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Abstract
Generic event boundary detection aims to localize the generic, taxonomy-free event boundaries that segment videos into
chunks. Existing methods typically require video frames to be decoded before feeding into the network, which contains
significant spatio-temporal redundancy and demands considerable computational power and storage space. To remedy these
issues, we propose a novel compressed video representation learning method for event boundary detection that is fully end-
to-end leveraging rich information in the compressed domain, i.e., RGB, motion vectors, residuals, and the internal group of
pictures (GOP) structure, without fully decoding the video. Specifically, we use lightweight ConvNets to extract features of
the P-frames in the GOPs and spatial-channel attention module (SCAM) is designed to refine the feature representations of
the P-frames based on the compressed information with bidirectional information flow. To learn a suitable representation for
boundary detection, we construct the local frames bag for each candidate frame and use the long short-term memory (LSTM)
module to capture temporal relationships. We then compute frame differences with group similarities in the temporal domain.
This module is only applied within a local window, which is critical for event boundary detection. Finally a simple classifier
is used to determine the event boundaries of video sequences based on the learned feature representation. To remedy the
ambiguities of annotations and speed up the training process, we use the Gaussian kernel to preprocess the ground-truth event
boundaries. Extensive experiments conducted on the Kinetics-GEBD and TAPOS datasets demonstrate that the proposed
method achieves considerable improvements compared to previous end-to-end approach while running at the same speed.
The code is available at https://github.com/GX77/LCVSL.

Keywords Generic event boundary detection (GEBD) · Spatial-channel attention module (SCAM) · Group similarity · Local
frames bag

1 Introduction

In recent years, video has become an integral part of human
life, significantly impacting various aspects of our daily rou-
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tines and activities. By 2023, the video content will make up
80% of all consumer internet traffic.1 When perceiving video
contents, people will naturally and spontaneously segment
events, breaking down longer events into a series of shorter
temporal units (Shou et al., 2021). However, this mechanism
is tough for machine learning, although it is so natural to the
human brain. To this end, Generic Event BoundaryDetection
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(Shou et al., 2021) (GEBD) is proposed to allow machines
to develop such an ability.

GEBD aims to localize the moments in which humans
naturally perceive event boundaries. The high-level causes
of event boundaries in the GEBD task are the following: 1)
change in spatial domain: significant changes in the color
or brightness of the environment. 2) change in the temporal
domain: an old action ends or a new action starts. Notably,
theses causes can happen simultaneously or are intermingled
together, which lead to complicated event boundary varia-
tions, as shown in Fig. 1. To solve the GEBD task, we can
simply regard it as a video representation learning problem
following the main methods. Currently, the two-stream net-
works (Simonyan & Zisserman, 2014; Feichtenhofer et al.,
2016, 2019) and 3D convolutional networks (Taylor et al.,
2010; Ji et al., 2013; Tran et al., 2015; Varol et al., 2018) are
two popular network architectures in the video understand-
ing field. The two-stream networks usually incorporate two
different modalities of information to learn complementary
representation, for example, decoded RGB video frames and
optical flow. 3D convolutional network is another choice to
model temporal information using the spatio-temporal filters.
Transformers were successfully applied in computer vision
(Dosovitskiy et al., 2021a), the new trend in video under-
standing is using the Transformers, including (Dosovitskiy
et al., 2021b; Arnab et al., 2021; Liu et al., 2022; Fan et al.,
2021; Zhang et al., 2021), which achieve competitive results.
Despite their success, these methods are not optimal for the

GEBD task since consecutive decoded RGB frames contain
high temporal redundancy and are not practical for real-time
applications.

Recently, another alternative for video understanding is
learning directly from compressed domain. Several methods
(Zhang et al., 2016; Li et al., 2020; Wu et al., 2018; Shou et
al., 2019; Wang et al., 2019; Yu et al., 2021; Huang et al.,
2021) have demonstrated the advantages of directly taking
compressed information in video stream as input for video
understanding. These methods usually run in two orders
of magnitude faster than the methods using optical flow
while achieving competitive results (Shou et al., 2019). This
tremendous improvement in speed comes from the using of
motion vectors and residuals, which designed for storage and
transmission of videos and almost compute-free. The rich
information in motion vectors can be regarded as an alterna-
tive to the compute-intensive optical flow. To better utilize
motion vectors and residuals, different methods have been
developed for efficient and effect compressed video repre-
sentation learning. Specifically, CoViAR (Wu et al., 2018)
first converts motion vectors and residuals into 2D repre-
sentations like images and then directly feeds them into
2D CNNs for action recognition. This method lacks inter-
actions between I-frames and P-frames and thus achieves
inferior results. DMC-Net (Shou et al., 2019) improves the
CoViAR (Wu et al., 2018) method by reconstructing the
optical flow based on motion vectors and residuals and a
discriminator is applied to guide the reconstruction. How-

Fig. 1 Examples of generic event boundaries. The first video is seg-
mented at a change of action, then the change of subject into another one
and the change of a different scene. The second video is segmented due

to action change, camera zoom and object interaction. The taxonomy-
free nature of Kinetics-GEBD event boundaries makes it harder than
existing tasks
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ever, it still needs optical flow in the training stage. SIFP
(Li et al., 2020) uses the slow I pathway receiving a sparse
sampling I-frame clip and the fast P pathway receiving a
dense sampling pseudo-optical flow clip, which eliminates
the dependence on traditional optical flows calculated from
raw videos. Although the aforementioned method achieves
promising results, they are still far from satisfactory, which
lack effective fusion strategies between different modalities,
such as decoded I-frames, motion vectors, and residuals.
GEBD task is more sensitive to the local temporal context,
which needs a new mechanism to learn from compressed
information.

In this paper,we focus onGEBDanddevelop a fast end-to-
endmethod that can effectively learn froma local compressed
video stream. The previous attempt (Shou et al., 2021) for-
mulate it as a classification task by considering the context
information of the candidate boundaries.However, it neglects
the temporal relations between consecutive frames and oper-
ates inefficiently during feature extraction stage. Inspired by
Zhang et al. (2016), Wu et al. (2018), Shou et al. (2019),
Wang et al. (2019), Yu et al. (2021), Huang et al. (2021), we
designed an end-to-end trained network to exploit discrim-
inative features for GEBD in the compressed domain, i.e.,
MPEG-4, which can save decoding cost and improve fea-
ture extraction efficiency. Specifically, most modern codecs
split a video into several group of pictures (GOP), where
each GOP is formed by one I-frames and T P-frames. To
solve the difficulty that arose from the long chain of depen-
dency of the P-frames, following CoViar (Wu et al., 2018),
we use the backtracing technique to compute the accumu-
lated motion vectors and residuals in linear time. In this way,
the consecutive P-frames in each GOP depend only on the
reference I-frame, which can be processed in parallel.

In contrast to the I-frame, it is difficult to learn the dis-
criminative features of the P-frames. Refining the features
of the reference I-frame based on the motion vectors and
residuals becomes an intuitive option. Motion vectors and
residuals provide information to reconstruct P-frames by
referring the dependent I-frames. In addition to that, they
also providemotion information that obtained from the video
encoding process. To that end, we design a lightweight
spatial-channel attention module to refine the features of the
reference I-framewith the guidance of themotion vectors and
residuals. In this way, the features of P-frames and I-frames
are converted to the same feature space, which benefits the
subsequent processing. After obtaining P-frame features, we
split frame sequences into successive local frames bags. Each
local frames bag only contains a fixed number of frames and
is responsible for providing necessary context information to
determine whether the central frame belongs to an event or
not. Then we compute frame differences using group sim-
ilarity in each local frames bag based on temporal context
extracted by the long short-term memory (LSTM) module.

Fig. 2 The inference time vs. F1 score of different methods on the
Kinetics-GEBD validation dataset (Shou et al., 2021). a The previous
method (Shou et al., 2021) PC is relatively fast with inferior results. b
After integrating the optical flow (OF)module, the accuracy is improved
with much slower running speed. c, d (Li et al., 2022) leverages motion
vectors and residuals in the compressed domain and achieves a com-
petitive F1 score with a faster running speed. e, f CLA (Kang et al.,
2021) and CASTANET (Hong et al., 2021) take fully decoded RGB
frames as input, which are much slower than the methods conducted in
compressed domain. g, hComparedwith c, d, our method obtains about
2.0% absolute improvements while keeping almost the same running
speed. The green region indicates that the methods are run in real time.
Best viewed in color for all figures throughout the paper

This module can predict the event boundaries of videos accu-
rately and it actually imitates humans, i.e., look back and
forth around the candidate frames to determine event bound-
aries, by comparing the extracted features before and after
the candidate frames. In addition, to remedy the ambigu-
ities of annotations and speed up the training process, we
use the Gaussian kernel to preprocess the ground-truth event
boundaries instead of using the “hard lables” of boundaries.
Extensive experiments conducted on the Kinetics-GEBD
and TAPOS datasets to demonstrate the effectiveness of
the proposed method. Specifically, the proposed method
achieves comparable results to the state-of-the-art method
at the CVPR’21 LOVEU Challenge (Kang et al., 2021) with
much faster running speed, as in Fig. 2.

In summary, we make the following contributions:

• We propose a spatial-channel attention module (SCAM),
which also refines P-frame features with I-frame features
and shows advantages with bidirectional information
flow compared to spatial-channel compressed encoder
(SCCE).

• Instead of using linear temporal contrastive module, we
split frame sequences into successive local frames bags
and compute frame differences using group similarity
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in each local frames bag based on temporal context
extracted by LSTM module.

• We provide additional ablation studies and qualitative
analyses to demonstrate the superiority of each compo-
nents comprehensively, including different backbones,
different temporal feature extractor and learning scheme
of different number of annotators.

• We achieve comparable results to the state-of-the-art
methods at the CVPR’21 LOVEU Challenge (Kang et
al., 2021) with much faster running speed and obtains
about 2% absolute improvements compared with our
preliminary version (Li et al., 2022), demonstrating its
effectiveness. We also achieve 1.4% improvement on
TAPOS (Shao et al., 2020) dataset compared to DDM-
Net (Tang et al., 2022), which is developed on fully
decoded RGB frames.

This paper is an extended version of a preliminary confer-
ence publication (Li et al., 2022). Themain newcontributions
or differences include:

1) We improve the original SCCE by proposing the new
SCAM that refines P-frame feature with I-frame features
using bidirectional information flow.

2) We propose to utilize the LSTM module to capture tem-
poral information for better performance.

3) We carry out more ablative studies to analyze each com-
ponent of our approach in-depth.

4) Notable performance gains are achieved with the afore-
mentioned new contributions in comparison with our
preliminary version in Li et al. (2022).

The remainder of this paper is organized as follows. A
brief review of related works is presented in Sect. 2. The
details of the proposed end-to-end method for generic event
boundary detection and experimental explanations are given
in Sect. 3. Extensive experiments and ablation studies are
given in Sect. 4. We conclude our method in Sect. 5.

2 RelatedWork

2.1 Temporal Action Localization (TAL)

TAL aims to localize the action segments from untrimmed
videos. More specifically, for each action segment, the goal
is to detect the start point, the end point and the action class
it belongs to. Most approaches could be categorised into two
groups, including two-stage methods (Richard &Gall, 2016;
Ni et al., 2016; Caba Heilbron et al., 2017; Zhao et al., 2017;
Chao et al., 2018) and single-stage methods (Lea et al., 2017;
Lin et al., 2017; Alwassel et al., 2018; Long et al., 2019; Yuan
et al., 2017; Ma et al., 2016; Yuan et al., 2017; Zhao et al.,

2020). In the two-stage method setting, the first stage gener-
ates action segment proposals. The actionness and the type
of action for each proposal are then determined by the sec-
ond stage, along with some post-processing methods such as
grouping (Zhao et al., 2017) andNon-maximumSuppression
(NMS) (Lin et al., 2019a) to eliminate redundant proposals.
For one-stage methods, the classification is performed on the
pre-defined anchors (Lin et al., 2017; Long et al., 2019) or
video frames (Ma et al., 2016; Yuan et al., 2017).

TAL and GEBD are both tasks in video understand-
ing, which solve the problem of boundary localization by
extracting key information from videos. However, TAL is
designed to locate specific action behaviors only, whereas
GEBD can locate general events beyond action behaviors. In
other words, TAL is a subtask within GEBD that can only
locate actions. Research in TAL has provided many methods
(Richard & Gall, 2016; Ni et al., 2016; Caba Heilbron et al.,
2017; Lea et al., 2017; Lin et al., 2017; Alwassel et al., 2018;
Long et al., 2019; Yuan et al., 2017; Ma et al., 2016) for
action localization, and we have addressed the GEBD task
by extending these methods to generic event localization.

2.2 Generic Event Boundary Detection

The goal of GEBD (Shou et al., 2021) is to localize the
taxonomy-free event boundaries that break a long event into
several short temporal segments. Different from Temporal
Action Localization (TAL), GEBD only requires to predict
the boundaries of each continuous segments. The current
methods (Kang et al., 2021; Hong et al., 2021; Rai et al.,
2021) all follow the similar fashion in Shou et al. (2021),
which takes a fixed length of video frames before and after the
candidate frame as input, and separately determines whether
each candidate frame is the event boundary or not. Kang et
al. (2021) use the temporal self-similarity matrix (TSM) as
the intermediate representation and exploit the discrimina-
tive features with the popular contrastive learning approach
for better performance. Hong et al. (2021) use the cascade
classification heads and dynamic sampling strategy to boost
both recall and precision. Rai et al. (2021) attempt to learn the
spatiotemporal features using a two stream inflated 3D con-
volutions architecture. DDM-Net (Tang et al., 2022) present
dense difference maps (DDM) to comprehensively charac-
terize the motion pattern and exploit progressive attention on
multi-level DDM to jointly aggregate appearance andmotion
clues. All these methods are developed on decoded RGB
images and cannot benefit from almost compute-free motion
vectors and residuals.

2.3 AttentionMechanism

Attentionmechanism has been widely adopted in deep learn-
ing model design. The core of attention mechanism is to
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recalibrate the origin input feature with different weights in
different dimensions. Transformer (Vaswani et al., 2017a)
andNon-local network (Wang et al., 2018b) can capture long-
range dependencies by computing the response at a spatial
position as a weighted sum of the features at all positions
in the input feature maps. SENet (Hu et al., 2018) devel-
ops the “Squeeze-and-Excitation” (SE) block that adaptively
recalibrates channel-wise feature responses by explicitly
modelling interdependencies between channels. In addition
to channel-wise recalibration, CBAM (Woo et al., 2018)
sequentially infers attention maps along both channel and
spatial dimensions, and then uses the attention maps to
recalibrate the origin input feature. In contrast to the afore-
mentioned methods, we attempt to refine the P-frame feature
with the guidance of motion vectors and residuals by con-
sidering both spatial and channel dimensions of the features
of I-frame. Different from SCCE (Li et al., 2022), we also
refine the origin P-frame feature with the guidance of ref-
erence I-frame feature. This bidirectional information flow
can filter noises and fully leverages the information in com-
pressed video stream.

3 Method

The existingmethod (Shou et al., 2021) formulates theGEBD
task as binary classification, which predicts the boundary
labels for each frame by considering the temporal context
information. That is, The preceding and succeeding frames
of each video frame are feed into a neural network to detect
the boundaries. It is inefficient due to the duplicated com-
putation conducted in consecutive frames. To remedy this,
we propose an end-to-end compressed video representation
method for GEBD, which regards each video clip as a whole.
Specifically, we use MPEG-4 encoded videos as our input.
Each video clip V is formed by N groups of pictures (GOPs),
and each GOP contains one I-frame and T P-frames, i.e.,

V = {
Ii , P1

i , P2
i , · · · , PT

i

}N
i=1,

(1)

where Ii ∈ R
3×H×W denotes the reference I-frame and Pt

i
denotes the t-th P-frame of the i-th GOP, and H and W are
the height and width of the video frame. For simplicity, we
assume that there exists the same number of P-frames in all
GOPs. The assumption of a fixed number of P-frames sim-
plifies the process, as it allows us to standardize the temporal
length of each video segment for processing. The P-frame
Pt
i in the i-th GOP is formed by the initial motion vec-

tor Mt
i ∈ R

2×H×W and initial residual Rt
i ∈ R

3×H×W ,
which can be firstly obtained nearly cost-free from the com-
pressed video stream, and then trace all motion vectors back
until to the reference I-frame and accumulate the residual on
the way to decouple the dependencies between the consec-

Algorithm 1 Local Compressed Video Stream Learning for
GEBD
Require: Input the I-frame I , T motion vectors Mt and residuals Rt ,
l is the position of the candidate frame in the time sequence, and k is

the number of adjacent frames.
1: xI = ResNet-50(I )
2: for t = 1, · · · , T do
3: xtM = ResNet-18(Mt )

4: xtR = ResNet-18(Rt )

5: ṽt = SC AM(xI , xtM , xtR)

6: end for
7: Bl = {̃vl−k , · · · , ṽl , · · · , ṽl+k}
8: B̃l = LST M(Bl )

9: Sl = Group-Similarity(B̃l , B̃l )

10: Pl = Average-Pool(FCN(Sl))

11: Yl = Classifer-Head(Pl )

12: return Yl

utive P-frames. In this way, each P-frame only depends on
the reference I-frame rather than other P-frames. After that,
we build our model based on the backtraced motion vectors
and residuals and regard each GOP as a process unit. The
overall network architecture is presented in Fig. 3. As shown
in Fig. 3, the GOP is first encoded by the designed spatial-
channel attention module (SCAM) to generate the unified
video representation. After that, a temporal contrastive mod-
ule is used to exploit the temporal context information to
obtain the discriminative feature representations. Finally, a
classifier is used to generate the accurate event boundaries.
Our algorithm flow is shown in Algorithm 1.

3.1 Learning from Spatial-Channel Attention
Module

Motion, uncovered regions, and lighting variations fre-
quently happen in video sequences. Modern codecs use
macroblock as the basic unit for motion-compensated pre-
diction in a number of mainstream visual coding standards
such as MPEG-4, H.263, and H.264. Motion vectors record
the moving direction of each macroblock with respect to its
reference frame(s), describing the motion patterns of videos,
which is important for the GEBD task. The residuals can be
regraded as the compensations of the motion information,
which contains the boundary information of moving objects
and plays a crucial role in identifying the important regions in
the I-frame. Thus, we propose applying the attention mech-
anism to different regions of I-frame with the guidance of
motion vectors to enrich the features by considering both
channel and spatial dimensions. For simplicity, we omit the
index i of the GOP in the following sections.

Firstly, we use the convolutional neural network taking
the decoded RGB image as input to extract the feature rep-
resentation xI of the I-frame I , i.e., xI = f I (I ), where
xI ∈ R

C×H×W is the features of the I-frame I , and C , H
and W are the channel, height and with of the features xI ,
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Fig. 3 The architecture of our method. The spatial-channel attention
module (SCAM) is designed to obtain the refined P-frame representa-
tion ṽt based on reference I-frame feature xI , resizedmotion vectorsMt

and resized residuals Rt . This module regards each GOP as a process
unit, which is efficient and can be paralleled in a large batch size. Then

we use temporal contrastive module to capture temporal dependence
explicitly based on unified representation ṽt , which provides strong
cues for boundary detection. After that, a simple classifier is applied
to make the final predictions trained with the Gaussian smoothed soft
labels

respectively. f I (·) denotes the model used to extract fea-
tures for the I-frame, which is pre-trained on large-scale
datasets (e.g., ResNet50 pre-trained on ImageNet). Mean-
while, we can similarly compute the features for the P-frames
{P1, P2, · · · , PT } with ResNet-18, by directly taking the
initial motion vectors Mt and initial residuals Rt , i.e.,
xtM = fM (Mt ), and xtR = fR(Rt ) as input, where xtM , xtR ∈
R
C×H×W denote the features of themotion vectors and resid-

uals, respectively.
We choose the ResNet-18 to extract motion vectors and

residuals features for two reasons: (1) Motion vectors and
residuals, as types of compressed-domain information, are
typically characterized by an uneven distribution with most
positions being empty and only a few containing meaningful
data. Therefore, for such sparse information, using a small
network (such as ResNet-18) to extract features may bemore
effective in processing it. (2) ResNet-18 has a powerful gen-
eralization capability and the success it has achieved in many
image analysis tasks. Although motion vectors and residu-
als may not directly correlate with natural images, the key
concept is to leverage the high-level feature extraction ability
of the pre-trained network to create useful representations.
In this way, a considerable amount of time can be saved
on extracting features for the P-frames. This simple strategy
(Wu et al., 2018), in which the motion vector and residual
are treated as separate branches without fusion, can only pro-
vide limited performance improvement. The method (Shou

et al., 2019) attempts to integrate the optical flow in the train-
ing phase, which can further improve the accuracy. However,
there is still much room for improvement of the aforemen-
tioned methods. Specifically, the motion vectors record the
motion patterns of both the scenes and objects in videos, and
the residuals provide the compensation information. Both of
them do not contain the context information of the scenes. To
this end, we design the spatial channel compressed encoder
module by integrating the features of the reference I-frame
xI in computing the features of P-frames.

We first compute the features xtM of the motion vectors by
refining the features of the reference I-frame xI in both the
channel and spatial dimensions. As indicated by Zeiler and
Fergus (2014), different regions on the feature maps focus on
different parts of the images. Thus, we introduce the attention
weight for each featuremap of xI based on the information of
the P-frame xtM . Specifically, we concatenate I-frame feature
xI , motion vector feature xtM and resized motion vectors Mt

(resized fromMt ) together in the channel dimension to com-
pute the channel weight Wt

cha using a lightweight PWC-Net
(Sun et al., 2018). PWC-Net is chosen to maintain consis-
tency with previous work (Shou et al., 2019), and because
of the similarity between motion vectors and optical flow
information, which makes it suitable for processing using an
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Fig. 4 The architecture of the proposed spatial-channel attention mod-
ule (SCAM). W_pool corresponds to the weighted pool function. We
concatenate the features of I-frame xI , resized motion vectors Mt and
the features of motion vectors xtM to modulate the features of the ref-
erence I-frame xI in both channel and spatial dimensions. After that,
we also use I-frame xI feature to modulate the origin P-frame feature
xtM with spatial weight Wt

M . Different from the previous method (Li et
al., 2022) where the modulated features v̂tM is residually added with the
features of motion vectors, our method can learn more robust represen-
tation with the bidirectional information flow

optical flow network. i.e.,

ztcha = PWC([xI ; xtM ; Mt ])
htcha = avg _ pool(ztcha)
Wt

cha = σ(W2 · ζ(W1htcha + b1) + b2)
(2)

where σ is the sigmoid function, ζ is the ReLU function, and
W1, b1,W2, b2 are the learnable weights of the FC layers.
After that, the features of the I-frame xI are updated based
on Wt

cha as follows,

xtcha = xI ⊗ Wt
cha (3)

where ⊗ is the channel-wise multiplication. In this way, we
can compute the channel-weighted feature xtcha by updating
xI in channel dimension,with the guidance of themotionvec-
tors. Meanwhile, the channel-weighted feature xtcha is further
updated in the spatial dimension and the spatial dimension
is reduced. That is, given the features xI of the reference I-
frame, motion vector features xtM and resized motion vectors
Mt , we compute the 2D weight map Wt

spa, i.e.,

ztspa = PWC([xI ; xtM ; Mt ])
htspa = 2d _ conv(ztspa)
Wt

spa = softmax(htspa)
(4)

whereWt
spa ∈ R

H×W is the spatial weight map. The softmax
function is applied to htspa across a 2D spatial map, guaran-
teeing that the sum of values at each spatial location in the

feature map equals 1. After that, we use Wt
spa to weight the

features xtcha in the spatial dimension to compute the enriched
features of the motion vectors v̂tM ∈ R

C , i.e.,

v̂tM = ∑H
i=1

∑W
j=1 x

t
cha(i, j) · Wt

spa(i, j) (5)

where i, j are the spatial positions of xtcha and Wt
spa. Pre-

vious method (Li et al., 2022) obtains the refined features
of the motion vectors vtM ∈ R

C use residual addition, which
doesn’t consider the information flow from I-frame feature to
P-frame feature. Thus we propose to modulate P-frame fea-
ture in spatial dimension by using weighted pooling method.
Themethod applies theweight valueWt

M (shape of H×W ) to
each channel at the sameposition in xtM (shapeofC×H×W ),
thereby performing the weighted pooling, i.e.,

vtM = v̂tM + weighted _ pool(Convs(xtM + xI )) (6)

where Convs is a 3-layer Conv-ReLU network and the output
channel of last layer is 1 for predicting a 2D spatial weight
map. The overall computing process of vtM is presented in
Fig. 4. Similarly, we can compute the refined features for the
residuals vtR ∈ R

C . The final feature representations for the
P-frame is further computed as

ṽt = vtM + vtR (7)

In this way, we can compute the features of the P-frames
{̃v1, ṽ2, · · · , ṽT } in the GOP by considering the reference I-
frame I in both channel and spatial dimensions. The overall
process is very efficient and can be processed in parallel in
GOPs. After extracting the discriminative features for both
the I-frames and P-frames in the same feature space, we can
predict the event boundaries efficiently and accurately.

3.2 Learning from Local Frames Bag

Based on the extracted features of the video V , we aim
to design a temporal module to predict the event boundaries
accurately. The existence of an event boundary in a video
clip implies that there is a visual content change at that point,
thus it is very difficult to infer the boundary from one single
frame. As a result, the key clue for event boundary detec-
tion is to localize changes in the temporal domain. Inspired
by humans, i.e., look back and forth around the candidate
boundary frames to determine event boundaries,we construct
a local frames bag for each candidate frame and each local
frames bag is responsible for providing context information
to predict an event boundary. Specifically, for each candi-
date frame ṽl at time l, we construct a local frames bag for
it by gathering adjacent k frames before candidate frame ṽl

and adjacent k frames after ṽl , resulting in a local frames
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Fig. 5 Visualization of grouped similaritymapsSt ,G = 4 in this exam-
ple. First row indicates that there is a potential boundary in this local
sequence while the second row shows no boundary in this sequence.

We can also observe slightly different patterns between the same group,
which may imply that each group is learning in a different aspect

sequence, namely local frames bag:

Bl = {̃vl−k, ṽl−(k−1), · · · , ṽl , · · · , ṽl+(k−1), ṽl+k}, (8)

which can be implemented through efficient memory view
method provided by modern deep learning framework and
processed in parallel.

After obtaining local frames bag Bl for candidate frame
ṽl , we use a 2-layer long short-termmemory (LSTM) to learn
temporal relationships. Formally, for each frame ṽt in local
frames bag Bl , we compute the hidden state in each layer as
follows:

i t = σ(Wii ṽt + bii + Whiht−1 + bhi )
f t = σ(Wi f ṽt + bi f + Whf ht−1 + bh f )
gt = tanh(Wig ṽt + big + Whght−1 + bhg)
ot = σ(Wioṽt + bio + Whoht−1 + bho)
ct = f t � ct−1 + i t � gt

ht = ot � tanh(ct ),

(9)

where ht is the hidden state at time t, ct is the cell state at
time t, ṽt is the input frame at time t, ht−1 is the hidden
state of the layer at time t − 1 or the initial hidden state at
time 0, and i t , f t , gt , ot are the input, forget, cell, and output
gates, respectively. σ is the sigmoid function, and � is the
Hadamard product. While there are more options to learn
temporal relations like famous Transformer (Vaswani et al.,

2017b), we use a simple 2-layer LSTM which works very
well as shown in Table 5.

After learning the temporal relationships, we obtain
temporal-enhanced local frames bag B̃l = {hl−k, hl−(k−1),

· · · , hl , · · · , hl+(k−1), hl+k}. TheLSTMmodule aims at dis-
covering relationships between frames and giving high level
representation of frames sequences. However, event bound-
aries emphasize the differences between adjacent frames
and neural networks tend to take shortcuts during learn-
ing (Geirhos et al., 2020). Thus classifying these frames
directly into boundaries may lead to inferior performance
due to non-explicit cues. Based on this intuition, we pro-
pose to guide classification with feature similarity of each
frame pair in the local frames bag B̃l . Instead of performing
similarity calculation with all C-dimensional channels, we
found it beneficial to split the channels into several groups
and calculate the similarity of each group independently. For-
mally, the group similarity map Sl is calculated as follows.
First, split B̃l in the channel dimension to get {̃bli }i=G

i=1 , where

b̃li ∈ R
C
G ×(2k+1)×(2k+1) and G is the number of groups. Sec-

ond, we calculate the cosine similarity of each b̃l as follows:

Sl = [sim(̃bl1, b̃
l
1), ..., sim(̃blG , b̃lG)], (10)

where Sl ∈ R
G×(2k+1)×(2k+1). As the group similarity map

Sl contains the similarity scores, it shows different patterns
(as shown in Fig. 5) in different sequences, which are crit-
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ical for boundary detection. Then we use a 4-layer fully
convolutional network (Long et al., 2015) to learn the simi-
larity patterns, which we found works very well and efficient
enough. Thenwe average pool the output of FCN to get a vec-
tor representation P l , and this vector is used for final event
boundary classification:

P l = average-pool(FCN(Sl)), (11)

where P l ∈ R
C . Then for the final classification, we use the

contrastive representations {P1,P2, · · · ,PT } to make the
event boundary predictions.

3.3 Loss Function

Given feature representations {P1,P2, · · · ,PT } of each
video frame and the corresponding ground-truth labels, the
event boundary detection task is intuitively formulated as
the binary classification task. However, the ambiguities of
annotations disrupt the learning process, which leads to poor
convergence. To solve this issue, we use the Gaussion kernel
to preprocess the ground-truth event boundaries to obtain the
soft labels instead of using the “hard labels” of boundaries.
Specifically, for each annotated boundary, the intermediate
label of the neighboring position i is computed as:

gli = exp
(

− (l − i)2

2α2

)
(12)

where gli indicates the intermediate label at time i corre-
sponding to the annotated boundaries at time l. We set α = 1
in all our experiments. The final soft labels are computed as
the summation of all intermediate labels. Finally, a simple
nonlinear Conv1D classifier is applied to predict the bound-
ary score Sl and the binary cross-entropy loss is used to guide
the training process.

4 Experiments

Weconduct our experiments on theKinetics-GEBD (Shou
et al., 2021) and TAPOS (Shao et al., 2020) datasets. The
Kinetics-GEBD dataset contains the largest number of tem-
poral boundaries, including 54, 691 videos and 1, 290, 000
event boundaries, spans a broad spectrumof videodomains in
thewild and is open-vocabulary rather than building on a pre-
defined taxonomy. The TAPOS dataset contains Olympics
sport videos with 21 actions. The training set contains 13,094
action instances and the validation set contains 1, 790 action
instances. Since it is not suitable for GEBD task, follow-
ing (Shou et al., 2021), we re-purpose TAPOS for GEBD
task by trimming each action instance with its action label
hidden and conducting experiments on each action instance.

Furthermore, to verify the generality and effectiveness of
our method, we also conducted experiments on the popular
action recognition datasets UCF101 (Soomro et al., 2012)
and HMDB51 (Kuehne et al., 2011). UCF101 consists of
101 action classes in 13, 320 videos, and HMDB51 contains
51 distinct action categories with a total of 6, 766 video clips.

To quantitatively evaluate the results of the generic event
boundary detection task, the F1 score is used as the mea-
surement metric. As described in Shou et al. (2021), Rel.Dis.
(Relative distance, the error between the detected and ground
truth timestamps, divided by the length of the correspond-
ing whole action instance) is used to determine whether a
detection is correct (i.e., ≤ threshold) or incorrect (i.e., >

threshold). A detection result is compared with each rater’s
annotation, and the highest F1 score is treated as the final
result.We report F1 scores of different thresholds range from
0.05 to 0.5 with a step of 0.05. In particular, all experimental
results are the average of multiple experimental results.

4.1 Implementation Detail

We implement our method with the popular deep learning
framework PyTorch (Paszke et al., 2019). ResNet50 and
ResNet18 (He et al., 2016) pretrained on ImageNet (Deng
et al., 2009) are used to extract the features for I-frames and
P-frames in all experiments if not particularly indicated. Our
method is implemented based on the MPEG-4 Part 2 specifi-
cations (Gall, 1991), where each GOP contains 1 I-frame and
11 P-frames. We sample 3 P-frames in each GOP to reduce
the redundancy, i.e., T = 3 in (1). We use the standard SGD
with momentum set to 0.9, weight decay set to 10−4, and
learning rate set to 10−2. We set the batch size to 4 for each
GPU and train the network on 8 NVIDIA Tesla V100 GPUs,
resulting in a total batch size of 32. The network is trained
for 30 epochs with a learning rate drop by a factor of 10 after
16 epochs and 24 epochs, respectively. We test the running
speed of all methods on 1 NVIDIA Tesla V100 GPU. All the
source code of our method will be made publicly available
after the paper is accepted.

We also evaluate our method with different backbones
including CSN (Tran et al., 2019), ViT-Base (Dosovitskiy
et al., 2021a), and Swin-Tiny (Liu et al., 2021) to compare
with the state-of-the-art methods in the LOng-form VidEo
Understanding Challenge (LOVEU).

4.2 Results and Analysis

We first train and evaluate the proposed method on the
Kinetics-GEBD (Shou et al., 2021) train-validation split. The
evaluation protocol presented in (Shou et al., 2021) uses Rel-
ative Distance (i.e.,Rel.Dis., the error between the predicted
and ground truth timestamps) to determine whether a predic-
tion is correct or not and then use the precision, recall, and F1
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Table 1 The evaluation results on the Kinetics-GEBD validation set with different Rel.Dis. thresholds

Rel.Dis. Threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

BMN Lin et al. (2019b) 0.186 0.204 0.213 0.220 0.226 0.230 0.233 0.237 0.239 0.241 0.223

BMN-StartEnd Shou et al. (2021) 0.491 0.589 0.627 0.648 0.660 0.668 0.674 0.678 0.681 0.683 0.640

TCN-TAPOS Shou et al. (2021) 0.464 0.560 0.602 0.628 0.645 0.659 0.669 0.676 0.682 0.687 0.627

TCN Lea et al. (2016) 0.588 0.657 0.679 0.691 0.698 0.703 0.706 0.708 0.710 0.712 0.685

PC Shou et al. (2021) 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 0.817

PC + Optical Flow 0.646 0.776 0.818 0.842 0.856 0.864 0.868 0.874 0.877 0.879 0.830

E2E Li et al. (2022) 0.743 0.830 0.857 0.872 0.880 0.886 0.890 0.893 0.896 0.898 0.865

DDM-Net Tang et al. (2022) 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 0.873

Ours 0.768 0.848 0.872 0.885 0.892 0.896 0.899 0.901 0.903 0.906 0.877

Bold numbers indicate the best performance under the corresponding metrics

scores as the evaluation metrics. We present all results with
Rel.Dis. threshold set from 0.05 to 0.5 with 0.05 interval as
shown in Table 1. Our method improves the F1 score over all
thresholds by a largemargin. Compared to the previous base-
line method PC (Shou et al., 2021), our method achieves an
absolute improvement of 14. 3% while running 10× faster.

Compared to the previous end-to-end method E2E (Li et
al., 2022), our method achieves an absolute improvement of
2. 5% while maintaining almost the same running speed.
Improvements come mainly from the advanced spatial-
channel compressed encoder and the local frames bag.
Compared to the baseline method PC (Shou et al., 2021)
with optical flow input stream, our advanced spatial-channel
compressed encoder can be a better alternative to learn-
ing temporal information from cost-free motion vectors and
residuals in compressed videos. Our local frames bag can
also explicitly provide strong temporal signals for GEBD,
giving 2. 1% absolute improvements compared to E2E (Li
et al., 2022). Example qualitative results on Kinetics-GEBD
are shown in Fig. 6. It’s worth noting that our method has
linear computational complexity with respect to the video
length thus can scale well. We also evaluate our method on
the TAPOS (Shao et al., 2020) train validation split. The
results are shown in Table 2. Compared to DDM-Net (Tang
et al., 2022), we increase the F1 score @ 0.05 from 0.604
to 0.618. Note that DDM-Net is not fully end-to-end and
uses decoded RGB images as input, which is slow in both
decoding and inference stages.

We also conduct experiments on the UCF-101 and
HMDB-51 action recognition datasets to validate the effec-
tiveness of our method as in Li et al. (2022). We follow
the same settings as E2E (Li et al., 2022) except that we
use spatial-channel attention module (SCAM) to process
the motion vectors and residuals instead of spatial-channel
compressed encoder (SCCE). Our spatial-channel attention
module gives more shortcuts to learning refined P-frame
features from I-frame with motion vectors and residuals as
guidance. Note that our local frames bag is also designed

to capture temporal dependency, which is more suitable for
event boundary detection. Thus, it is not applied in the action
recognition task. We have two configurations for the action
recognition task experiments, one with the same backbone
as the event boundary, and the other replaced ResNet-18
with I3D to extract features from motion vectors and resid-
uals, as shown in Table 3. Our method achieves competitive
results compared to state-of-the-art methods in compressed
domain, i.e., EMV-CNN (Zhang et al., 2016), DTMV-CNN
(Zhang et al., 2018), CoViAR (Wu et al., 2018) and DMC-
Net (Shou et al., 2019). Compared to E2E (Li et al., 2022),
we obtain about 0.5% improvements on both UCF-101 and
HMDB-51 datasets with different backbones. The design
principle of spatial-channel attentionmodule (SCAM) is sim-
ilar to spatial-channel compressed encoder (SCCE) (Li et al.,
2022) in that making model generate more discriminative P-
frame representations with the guidance of the compressed
information (motion vectors and residuals).However,motion
vectors and residuals in compressed domain can be very
noisy and it is tough to learn a beneficial representation for
P-frames, as presented in Fig. 7. Our SCAM uses a gating
mechanism to filter out noisy information in both spatial
and channel dimensions and uses a bidirectional informa-
tion flow to refine the origin P-frame feature. In this way, the
noisy information from the features of I-frame, motion vec-
tors, and residuals could be effectively and selectively fused
together to generate high-quality P-frame features with lit-
tle overhead. Compared to DMC-Net (Shou et al., 2019), our
method can directly learn discriminative features for P-frame
with the spatial-channel attentionmodule,which avoids extra
optical flow as supervision during training phase.

4.3 Failure Case Analysis

Based on our analysis of the Kinetics-GEBD validation split,
we have identified two specific categories where our method
tends to make mistakes. The first category includes videos
with minimal visual changes, as shown in Fig. 8 (above):
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Fig. 6 Example qualitative results on Kinetics-GEBD validation split. Compared with E2E (Li et al., 2022), our method can generate more accurate
boundaries which are consistent with ground truth

Table 2 The evaluation results on the TAPOS validation set with different Rel.Dis. thresholds

Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 avg

ISBA Ding and Xu (2018) 0.106 0.170 0.227 0.265 0.298 0.326 0.348 0.369 0.382 0.396 0.302

TCN Lea et al. (2016) 0.237 0.312 0.331 0.339 0.342 0.344 0.347 0.348 0.348 0.348 0.330

CTM Huang et al. (2016) 0.244 0.312 0.336 0.351 0.361 0.369 0.374 0.381 0.383 0.385 0.350

TransParser Shao et al. (2020) 0.289 0.381 0.435 0.475 0.500 0.514 0.527 0.534 0.540 0.545 0.474

PC Shou et al. (2021) 0.522 0.595 0.628 0.646 0.659 0.665 0.671 0.676 0.679 0.683 0.642

DDM-Net Tang et al. (2022) 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 0.728

Ours 0.618 0.694 0.728 0.749 0.761 0.767 0.771 0.774 0.777 0.780 0.742

Bold numbers indicate the best performance under the corresponding metrics

mold ceramics with clay, play the violin, and rotate a sus-
pended object in one direction. These videos pose a challenge
for our compression-based method as it struggles to detect
event boundaries due to the loss of detailed information in the
compressed domain. The second category comprises sports-
related activity videos, exemplified by high jump, long jump,
and pole vault in Fig. 8 (below). These movements typi-
cally involve three events: approach run, takeoff, and landing.

However, our model tends to segment these actions into finer
stages, such as dividing the action change in the event of
takeoff into multiple events. After thinking and research,
we believe that the first type of problems can make up for
the missing information by introducing new features such as
optical flow. The second type of problem can be solved by
introducing external common sense knowledge. For exam-
ple, before performing event detection on high jump-related
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Table 3 Accuracy on the
HMDB-51 and UCF-101
datasets

HMDB-51 UCF-101

Decoded video based methods (RGB only)

ResNet-50 He et al. (2016) 48.9 82.3

ResNet-152 He et al. (2016) 46.7 83.4

ActionFlowNet (2-frames) Ng et al. (2018) 42.6 71.0

ActionFlowNet Ng et al. (2018) 56.4 83.9

PWC-Net + CoViAR Sun et al. (2018) 62.2 90.6

TVNet Fan et al. (2018) 71.0 94.5

C3D Tran et al. (2015) 51.6 82.3

Res3D Tran et al. (2017) 54.9 85.8

ARTNet Wang et al. (2018a) 70.9 94.3

MF-Net Chen et al. (2018) 74.6 96.0

S3D Xie et al. (2017) 75.9 96.8

I3D RGB Carreira and Zisserman (2017) 74.8 95.6

Compressed video based methods

EMV-CNN Zhang et al. (2016) 51.2 (split1) 86.4

DTMV-CNN Zhang et al. (2018) 55.3 87.5

CoViAR Wu et al. (2018) 59.1 90.4

DMC-Net(ResNet-18) Shou et al. (2019) 62.8 90.9

DMC-Net(I3D) Shou et al. (2019) 71.8 92.3

E2E (ResNet-18) Li et al. (2022) 63.3 91.0

E2E (I3D) Li et al. (2022) 72.1 92.5

Ours (ResNet-18) 63.8 91.4

Ours (I3D) 72.7 93.1

Bold numbers indicate the best performance under the corresponding metrics

Fig. 7 Visualization of the compressed information. The decoded RGB frames, motion vectors, and residuals are presented in different columns
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Fig. 8 Examples of failure cases taken from the validation split of the Kinetics-GEBD dataset

videos, let the model learn the knowledge that “high jump is
generally divided into three steps: approach run, takeoff and
landing".

4.4 Ablation Study

In this section, we conduct several ablation studies to
demonstrate the effectiveness of different components in
the proposed method. All experiments are conducted on
the Kinetics-GEBD train split with ResNet50 backbone and
tested on a local minval split to reduce the computation cost.
The localminval split is constructed from theKinetics-GEBD
validation split by randomly sampling 2, 000 videos. Default
settings are marked in gray .

1) Influence of Number of Annotators: To remedy the
ambiguities of the event boundaries based on human per-
ception, five different annotators are used for each video to
label the boundaries based on predefined principles. To ana-
lyze the influence of number of annotators used in training

phrase, we conduct 5 experiments by selecting top-1 to top-5
ground truth labels with respect to F1 consistency for train-
ing. The results are presented in Fig. 9.We can see that the F1
scores increase when using top-2 ground truth labels com-
pared to only using top-1 labels. This is because top-2 ground
truth labels introduce more training samples and the annota-
tion qualities are often consistent with each other. However,
when using annotations from more than three annotators,
the F1 score is decreased. This can be interpreted as differ-
ent annotators have labeled event boundaries very differently
based on their own subjectivity,whichmakesmodel confused
and hard to converge. We utilize top-2 ground truth labels as
the default setting in our experiments.

2) Influence of the Backbone for Compressed Informa-
tion: A intuitive benefit to use compressed information (i.e.,
motion vectors and residuals) is that we can learn dis-
criminative features with a very lightweight backbone (e.g.,
ResNet-18), which saving model forwarding time naturally.
However, can we further improve the F1 score if we use a
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Fig. 9 Influence of number of annotators. F1 scores get increased when
using top-2 ground truth labels compared to only using top-1 labels.
When using annotations from more than 3 annotators, the F1 score is
decreased

Table 4 Influence of the backbone for compressed information

Backbone Rec Prec F1 Speed(ms)

ResNet-18 0.799 0.740 0.768 4.5

ResNet-34 0.797 0.738 0.766 7.2

ResNet-50 0.783 0.725 0.753 12.1

ResNet-101 0.781 0.722 0.750 18.3

more complex backbone for compressed information without
considering time cost? To explore this, we replace residuals
andmotion vectors’ feature extractors fR and fM in Sect. 3.1
with different backbones. The results are presented inTable 4.
Interestingly,we do not observe obvious improvementswhen
using much more power feature extractors and the perfor-
mances even get slightly decreased when using ResNet-50
and ResNet-101. We attribute this to that motion vectors and
residuals are noisy in nature and contains less useful informa-
tion compared with fully decoded RGB frame, thus a more
powerful backbone may overfit simple data distribution and
cannot generalize well. We use ResNet-18 as default com-
pressed information backbone for better speed and accuracy
trade-off.

3) Influence of the Temporal Feature Extractor: After
constructing local frames bag for each candidate frame as
presented in Sect. 3.2, we are able to extract temporal con-
text information using different modules. We analyze the
effectiveness of various of temporal modules, the results are
shown in Table 5. Average pooling and max pooling indi-
cate that we accumulate local frames bag Bl into vector
representation with avg-pool operator and max-pool opera-
tor, respectively. Thus the following group similarity module
and FCN module are not adapted. Since avg-pool operator

Table 5 Influence of the temporal feature extractor

Method Rec Prec F1

Average pooling 0.728 0.672 0.699

Max pooling 0.720 0.669 0.694

∅ 0.754 0.731 0.742

LSTM 0.799 0.740 0.768

GRU 0.790 0.732 0.760

Transformer 0.778 0.725 0.751

Table 6 Influence of the local frames bag size k

Bag size Rec Prec F1

k = 0 0.723 0.650 0.685

k = 2 0.734 0.748 0.741

k = 4 0.752 0.749 0.750

k = 6 0.775 0.751 0.763

k = 8 0.799 0.740 0.768

k = 10 0.743 0.752 0.747

k = 12 0.732 0.758 0.745

and max-pool operator only aggregate information linearly,
which only can capture little temporal context, we observe
obvious performance drop. ∅ indicates that the features of
local frames bag Bl are directly fed into following group
similarity module and FCN module, which cannot explicitly
learn temporal context information, either. As for LSTM and
GRU, we observe similar performance. When using more
powerful module Transformer (Vaswani et al., 2017b), we
find that the F1 score is decreased. We infer that the Trans-
formermay learn deleterious cues for generic event boundary
detection. We use LSTM module if not specified.

4) Influence of the Local Frames Bag Size:Besides the dis-
criminative features of P-frames, the temporal dependencies
are also important to predict the accurate event boundaries.
To validate the effectiveness of the temporal contrastivemod-
ule, we conduct several experiments, shown in Table 6. As
shown in Table 6, without the temporal contrastive module
(i.e., k = 0), the overall accuracy (F1 score) decreased dra-
matically. After adapting the proposed temporal module, the
F1 score improves sharply, i.e., 0.741 vs. 0.685 at k = 2.
To further analyze the effective of different window size in
model accuracy, we also perform several experiments with
different k values. Table 6 shows that the recall starts to drop
when k > 8. We believe that it is because larger window size
mixes temporal information cross boundaries, resulting in the
combination of multiple different predictions and decreasing
the recall value. Considering the performance, we set k = 8
in our experiments as the default setting.
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Table 7 Effectiveness of different designs

Component

With SCAM? ✔ ✔ ✔

With local frames bag? ✔ ✔

With Gaussian smoothing? ✔

F1 score 0.653 0.685 0.760 0.768

5) Effectiveness of Various Model Design: As discussed
before, the Spatial Channel Attention Module (SCAM) gen-
erates discriminative features of P-frames with the guidance
of motion vectors and residuals, which is critical for learn-
ing a good representation from compressed information. As
shown in Table 7, the significant improvement in F1 score is
obtained by using local frames bag, i.e., 0.760 vs. 0.685. The
constructed local frames bag inSect. 3.2 provides rich context
information for event boundary detection. Compared to E2E
(Li et al., 2022) that only uses linear weighted summation
representation, our local frame bag ismore flexible and adap-
tive for learning discriminative features leveraging group
similarity and FCN. As shown in Table 7, adapting SCAM
gives 0.32 improvement. Besides, using the soft labels gen-
erated by Gaussian kernel provides further 0.8% absolute
improvements. Using the ambiguous “hard labels” disrupt
the learning process, which leads to poor convergence. Our
soft label strategy effectively solve this issue and speeds up
the training process.

6) Rationality of SCAM module design: The spatial-
channel attention module (SCAM) is designed to refine the
feature representations of the P-frames based on compressed
information with bidirectional information flow. From the
Fig. 4, the SCAM is composed of four modules: Guid-
ance Information Module (GIM), Channel Updating Mod-
ule (CUM), Spatial Updating Module (SUM), and Weight
Updating Module (WUM). GIM processes input informa-
tion, CUM and SUM introduce channel and spatial features,
respectively, while WUM handles feature weighting. To ver-
ify the importance of these modules in SCAM, we conduct
ablation experiments from two aspects of different inputs and
different submodules, as shown in Table 8. From the Table 8
(a), we can find that inputs I-frame feature xI , motion vec-
tor feature xtM and resized motion vectors Mt together work
best. The results in Table 8 (b) also prove the rationality and
effectiveness of the design of each module in SCAM.

7) Influence of the fusing differentmodalities:Compressed
video contains three kinds of I-frame feature xI , motion vec-
tors Mt and residuals Rt . In order to explore the effect of
fusing different compressed domain information on model
performance, we conducted three sets of comparative exper-
iments and each consisting of two experiments: one with
fusion and one without fusion. The experimental results in

Table 8 The ablation studies of SCAM on the Kinetics-GEBD minval
split

(a) Ablation of different inputs.

xI Mt xtM Rec Prec F1

� - - 0.795 0.722 0.757

- � - 0.787 0.728 0.756

- - � 0.795 0.717 0.754

� - � 0.781 0.73 0.755

- � � 0.764 0.739 0.752

� � - 0.781 0.729 0.754

� � � 0.799 0.740 0.768

(b) Ablation of different submodules.

CUM SUM WUM Rec Prec F1

� - - 0.809 0.664 0.729

- � - 0.796 0.721 0.757

- - � 0.743 0.354 0.480

� - � 0.808 0.678 0.737

- � � 0.789 0.729 0.758

� � - 0.787 0.731 0.758

� � � 0.799 0.740 0.768

Bold numbers indicate the best performance under the corresponding
metrics

Table 9 Ablation of fusing different modalities on the Kinetics-GEBD
minval split

xI Mt Rt Fuse Rec Prec F1

� � 0.709 0.525 0.603

� � � 0.682 0.651 0.667

� � 0.809 0.558 0.660

� � � 0.801 0.711 0.753

� � � 0.753 0.572 0.650

� � � � 0.799 0.740 0.768

Table 10 Ablation of sampling different P-frames in each GOP on the
Kinetics-GEBD minval split

T Rec Prec F1

1 0.749 0.759 0.754

2 0.800 0.711 0.753

3 0.799 0.740 0.768

4 0.801 0.722 0.760

5 0.797 0.728 0.761

Bold numbers indicate the best performance under the corresponding
metrics

the Table 9 show that modality fusion can further improve
the performance of the model. Specifically, fusing can bring
about a 0.64-0.12 improvement. This proves that fusing
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Table 11 Comparisons with
other state-of-the-art methods on
LOVEU Challenge. † indicates
that the results come from our
implementations since the test
server is unavailable now. The
speed (ms) is computed by
averaging per-frame decoding
and inference time

Method Rec Prec F1 Speed

†CLA Kang et al. (2021) 0.815 0.768 0.791 90.2

†CASTANET Hong et al. (2021) 0.838 0.732 0.781 93.9

E2E (CSN+R18) Li et al. (2022) 0.813 0.761 0.786 20.4

E2E (R50+R18) Li et al. (2022) 0.751 0.742 0.746 4.7

Ours (CSN+R18) 0.831 0.792 0.812 20.3

Ours (R50+R18) 0.799 0.740 0.768 4.7

Ours (ViT-B+R18) 0.798 0.727 0.761 5.9

Ours (Swin-T+R18) 0.783 0.729 0.755 5.1

information from different compressed domains is beneficial
for reconstructing the P-frame.

8) Influence of the sampling different P-frames in each
GOP: In the MPEG-4 encoding format, each GOP usually
contains 1 I-frame and 11 P-frames. If all P-frames are used
as input, it will increase the amount of computation and slow
down the inference speed. Therefore, we adopted the strategy
of sampling part of the P-frames. However, too few P-frames
will lose a lot of information and affect the performance of
the model. In order to determine the optimal number of P-
frames, we conducted experiments as shown in Table 10.
Specifically, we experimented with sampling 1 frame to 5
frames respectively, and the experimental results show that
sampling 3 frames of P-frames works best. In addition, the
result of sampling 5 frames is slightly reduced, 0.761 VS
0.768, which proves that too many P-frames will only bring
redundant information and cannot further improve model
performance.

4.5 Comparisons with State-of-the-Arts on LOVEU
Challenge

We also compare the proposed method with the state-of-the-
art methods at CVPR’21 LOng-form VidEo Understanding
(LOVEU) Challenge2 as shown in Table 11. The winners’
solutions are complicated and running slowly, e.g., CLA
(Kang et al., 2021) relies on pre-extracted features and
uses global similarity matrix which cannot scale well, CAS-
TANET (Hong et al., 2021) is not fully end-to-end and
introduces redundant computations between nearby frames.
E2E (Li et al., 2022) remedies this by using motion vectors
and residuals in the compressed domain and achieves com-
petitive results while running 20× faster than CLA (Kang et
al., 2021). In addition, our method obtains absolute improve-
ments of 2. 3% and 4. 2% compared to the preliminary
version E2E (Li et al., 2022) when using CSN (Tran et al.,
2019) and ResNet50 as backbones, respectively, while run-
ning almost at the same speed.

2 https://sites.google.com/view/loveucvpr21.

4.6 Limitation of the CompressedVideos

Working with compressed videos has several shortcomings
that need to be considered, including potential loss of infor-
mation during compressing videos into compressed streams.
Since compressed data is a condensed version of uncom-
pressed data, some data may be lost or altered, leading to
inaccurate results and compromising data quality. Addition-
ally, compression artifacts present a challenge when dealing
with compressed data, as certain elements of the original data
may be removed or distorted, particularly in visual tasks like
image recognition. Finally, processing compressed data is
generally more complex than uncompressed data because it
must first be decompressed before analysis or manipulation.
This added step can increase processing time and require spe-
cialized tools and techniques for accurate results. In addition,
the limitations of directly using compressed video com-
pared to decoding RGB video frames is that existing deep
learning-based models are specifically designed to handle
RGB videos. Therefore, directly applying these architecture
may lead to suboptimal performance. A future direction is
to develop a series of tailored network architectures directly
suitable for compressed vision tasks.

Despite these challenges, working with compressed data
remains crucial for research and development in various
applications.

5 Conclusion and Future work

In this work, we propose an end-to-end compressed video
representation learning method for GEBD. Specifically, we
convert the video input into successive frames and use the
Gaussion kernel to preprocess the annotations. Meanwhile,
we design a spatial-channel attention module (SCAM) to
make full use of the motion vectors and residuals to learn
discriminative feature representations for P-frameswith bidi-
rectional information flow. After that, we propose a temporal
contrastive module that uses local frames bag as represen-
tation to model the temporal dependency between frames
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and generate accurate event boundaries with group similar-
ity. Extensive experiments conducted on the Kinetics-GEBD
and TAPOS datasets demonstrate that the proposed method
performs favorably against the state-of-the-art methods.

While our method has shown promising results, there is
still room for improvement. Currently, the model leverages
only the high-level semantic information extracted by the
backbone network. However, for event boundary detection
tasks, the importance of low-level detail information cannot
be overlooked. Thus, an improved approach could involve
the backbone network initially extractingmultiscale features.
Subsequently, a multiscale feature fusion module could be
used to process these multiscale features. Regarding future
research on further improvements, there are three possible
directions: (1) The first direction for future research involves
expanding current SCAM modules to support additional
encoding formats beyond the current MPEG-4 standard.
While the current SCAM can only handle one encoding for-
mat, extending it to include a range of general encoding
formats would greatly enhance its utility and practicality. (2)
The second direction involves enhancing the temporal mod-
ule to allow independent and flexible selection of temporal
modules based on specific scenarios. Currently, the temporal
module is limited in its ability to select the most appropriate
temporal module for different scenarios. (3) The last pos-
sible direction is to incorporate more information, such as
audio and knowledge graphs. Audio information can pro-
vide a new basis for judgment and can assist the model in
determining event boundary points. The knowledge infor-
mation contained in the knowledge graph can help the model
understand events to better determine the beginning and end
of the boundary.
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