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Dual Transformer with Multi-Grained Assembly for
Fine-Grained Visual Classification
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Abstract—Fine-grained visual classification requires distin-
guishing sub-categories within the same super-category, which
suffers from small inter-class and large intra-class variances.
This paper aims to improve the FGVC task towards better
performance, for which we deliver a novel dual Transformer
framework (coined Dual-TR) with multi-grained assembly. The
Dual-TR is well-designed to encode fine-grained objects by
two parallel hierarchies, which is amenable to capturing the
subtle yet discriminative cues via the self-attention mechanism in
ViT. Specifically, we perform orthogonal multi-grained assembly
within the Transformer structure for a more robust represen-
tation, i.e., intra-layer and inter-layer assembly. The former
aims to explore the informative feature in various self-attention
heads within the Transformer layer. The latter pays attention
to the token assembly across Transformer layers. Meanwhile,
we introduce the constraint of center loss to pull intra-class
samples’ compactness and push that of inter-class samples.
Extensive experiments show that Dual-TR performs on par
with the state-of-the-art methods on four public benchmarks,
including CUB-200-2011, NABirds, iNaturalist2017, and Stanford
Dogs. The comprehensive ablation studies further demonstrate
the effectiveness of architectural design choices.

Index Terms—Transformer, multi-grained assembly, fine-
grained visual classification

I. INTRODUCTION

Fine-grained visual classification (FGVC) is tasked with
distinguishing sub-categories within the same super-category,
for example, different species of birds and dogs. As upstream
foundational research, FGVC has facilitated a set of visual
understanding tasks such as fine-grained action recognition
[1], person reidentification [2], and human parsing [3]–[5],
etc. With the advance of deep learning techniques [6]–[10],
recent years have witnessed remarkable progress in the FGVC
domain. However, it is still challenged by minor inter-class and
significant intra-class variances due to deformation, occlusion,
and illumination, see Fig. 1 (a).

In the early stage, considerable efforts have been made to
design a desirable localization module under the supervision
of object- or part-level annotations [11]–[13]. However, such
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a paradigm heavily depends on manual annotations of objects
and parts, which are labor-intensive and time-consuming,
even requiring expertise. Developments over this research line
therefore gradually shift towards the attention mechanism to
locate the distinct parts only with image-level labels, which
dramatically reduces the requirement of annotation efforts. For
example, Zheng et al. [14] leverage the attention mechanism
to group different feature channels into various visual pat-
terns, which are subsequently projected to category prediction.
Zhang et al. [15] adopt multi-granularity sub-networks to learn
global and local features for better performance jointly. For
capturing the mutual features, Zhang et al. [16] develop a co-
attention module to measure channel-wise feature similarities
between paired samples within the same class. Despite their
decent performance, the methods mentioned above often strug-
gle to locate subtle yet discriminative parts and are far from
accurate classification results in most cases.

Recently, Transformer architecture has gained momentum
from natural language processing to computer vision. Notably,
a series of variants derived from Vision Transformer (ViT)
have touched or even outperformed those based on convo-
lutional neural network (CNN) in a wide range of visual
understanding tasks, such as image classification [17], object
detection [18], semantic segmentation [19], and object tracking
[20]. Moreover, as evidenced in Fig. 1 (b), a similar trend is
emerging as such in the FGVC task. For instance, a more
recent method [21] proposes to interact with features between
multi-level patch representations to encode locally informative
features, significantly improving the classification accuracy.
Unfortunately, despite many attempts to reveal the potential
of Transformer architecture, it still falls short in the feature
representation of local regions. Contemporary works like [21],
[22] select the informative tokens of Transformer layers as the
input of the last layers, their success motivates us to review and
rethink the usage of multiple head self-attention mechanism
in vision transformer, going one step further towards more
flexible and discriminative feature representation.

To this end, we propose a novel dual Transformer (dubbed
Dual-TR) in this paper to fully unleash the potential of
such an architecture for FGVC task. Overall, the Dual-TR
inherits the powerful ability of feature representation from ViT,
which characterizes correlations from the global perspective
and satisfies the requirement to explore discriminative visual
clues in the subtle regions. Under the guidance of self-
attention mechanism in Transformer, the local hierarchy of
the parallel architecture adaptively takes a semantic part view
from the raw image as input. The essence of our method
lies within the hierarchy of Transformer, where we perform

This article has been accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2023.3248791

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on February 26,2023 at 08:24:55 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

Fig. 1. (a) FGVC remains challenging due to the following two factors: ¶ high intra-class variances: the birds belonging to the same category usually present
significantly different appearances, such as illumination variations (the first column), clutter background (the second column), occlusion (the third column) and
view-point changes (the fourth column); · low inter-class variances: the birds in different columns belong to different categories, but share similar appearance
in the same rows. (b) Comparison between CNN-based methods and those on top of Transformer framework on CUB-200-2011 dataset.

orthogonal multi-grained assembly, i.e., intra-layer and inter-
layer assembly. The former aims to explore the informative
feature in various attention heads within the Transformer
layer, while the latter emphasizes token assembly across the
Transformer layers. Meanwhile, we exchange the class tokens
of the dual hierarchies to ensure representation consistency. In
this way, different hierarchies in the parallel architecture focus
on fine-grained targets at different scales. And the subtle yet
discriminative clues are explored via orthogonal multi-grained
assembly within the Transformer hierarchy. Furthermore, we
introduce the center loss to enhance the compactness of intra-
class features within the same sub-category.

We conduct extensive experiments on four public bench-
mark datasets (including CUB-200-2011, NABirds, iNatu-
ralist2017, and Stanford Dogs) to verify the effectiveness
of the proposed method. Experimental results demonstrate
that our method consistently performs favorably against the
state-of-the-art approaches. In short, our contributions can be
summarized in the following three folds:

• We propose a well-designed dual Transformer framework
for the FGVC task. In our design, different hierarchies in
the parallel architecture focus on the fine-grained target
at different scales, and orthogonal multi-grained assembly
within the Transformer hierarchy is performed to explore
the subtle yet discriminative clues.

• To the best of our knowledge, we are the first to assemble
the informative token features from the perspective of
multi-head under the guidance of self-attention mecha-
nism in the Transformer, which is proven to enjoy subtle
yet discriminative information for the FGVC task.

• In quantitative and qualitative experiments, we demon-
strate that the proposed Dual-TR achieves competitive
performances compared with the state-of-the-art methods
in four highly competitive benchmarks, including CUB-

200-2011, NABirds, iNaturalist2017, and Stanford Dogs.
The rest of this paper is organized as follows. In section II,
we briefly review some advanced techniques relevant to our
proposed method. In section III, we describe the overall
framework of Dual-TR in detail. Then in section IV, extensive
experiments and comprehensive ablation studies are performed
to validate the effectiveness of the proposed method. The
conclusion is drawn in section VI.

II. RELATED WORK

This section briefly reviews two research directions closely
related to our method, i.e., fine-grained visual classification
and Transformer.

A. Fine-Grained Visual Classification

Due to the labor-intensive annotation process and the limited
expertise, a weakly-supervised paradigm with image-level
annotation has become a main workhorse for the FGVC
task. Roughly speaking, the existing works can be divided
into methods that locate the discriminative parts and those
dedicated to learning high-order information.

The salient response of feature activation maps underpins
the first research strand. These methods attempt to locate the
informative parts by such visual cues. Typically, NTS-Net [23]
utilizes a teacher network to supervise the informative part
generation via a navigator network in a self-supervised style.
Exchnet [24] focuses on the fine-grained hashing topic and
generates compact binary codes for fine-grained images to
alleviate the issues of slow query speed and highly redundant
storage cost. Rather than the most informative part solely,
Hanselmann et al. [25] adopt the top k discriminative parts
to strengthen the modeling capacity of neural networks. Du
et al. [26] iteratively optimize image patches at different
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scales to capture multi-granularity visual clues. Inspired by
Feature Pyramid Network (FPN), Ding et al. [27] introduce a
bottom-up attention pathway and combine regions of interest
(ROI) to locate informative regions. MMAL-Net [28] locates
the salient object based on activation maps and excavates
different parts by a sliding window mechanism. These models
achieve stunning performance by picking discriminative areas.
However, they disregard rich correlation information between
discriminative parts and often suffer from the low-quality
part location, limiting further improvement towards accurate
results.

As for the second research line, bilinear pooling is a widely-
used approach to encode second-order features [16], [29]–
[31]. For example, prior art [29] is one representative of
this research line, which leverages bilinear pooling to collect
high-order statistical information, and reveals the power of
bilinear pooling in combination with deep learning techniques
for the FGVC task. Nevertheless, these methods fail to focus
on subtle yet distinguishable regions explicitly. Moreover, it
is quite hard to verify whether high-order representation can
pay enough attention to discriminative clues within confused
sub-categories.

It is well known that granularity scheme [1], [2] contributes
a lot to various visual understanding tasks. Borrowing this
inspiration, the Dual-TR casts salient responses of the attention
mechanism as the semantic part view from the raw image
and feeds it into the local hierarchy of parallel architecture to
explicitly abstract multi-scale features for a more stable and
robust representation.

B. Transformer

Since ViT [17] popularizes the Transformer architecture
in the computer vision community, this up-and-coming star
has shown astounding talent in representation learning and
become dominant in a wide variety of visual understanding
tasks, such as image classification [17], object detection [18],
semantic segmentation [19], and image reconstruction [32].
Although the pure Transformer shows impressive performance,
it suffers much from local modeling. To alleviate this issue,
two paradigms are proposed in the literature. One intuitive
way is to introduce CNN into architecture design to capture
correlations in the local region. For example, Zhou et al. [33]
integrate the self-attention mechanism with CNN for the sake
of inductive bias characteristics of the convolution kernel. The
alternative remedy is to modify the Transformer framework
from the perspective of the patch token. Numerous works com-
bine information interaction and global representation learning
into a unified pipeline to characterize local features. Approach
[34] exemplifies this research line, which develops a Tokens-
to-Token module ahead of Transformer to enable each token
to carry neighboring token information. More recently, a set
of variants [22], [35], [36] built upon ViT successfully reveal
its effectiveness for the FGVC task. Specifically, TransFG
[22] captures discriminative patch tokens as well as rich
relationships between each other. FFVT [35] interacts learned
fine-grained features with multi-level patch representations
under the guidance of class tokens. Hu et al. [36] utilize

the attention mechanism to explore semantic parts as inputs
for other branches, which guides the model to focus on
informative areas at the cost of prohibitive computation bur-
den and memory consumption. Although existing approaches
have reported decent classification accuracy, the performance
still needs improvement in the challenging FGVC task. In
light of Transformer architecture, we explicitly design a dual
Transformer framework to construct global and local encoding
jointly. Unlike the methods above, the self-attention weight
derived by Transformer motivates us to explore orthogonal
assembly within the Transformer hierarchy and renders our
Dual-TR framework the basis.

Notably, here we emphasize the difference between the
proposed method and architectures [36], [37]. Even though
sharing the spirit of dual Transformer structure, the proposed
method considerably differs from RAMS-Trans [36] in the
following aspects. Firstly, we only turn to the strength of
attention weight in the first layer of the encoder to generate
the semantic view for the local hierarchy, while RAMS-
Trans depends heavily on the attention weights of all layers.
Hence, compared to RAMS-Trans, our method enjoys an
efficient forward computation process. Secondly, beyond the
dual transformer structure, our method presents orthogonal
multi-grained assembly within the Transformer hierarchy. By
contrast, RAMS-Trans directly adopts the Transformer struc-
ture off-the-shelf to finalize the prediction without considering
any fine-grained adaption for the FGVC task. Although decent
performance is reported on the common classification datasets
(for example, ImageNet), CrossViT [37] hardly generalizes to
such a fine-grained domain. The proposed method differs from
CrossViT in its inherent motivation. Firstly, we dynamically
generate the input of the local hierarchy conditioned on the
semantic part view. Instead, CrossViT projects a raw image
into smaller patch sizes, resulting in the overlong batch
sequence. Secondly, CrossViT focuses on multi-scale feature
fusion strategies, while our method emphasizes exploring and
discovering local information in ViT. These primary moti-
vations determine the difference between our method and
CrossViT significantly.

III. METHOD

Observing that the attention weights incidental to the Trans-
former structure reflect the correlation with the extent to
which the patches contain the discriminative information, we
argue that an effective way to emphasize the informative
tokens and depress the irrelevant tokens can benefit a more
discriminative representation for the FGVC task. To this end,
we propose orthogonal multi-grained assembly within the
Transformer hierarchy for effective token proposal. To be
specific, we design intra-layer and inter-layer assembly within
the Transformer hierarchy. The former aims to explore the
informative features in various self-attention heads within the
Transformer layer; the latter pays attention to token assembly
across Transformer layers. We emphasize that the semantic
view generation is computed on the fly, and our method only
relies on the attention weights derived from the ViT structure.
With these properties, our method enjoys the ability to provide
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Fig. 2. The overview of our Dual-TR architecutre. The Dual-TR is well-designed to encode objects at different scales in two parallel hierarchies. Best
visualization in color.

multi-grained informative features and efficient computation.
Since the proposed method is built on top of the ViT, we
briefly recall such a framework and then elaborately describe
the Dual-TR design in this section.

A. Vision Transformer (ViT)

Overall, the architecture of ViT is similar to its counterpart
in natural language processing. We briefly recall the tok-
enization, position embedding, and encoder in ViT, which are
significantly involved in our research.

ViT first projects an image I with resolution H×W into a
sequence of patches P = {p1, p2, . . . , pL}, where each patch
token pi ∈ RS2×C and L = H

S ×
W
S , S refers to the spatial

size of patch, C is the channel number. Notably, we can split
an image into different number of small patches by changing
the size of each patch. Then, a learnable linear function fΘ

with parameters Θ is adopted to generate embedded features
fΘ(P ) ∈ R(L+1)×D, which includes the class token as
well. Following the common practice, a learnable position
embedding vector is injected into tokens to retain positional
information, which is formally defined as follows:

Z0 = fΘ(P ) + EP (1)

where EP ∈ R(L+1)×D provides the position information for
patch tokens.

After that, a well-designed encoder upon linearly projected
patch tokens is utilized to model long-range dependencies
between patch tokens. Typically, the multi-head self-attention
(MSA) mechanism and multi-layer perceptron (MLP) make
up the encoder’s core in ViT architecture, in which the
computation can be formally given as follows:

Z
′
l = MSA(LN(Zl−1)) + Zl−1

Zl = MLP(LN(Z′l)) + Z′l
(2)

where Zl−1 and Zl respectively represent the features before
and after computation in the l-th layer, LN(·) denotes the layer
normalization operation, MSA interacts information between
tokens, and MLP provides the non-linear transformation for
each token.

B. Dual-TR Framework

To compensate for the drawback of ViT that suffers from
modeling visual cues in subtle regions, we design a dual
Transformer framework that jointly considers global long-
range dependencies and local detail discrepancies. In this
subsection, we describe semantic part view generation, then
elaborate on the pipeline of orthogonal assembly within the
Transformer hierarchy, followed by the introduction of center
loss, and end with the loss functions adopted in our method.
Fig. 2 illustrates the overall architecture of Dual-TR.
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1) Semantic Part View Generation: For the input of local
hierarchy in our parallel architecture, rather than randomly
cropping content from raw image, we adaptively pick se-
mantic image patches based on the multi-head self-attention
mechanism to generate a semantic part view from the raw
image. Concretely, the self-attention weight matrix series in
the l-th level is defined as A = {A1, A2, . . . , AN}, where
N represents the number of self-attention heads. Therein, the
self-attention weight matrix Ai is computed as follows:

Ai = softmax(
QKT

D1/2
) = {ai0, ai1, · · · , aiL} (3)

where L stands for the length of token sequence and Q, K rep-
resent query and key vectors respectively. aij ∈ RL+1 denotes
the similarities between the j-th token and the others in i-th
head. Particularly, ai0 measures the similarities between class
token and other patch tokens. For the integrity and diversity of
token information, we mean the values of ai0 (i = 1, 2, . . . , N )
across all self-attention heads, see Equation (4):

A′ =
1

N

N∑
i=1

ai0 (4)

The rationale behind the above operation is that the class
token contains the essential features responsible for final
classification in the ViT design. Next, we reshape A′ to A′′
with resolution L1/2×L1/2 (here we only use the similarities
between class token and patch tokens). Conditioning on A′′
and empirical hyper-parameter ε, we obtain semantic patch
mask M as follows:

M(i,j) =

{
1 if A′′(i,j) ≥ ε ∗max(A′′),
0 otherwise.

(5)

After that, we utilize the Algorithm 1 to search the largest
connected region M̂ from the M. A semantic part view is
required by � (crop operation) on the original image.

V = I � M̂ (6)

For a better trade-off between efficient computation and
memory consumption, the local hierarchy of Dual-TR is fed
with a scaled semantic part view with resolution H

2 ×
W
2 .

We experimentally observe that as the Transformer layer goes
deep, the patch representations tend to be over-smoothing,
which is not friendly to the diversity of features. Therefore,
we empirically rely on the first layer to generate the semantic
part view in our experiments. The ablation study section will
present more discussion about layer selection.

In the following, we describe how to perform the assembly
from the intra-layer and inter-layer perspectives within the
Transformer hierarchy.

2) Assembly of Intra-Layer in the Transformer Hierarchy:
To explore the intra-layer discriminative cues, we design the
Token Feature Assembly Module (TFAM) to capture discrim-
inative token features from the self-attention heads. Taking
the lth layer of ViT architecture for example, the information
carried by a token patch zj is a D-dimension latent feature
which is typically composed of N -head latent features, as
defined in Equation (7).

zj =

N∏
i=1

zij (7)

Algorithm 1 Search Connected Components via the semantic
patch mask M
Require: A patch maskM;

1: Pick a patch p as the starting point;
2: while True do
3: Leverage a flood-fill algorithm to label all the patches

in the connected region that covers the patch p;
4: if All the patches traverse then
5: Break;
6: end if
7: Search for the next unprocessed patch as p;
8: end while
9: return Connectivity of the connected regions, and the

according region size

where zij ∈ RD
N denotes the j-th token feature in the i-

th self-attention head, j ∈ (1, 2, · · · , L) and
∏

denotes the
concatenation operation.

As claimed in work [38], the multi-head self-attention
mechanism enables tokens to characterize discriminative in-
formation in various feature spaces, which inspires us to
capture the discriminative discrepancies from different self-
attention heads. The class token generally carries the most
discriminative information. Based on this observation, we pick
patch tokens that are closely relevant to the according class
token in each self-attention head and assemble them along the
channel dimension by the concatenation operation. In other
words, picked features are the representatives corresponding to
each self-attention head. The process can be formally written
as follows:

ẑ =

N∏
i=1

ziarg max︸ ︷︷ ︸
{1,2,··· ,L}

(ai
0) (8)

where ai0 is defined in the Equation (3), referring to the
similarities between the class token and other tokens in the i-
th self-attention head, zidc is the picked feature from the token
with index arg max︸ ︷︷ ︸

{1,2,··· ,L}

(ai0) in the i-th self-attention head, and

∏
denotes the concatenation operation.

3) Assembly of Inter-Layer in the Transformer Hierarchy:
After the investigation within the Transformer layer, we turn
to the inter-layer assembly across the Transformer layers.
In specific, we assemble the picked token feature ẑl (l =
1, 2, . . . , n − 2) with (n − 2)-th class token and feed them
as the input for the penultimate layer of encode,

Zn−1 = {xn−2, ẑ1, · · · , ẑn−2} (9)

where ẑ1, · · · , ẑn−2 represent picked token features from the
first n−2 layers. xn−2 refers to the class token of the (n−2)-th
layer. Experimentally, we observe that such assembly between
the class token and picked patch tokens can significantly
benefit the classification performance.

Even though our dual Transformer structure allows the
network to focus on the semantic parts within the Transformer
hierarchy, the information interaction between the parallel
hierarchies needs to be better investigated, which is essential
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Fig. 3. Alignment design for global branch. The class token of the global
branch serves as a query token to interact with the patch tokens from the
local branch through attention mechanism. ψl(·) and ϕl(·) are the projection
functions to align feature dimensions. The local branch follows the same
procedure but exchange class token and patch tokens from another branch.

for optimizing the parallel hierarchies towards accurate results
consistently. Inspired by the success of methods [6], [24], [37],
we exchange the class tokens between the parallel branches
in the penultimate layer, which explicitly ensures semantic
consistency across the parallel hierarchies. Fig. 3 demonstrates
the overall flow-chart of alignment between class token and
patch tokens from the other branch. Specifically, the class
token of the global branch acts as a query token to interact
with the patch tokens from the local branch through the
attention mechanism. Wherein, ψl(·) and ϕl(·) are projections
to align dimensions. Notably, the local branch follows the same
procedure but exchange class token and patch tokens from
another branch. As illustrated in Fig. 3, we concatenate the
class token with patch tokens as follows,

Zl′

n−1 = [ψl(xln−2), ẑs1, ẑ
s
2, · · · , ẑsn−2] (10)

where ψ(·) denotes the linear projection function for dimen-
sion alignment. We perform cross-attention between class
token and patch tokens. The class token is the only query
since the patch tokens’ information is merged into the class
token. The above procedure can be mathematically formulated
as follows

q = ψl(xln−2)Wq, k = Zl′
n−1Wk, v = Zl′

n−1Wv

ω = softmax(qkT /
√
C/h)

Mhead(Zl′
n−2) = ωv

(11)

where Wq , Wk, Wv ∈ RC×(C/h) are learnable parameters, C
and h denote the feature dimension and number of multiple
heads. Note that we only use the class token in the query.
Moreover, like self-attention, we also use multiple heads mech-
anism. Specifically, the output Zl

′′

n−1 of an alignment module
based on the given class token with layer normalization (LN)
and skip connection is defined as follows.

xl
′
n−2 = ψl(xln−2) +Mhead(LN([ψl(xln−2), ẑs1, ẑ

s
2, · · · , ẑsn−2]))

Zl
′′

n−1 = [ϕl(xl
′
n−2), ẑl1, ẑ

l
2, · · · , ẑln−2]

(12)

where ψ(·) and ϕ(·) are used to squeeze feature and project
feature back for dimension alignment.

After the computation of the last layer, we concatenate the
class tokens of parallel hierarchies to finalize the category
prediction.

4) Loss Function: To further alleviate the issue of large
intra-class and small inter-class variances, we introduce the
center loss to guide the optimization procedure. Concretely,
we first define class centers as C ∈ R2D×S (2D equals the
dimension of the concatenation of two class tokens, S is
the number of sub-categories) and initialize it following a
uniform distribution. And then, we dynamically renew each
sub-category center by the update rule below, which effectively
characterizes the intra-class variations.

c′j ← cj + τ∆cj (13)

where the sub-category center cj ∈ R2D. cj and c′j denote the
class centers of the deep feature before and after iterations,
respectively. τ denotes the update rate for centers to avoid
large perturbations. To achieve this goal, we borrow a weighted
update mechanism from work [39] to adjust class centers.
To be specific, the update equation of ∆cj is mathematically
expressed by

∆cj =

∑Ω
i=1 δ(yi = j)(cj − [xc, x

′
c]i)

1 +
∑Ω

i=1 δ(yi = j)
(14)

where xc and x′c are the class tokens from the parallel hierar-
chies belonging to the yi-th category. δ(condition) = 1 if the
condition is satisfied, and δ(condition) = 0 if not. Ω denotes
the total number of training samples in each mini-batch, and
the weight parameter βi is designed as the maximum predicted
probability of sample xi:

βi = maxP(xi) (15)

After that, we apply the `2 loss to explicitly ensure the
consistency between [xc, x

′
c]i and c′yi

, which is mathematically
formulated as follows:

Lctr =
1

2

Ω∑
i=1

‖ [xc, x
′
c]i − c′yi

‖22 (16)

Based on all the above considerations together, at the
training stage, the total loss of the Dual-TR is expressed as
follows:

L = Lcls + αLctr (17)
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where Lcls means the cross-entropy loss function and α is the
hyper-parameters to balance the above two loss items, which
is empirically set 0.1 in our experiments.

IV. EXPERIMENTS

In this section, we first describe the experiment settings
in Subsection IV-A. Then, the introduction of the involved
datasets is illustrated in Subsection IV-B. Finally, quantitative
and qualitative experimental results are reported in Subsection
IV-C.

A. Implementation Details

We perform experiments on four public benchmarks, in-
cluding CUB-200-2011 [40], NABirds [41], Stanford Dogs
[42], and iNaturalist2017 [43] to validate the effectiveness of
the Dual-TR. Following the common protocol in the FGVC
task, we resize the input image to 448 × 448 and adopt
the official ViT-B 16 model as the backbone, which is pre-
trained on ILSVRC CLSLOC [44] dataset. In all experiments,
the Stochastic Gradient Descent (SGD) algorithm, with a
momentum of 0.9, a total of 10, 000 steps, batch size of 16, is
utilized to optimize the Dual-TR in an end-to-end manner. The
initial learning rate is 0.03 for CUB-200-2011, Stanford Dogs,
and NABirds datasets, and 0.01 for the iNaturalist2017 dataset,
and scheduled by cosine annealing strategy. All experiments
are conducted on four Tesla V100 GPUs and implemented
with the PyTorch [45] deep learning framework.

TABLE I
STATISTICS OF BENCHMARK DATASETS FOR FINE-GRAINED VISUAL

CLASSIFICATION.

Dataset Object Category Training Testing

iNaturalist2017 [43] Nature 5,089 579,184 95,986

NABirds [41] Bird 555 23,929 24,633

CUB-200-2011 [40] Bird 200 5994 5794

Stanford Dogs [42] Dog 196 8144 8041

B. Fine-grained visual classification Datasets

We report experiments on four widely used benchmark
datasets, i.e., iNaturalist2017, NABirds, CUB-200-2011, and
Stanford Dogs, and rank all methods based on the top-1
(Acc.@1) evaluation metric. Statistics of datasets and their
train/test splits are summarized in Table I. It is worth noticing
that we rely on the image-level annotation without any extra
information (e.g., part annotations, object bounding boxes, and
web prior knowledge of categories). Thus, we do not compare
with the methods which rely on these annotations.

1) iNaturalist2017: As seen in Fig. 4 (a), iNaturalist2017
dataset contains cross-species images, and the biased distri-
bution is evident between 5, 089 categories. Empirically, the
image numbers in the train and test set are 579, 184 and
95, 986, respectively.

(a) The iNaturalist2017 dataset.

(b) The CUB-200-2011 dataset.

(c) The NABirds dataset.

(d) The Stanford Dogs dataset.
Fig. 4. Examples of the involved benchmarks.

2) CUB-200-2011: The CUB-200-2011 dataset is a well-
known bird species dataset, which is competitive and com-
monly used for fine-grained image classification, see examples
in Fig. 4 (b) for illustration. This dataset collects 11, 788
images of 200 different bird subcategories, which consists
of 5, 994 images for training and 5, 794 images for testing.
Each subcategory has roughly 30 train and test images. It
has three-level annotations, including image-level subcategory
labels, object bounding boxes, and part landmarks.

3) NABirds: The NABirds dataset is another widely used
fine-grained classification dataset, which covers more cate-
gories and has a larger volume than CUB-200-2011 dataset,
with 23, 929 train and 24, 633 test images for 555 categories.
Fig. 4 (c) exhibits the samples from the NABirds dataset. In
particular, this dataset covers 400 species and occasionally
arranges classes for male and female birds.
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TABLE II
THE QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON

CUB-200-2011.

Method Backbone Acc.@1 (%)
RA-CNN [48] VGG-19 85.3
MA-CNN [14] VGG-19 86.5
MaxEnt [49] DenseNet-161 86.6
DVAN [50] VGG-16 87.1
CIN [51] ResNet-50 87.5

API-Net [31] ResNet-50 87.7
SnapMix [52] ResNet-50 87.7
ACNet [53] ResNet-50 88.1

AP-CNN [54] ResNet-50 88.4
FDL [55] ResNet-50 88.6

PCA-Net [56] ResNet-101 88.9
TBMSL [28] ResNet-50 89.6

Stacked LSTM [46] GoogleNet 90.4
ViT [17] ViT B 16 90.3
EV [57] ViT B 16 91.0

RAMS [36] ViT B 16 91.3
TPSKG [58] ViT B 16 91.3
AFTrans [59] ViT B 16 91.5

FFVT [35] ViT B 16 91.6
R2-Trans [60] ViT B 16 91.5
TransFG [22] ViT B 16 91.7

SIM-Trans [47] ViT B 16 91.8
Ours ViT B 16 92.0

4) tanford Dogs: There are 20, 000 images in the Stanford
Dogs datasets for 120 categories, of which 8, 580 are in the
test set and 12, 000 in the train set, coupled with image-level
and object-level annotations, see the samples in Fig. 4 (d).

C. Comparison With the State-of-the-Arts

1) CUB-200-2011: Table II shows that Dual-TR achieves
superior performance over the state-of-the-art methods.
Among those CNN-based methods, Stacked LSTM [46]
achieves the best performance. However, it relies heavily on
object detection and instance segmentation to capture discrim-
inative information, whose complexity makes it incapable of
further improvements. It can be seen from Table II that when
ViT has applied along, the classification accuracy reaches up
to 90.3% of performance. TransFG [22] further unleashes the
advantage of the ViT structure for the FGVC task, which
selects patch tokens via attention weights matrix and ranks
the third place. Different from TransFG, we explicitly adopt
the multi-grained assembly within the Transformer hierarchy
to guide the network to focus on discrepancies in the local
region and surpass it by 0.3% top-1 accuracy. SIM-Trans [47]
is proposed recently for FGVC, based on the Transformer
structure as well. By comparison, the Dual-TR exceeds SIM-
Trans by an absolute gain of 0.2% of performance, validating
the advantage of the proposed method.

2) NABirds: As listed in Table III, there is a similar trend
to the CUB-200-2011 dataset, where the ViT-based methods
beat those based on CNN architecture significantly. We can

observe that the proposed Dual-TR outperforms the CNN-
based best-performed method MGE-CNN [15] by absolute
2.7% top-1 accuracy and achieves a performance gain of
absolute 1.4% compared to the ViT. Differing from TransFG
[22], we significantly improve 0.5% as well. These results
validate the effectiveness of orthogonal assembly within the
Transformer hierarchy and the parallel structure design choice
to a certain extent.

TABLE III
THE QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON

NABIRDS.

Method Backbone Acc.@1 (%)
MaxEnt [49] DenseNet-161 83.0
API-Net [31] DenseNet-161 88.1
CS-Parts [61] ResNet-50 88.5

MGE-CNN [15] ResNet-101 88.6
ViT [17] ViT B 16 89.9

TPSKG [58] ViT B 16 90.1
R2-Trans [60] ViT B 16 90.2
TransFG [22] ViT B 16 90.8

Ours ViT B 16 91.3

TABLE IV
THE QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON

INATURALIST2017.

Method Backbone Acc.@1 (%)
R50 [62] ResNet-152 59.0
SSN [63] ResNet-101 65.2

IARG [64] ResNet-101 66.8
Inception-v4 [65] ResNet-101 67.3

TASN [66] ResNet-101 68.2
RAMS [36] ViT B 16 68.5

ViT [17] ViT B 16 68.7
AFTrans [59] ViT B 16 68.9

SIM-Trans [47] ViT B 16 69.9
TransFG [22] ViT B 16 71.7

Ours ViT B 16 71.5

3) iNaturalist2017: The comparison between the Dual-TR
and the state-of-the-art methods on the iNaturalist2017 dataset
is summarized in Table IV. One can see that ViT surpasses
ResNet-50 [62] by absolute 9.7% improvement on Acc.@1,
significantly revealing the advantage of the Transformer struc-
ture. Further, the Dual-TR gains an additional improvement
of 2.8% over ViT and is on par with the best-performed
method. Notably, compared with RAMS [36], which also
adopts the double-branch structure to capture local differences,
we achieve a performance improvement of 3.0% consistently.

4) Stanford Dogs: The classification performance on the
Stanford Dogs dataset is reported in Table V. We can see
that Dual-TR rivals the best-performed method EV [57],
i.e., 93.2% vs. 93.2%. Even though TPSKG [58] builds an
additional knowledge set to store category information and
learn comprehensive representations, it still is inferior to ours
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Fig. 5. Visualization of the results in our Dual-TR method. Each row presents response heatmaps of samples in iNaturalist2017, NABirds, CUB-200-2011,
Stanford Dogs.

TABLE V
THE QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON

STANFORD DOGS.

Method Backbone Acc.@1 (%)
FDL [55] DenseNet-161 84.9

RA-CNN [48] VGG-19 87.3
DB [67] ResNet-50 87.7
SEF [68] ResNet-50 88.8

API-Net [31] ResNet-101 90.3
AFTrans [59] ViT B 16 91.6

ViT [17] ViT B 16 91.7
TransFG [22] ViT B 16 92.3
RAMS [36] ViT B 16 92.4
TPSKG [58] ViT B 16 92.5
R2-Trans [60] ViT B 16 92.8

EV [57] ViT B 16 93.2
Ours ViT B 16 93.2

(−0.7%). We attribute these consistent improvements to the
multi-grained assembly of token features, which allows the
model to focus on discriminative regions.

5) Qualitative Visualizations: To validate the effectiveness
intuitively, we compare the attention maps between Dual-TR
and existing notable methods on four public datasets without
cherry-picking. As depicted in Fig. 5, we can see that Dual-TR
shows obvious advantages over existing methods and performs
well in locating the salient object and concentrates on the

subtle yet distinctive parts such as the wings and tail of a bird
(for example, parts in the 5-th and 6-th columns). We believe
that these visualizations present further insights into decisive
factors for accurate performance and verify the efficacy of our
architecture design choice to a certain extent.

V. ABLATION STUDIES

To explore our design choices of the Dual-TR framework,
we conduct in-depth ablation studies to analyze how critical
components or hyper-parameters in our method affect perfor-
mance. We perform all ablation experiments on the CUB-
200-2011 dataset, and experiment setups are the same as the
description in Subsection IV-A.

A. The dual Transformer architecture design

We construct a series of variants to prove the effectiveness
of dual architecture in our design. As shown in Table VI,
“#1 ViT” denotes that we directly transfer the ViT framework
to the FGVC domain. “#2 Dual-ViT” implies a dual ViT
structure. “#3 TR” demonstrates a single hierarchy variant of
the proposed method. “#4 Dual-TR” means the full version
of our method. From Table VI, it is observed that Dual-
TR achieves the best performance among all variants. The
comparisons “#1 ViT” vs. “#2 Dual-ViT” and “#3 TR” vs.
“#4 Dual-TR” consistently demonstrate that dual structure is
beneficial to representation learning, which is in line with the
actual situation where dual hierarchies can explicitly capture
informative visual cues at different scales, which are the
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complement of each other. Notably, the performance com-
parison between “#3 TR” and “#2 Dual-ViT”, i.e., 91.7% vs.
90.7%, demonstrates that the performance improvement of our
method comes mainly from the design within the Transformer
hierarchy.

TABLE VI
ABLATION STUDY ON DUAL ARCHITECTURE DESIGN CHOICES.

# Variants Acc.@1 (%)

1 ViT 90.3
2 Dual-ViT 90.7
3 TR 91.7
4 Dual-TR 92.0

TABLE VII
ABLATION STUDY ON DUAL TRANSFORMER ARCHITECTURE AND THE

SEMANTIC PART VIEW GENERATION.

# Variants Acc.@1 (%)

1 Baseline (ViT) 90.3
2 +Assembly within Transformer Layer 91.0
3 +Assembly across Transformer Layer 91.5
4 Dual-TR+Center Crop 91.6
5 Dual-TR+Random Crop 91.7
6 Dual-TR+SPVG 92.0

B. The Token Feature Assembly Module

Moreover, each token feature distribution may differ in vari-
ous self-attention heads. For instance, in the i-th self-attention
head, a patch token is closely relevant to the class token but
may not be in the j-th self-attention head. Thus, in each self-
attention head, we separately search for a patch token the most
relevant to the class token. We ablate each assembly in TFAM
and show their contributions in Table VII. We show that the
assembly within the Transformer layer dramatically increases
the accuracy from 90.3% to 91.0%, which convincingly proves
that such a schema is a promising direction for this visual
domain. Moreover, the assembly across the Transformer layer
further boosts performance from 91.0% to 91.5%. These
improvements validate the effectiveness of crucial components
in TFAM.

C. The effect of adaptive semantic view generation

We ablate various design choices to analyze the effect of the
semantic part view in our design. As listed in Table VII, “#4
Dual-TR+Random Crop” indicates that the local Transformer
hierarchy is directly fed with the content randomly cropped
from the raw image. “#5 Dual-TR+Center Crop” suggests
that the local Transformer hierarchy is directly fed with the
center content fixedly cropped from the raw image. “#6 Dual-
TR+SPVG” means that the local Transformer hierarchy takes
semantic part view generation as input. The experimental
results are summarized in Table VII. It is concluded that “#6
Dual-TR+SPVG” achieves the best performance among dif-
ferent variants. We ascribe such improvements to the flexible
part view generation, which turn out to be beneficial for the

Fig. 6. An illustration of learning discriminative details by Dual-TR. The
first row is the raw images, the second row shows the heatmaps yielded by
local hierarchy, and the third row indicates the heatmaps generated by global
hierarchy.

FGVC task. Moreover, we present the visualizations of parallel
hierarchies in Fig. 6, where we show that the visualizations
from the local Transformer hierarchy are complementary to the
counterpart of the global hierarchy, validating the effectiveness
of our design choice.

TABLE VIII
ABLATION STUDY ON ECT AND CL. ECT REFERS TO EXCHANGING

CLASS TOKENS, AND CL IS DEFINED AS CENTER LOSS.

# ECT CL Acc.@1 (%)

1 7 7 91.4
2 3 7 91.8
3 7 3 91.7
4 3 3 92.0

D. The effectiveness of exchanging class tokens

According to Table VIII, exchanging class tokens can con-
tribute to a significant improvement of 0.4% in classification
accuracy. Besides, it demonstrates that exchanging class tokens
provides a simple yet effective way to consistently ensure the
parallel hierarchies towards better performance, enabling the
Dual-TR to learn a more distinctive representation and achieve
better performance.

E. The affect of center loss

We also summarize the performance comparison between
baseline (“#1”) and a variant (“#3”) with center loss in
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Table VIII. When coupled with the center loss, it can be ob-
served that there is a noticeable improvement in classification
performance. The center loss module produces loss penalties
based on feature distances between inputs and their category
centers, leading to compact feature representation in the train-
ing process. Therefore, we believe that the introduction of
center loss is well-suited to learning intra-class mutual features
within the same sub-category and effectively alleviate the issue
of small inter-class variance.

Fig. 7. Influence of Dual-TR using the attention weights of different layers
to generate semantic part view on CUB-200-2011 dataset.

F. The influence of layers Transformer architecture

As Fig. 7 demonstrates, when more layers of attention
weights are involved, there is a dramatic drop in classification
performance. We argue that too many layers of the Trans-
former architecture applied may lead to a dilemma in which
the foreground and background features are entangled, and
the semantic part view contains much irrelevant information,
impairing the classification accuracy. Thus, for better perfor-
mance, we choose the attention weights of the first layer to
generate a semantic part view empirically.

TABLE IX
ABLATION STUDY ON THE EFFECT OF ε ON CUB-200-2011 DATASET.

Values of ε 0.1 0.3 0.5 0.7 0.9

Acc.@1 91.5 92.0 91.7 91.5 91.2

G. The effectiveness of threshold ε

To determine a desirable value of the empirical threshold
value ε, we conduct experiments with the different thresholds
and summarize results in Table IX. Experiments in the table
show that the classification accuracy significantly fluctuates
along with the value ε varying from 0.1 to 0.9. Hence, the
value of ε is empirically set to 0.3 in our experimental settings
by default for better classification performance.

VI. CONCLUSION

In this paper, we design a dual Transformer architecture
(abbreviated as Dual-TR) to explicitly encode discriminative

features from global and local perspectives for the FGVC
task. Dual-TR is well-designed to encode fine-grained objects
via parallel Transformer hierarchies, where we generate the
adaptive semantic view for the local Transformer hierarchy.
The essence within each hierarchy lies in orthogonal assembly
based on attention weight derived by the ViT structure, i.e.,
intra-layer and inter-layer assembly. The former explores infor-
mative token features in various self-attention heads within the
Transformer layer, while the latter pays more attention to token
assembly across the Transformer layers. Extensive experimen-
tal results on CUB-200-2011, NABirds, Stanford Dogs, and
iNaturalist2017 demonstrate that Dual-TR achieves competi-
tive or even better performances compared to recent SOTAs.
Comprehensive ablation studies verify the effectiveness of the
proposed method and evidence that such fine-grained feature
assembly is suitable for this visual understanding task.

Dual-TR also encounters some challenges, including the
trade-off between the computation cost and accuracy when
designing the model architecture, and the results on occluded
objects, which we leave for future work. Nevertheless, based
on the above promising achievements, we believe this work
can inspire the future research in this field to explore effective
solutions for better performance.
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