region remains while the generated masked region does not perceive the
unmasked region, given the fact that there are two sheep heads in a single sheep.

We further adapt CMB to T2I-Adapter and ControlNet (Zhang & Agrawala, 2023) to verify its
effectiveness on multi-modality guided image generation. The results are shown in Fig. 11 and Fig.
12.
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Masked LAMA MAT T2I-Adapter⋄ Ours⋄-Result1

Ours⋄-Result2 Ours⋄-Result3 Ours⋄-Result4 Ours⋄-Result5 Guidance

Masked LAMA MAT T2I-Adapter⋄ Ours⋄-Result1

Ours⋄-Result2 Ours⋄-Result3 Ours⋄-Result4 Ours⋄-Result5 Guidance

Masked LAMA MAT T2I-Adapter⋄ Ours⋄-Result1

Ours⋄-Result2 Ours⋄-Result3 Ours⋄-Result4 Ours⋄-Result5 Guidance

Figure 9: Qualitative results of MaGIC with four guidance compared to baselines
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Sketch

Segmentation

Depth

Canny Edge

Masked (a) (b) (c) (d) Guidance

Figure 10: Results from different backbone models. (a) Anything-4.0, (b) Stable Diffusion-1.5, (c)
T2I-adapter with blending, (d) Stable Diffusion Inpainting-2.1 (default in MaGIC).

Applications

➢ Controllable Image Generation

Generation Results Generation ResultsGuidance Guidance

Figure 11: Adapting the proposed CMB to T2I-Adapter (Mou et al., 2023) with Anything-4.0
backbone for multi-modality guided image generation.

Depth + Canny Edge Guidance Depth + Canny Edge Guidance

Figure 12: Adapting the proposed CMB to ControlNet (Zhang & Agrawala, 2023) for multi-modality
guided image generation.
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”The  Stormtrooper is skiing”

“Three are standing”

“a man is wearing red-and-
golden armor, Ironman style, 

lighting on the chest”

“A man is holding 
”

“A big rocket stands behind 
a man”

Guidance Editing ResultsMasked Image

”The batman is standing”

Figure 13: Application examples: local editing.
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“masterpiece, ultra-detailed,
on the top, extremely 

detailed CG unity 8k wallpaper”

“masterpiece, ultra-detailed, , 
extremely detailed CG unity 8k 
wallpaper”

Figure 14: Application examples: sketch and text guided image outpainting.
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“best illustration, Skyrim, 
Cloudy, an extremely delicate 
and beautiful, island.”

“best illustration, immortals island, an extremely delicate and beautiful, game.”

“best illustration, mordor, 
masterpiece, high resolution, the 
lord of the rings.”

“best illustration, Aerial view of the City near rivers.”

Figure 15: Application examples: sketch and text guided image outpainting.
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