
Two Birds, One Stone: A Unified Framework for Joint Learning of
Image and Video Style Transfers

Bohai Gu1,3 Heng Fan2 Libo Zhang1,3†

1 Institute of Software Chinese Academy of Sciences, Beijing, China
2 Department of Computer Science and Engineering, University of North Texas, Denton TX, USA

3 University of Chinese Academy of Sciences, Beijing, China

Abstract

Current arbitrary style transfer models are limited to ei-
ther image or video domains. In order to achieve satisfying
image and video style transfers, two different models are in-
evitably required with separate training processes on image
and video domains, respectively. In this paper, we show that
this can be precluded by introducing UniST, a Unified Style
Transfer framework for both images and videos. At the core
of UniST is a domain interaction transformer (DIT ), which
first explores context information within the specific domain
and then interacts contextualized domain information for
joint learning. In particular, DIT enables exploration of
temporal information from videos for the image style trans-
fer task and meanwhile allows rich appearance texture from
images for video style transfer, thus leading to mutual ben-
efits. Considering heavy computation of traditional multi-
head self-attention, we present a simple yet effective axial
multi-head self-attention (AMSA) for DIT , which improves
computational efficiency while maintains style transfer per-
formance. To verify the effectiveness of UniST, we conduct
extensive experiments on both image and video style trans-
fer tasks and show that UniST performs favorably against
state-of-the-art approaches on both tasks. Code is available
at https://github.com/NevSNev/UniST.

1. Introduction

Artistic image style transfer [13] aims at migrating a de-
sirable style pattern from an inference image to the origin
image while preserving the original content structures. Al-
though CNNs based methods have been well studied in this
field [16, 21, 22, 29], they fail to capture the long-range in-
teraction between the style and content domains, which may
result in suboptimal results.

†Corresponding author: Libo Zhang (libo@iscas.ac.cn).

Figure 1: Comparison between single domain (image or
video) style transfer and our joint style transfer.

Recently, owing to the ability to model long-range de-
pendencies, Transformers [31] have shown excellent per-
formance in a wide range of tasks including style transfer.
For example, Stytr2 [9] introduces a pure transformer net-
work to deal with image style transfer. However, pixel-level
self-attention brings additional computational complexity,
resulting in lower efficiency.

Unlike image style transfer, video style transfer brings
in new challenges of preserving temporal consistency be-
tween stylized video frames. To achieve style transfer on
the video domain, a feasible solution is to adapt existing
image-based style transfer methods (e.g. [21, 25]) by re-
training them with modification in architecture and/or loss
functions. Despite simplicity, this domain adaption requires
another repetitive and tedious training process, resulting in
resource waste to some extent. Some other methods (e.g.
[7,38]) directly adopt the same model from video to image,
but the results are somewhat visually flawed.

To solve the above issues, we present a Unified Style
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Figure 2: (a) Overview of the UniST, where the E is the VGG-19 network (pretrained and fixed) and D is the CNN decoder
with a symmetric structure of VGG-19. Lc, Ls, Lid and Lt are content loss, style loss, identity loss and temporal loss; (b)
The structure of improved transformer encoder block; (c) The structure of improved transformer decoder block.

Transfer framework, termed UniST, for both images and
videos. The proposed network leverages the local and long-
range dependencies jointly. More specifically, UniST first
applies CNNs to generate tokens, and then models long-
range dependencies to excavate domain-specific informa-
tion with domain interaction transformer (DIT ). After-
wards, DIT sequentially interacts contextualized domain
information for joint learning. Considering that the vanilla
self-attention suffers from a heavy computational burden,
we are inspired by axial attention [32] and develop the Axial
Multi-head Self-Attention (AMSA) mechanism to calculate
attention efficiently for either images or video input. To our
best knowledge, our approach is the first unified solution to
handle both image and video style transfers simultaneously.

To verify the effectiveness of our approaches, we carry
out extensive experiments on ImageNet [6] and MPI [2] for
image and video field respectively. The results demonstrate
that our unified solution can achieve better performance
than current state-of-the-art image-based and video-based
algorithms, evidencing its superiority and efficiency.

In summary, we make the following contributions in this
work: (1) We propose a new joint learning framework for
arbitrary image and video style transfers, in which two tasks
can benefit from each other to improve the performance. To
our best knowledge, this is the first work towards a unified
solution with joint interaction. (2) We develop the Axial
Multi-head Self-Attention mechanism to address computa-
tional complexity and adapt to tokens from image and video
input. (3) Extensive experiments on both image and video
style transfer tasks demonstrate the effectiveness of our ap-
proach compared with state-of-the-art methods.

2. Related Work
Image Style Transfer CNNs based style transfer models

are widely applied in the image field. Gatys et al. [13] ap-
ply the CNN model to iteratively generate stylized outputs.
Johnson et al. [18] adopt an end-to-end model to accom-

plish real-time style transfer for the specific style. More
generally, fast arbitrary style transfer is attracting enormous
attention. Therefore, Huang et al. [16] achieve arbitrary
style transfer by adaptively applying mean and standard de-
viation of style to that of content (AdaIN), which is widely
adopted in image generation tasks [19,23] for better feature
fusion. Similarly, Li et al. [22] accomplish style transfer
with two transformation steps including whitening and col-
oring. Then, Sheng et al. [29] design a multi-scale model
combined with AdaIN and style-swap.

Recently, [4, 7, 8, 25–27, 37] introduce the self-attention
mechanism to the encoder-transfer-decoder framework for
better style transfer. Moreover, Deng et al. [9] take advan-
tage of the Transformer’s long-range dependencies while
refusing to adopt the CNN’s local dependencies. Mean-
while, the pure transformer is hugely computational and the
position encoding needs to be presented specially. All of
the above lead to slow inference speed. In contrast, UniST
leverages both the Transformer’s long-range dependencies
and CNN’s locality dependencies to build a unified frame-
work for joint learning of image and video style transfers.
After one pass of training, our framework can generate vivid
image and video stylization results in real-time applications.

Video Style Transfer In addition to image style transfer,
video style transfer presents new challenges, including both
vivid stylization results and well-maintained temporal con-
sistency. To this end, many previous works [3, 12, 15, 39]
directly add optical flows consistency constraint to image
style transfer solutions to enhance the inter-frame correla-
tion. However, the optical flow requires extra complex com-
putation, making it impractical to process high-resolution
or long videos. So there emerge some works that addresses
the stability issue with other approaches instead of optical
flow warping. Li et al. [21] present a linear transforma-
tion module which based on content and style features. And
Wu et al. [36] propose a SANet based framework that ad-
dresses the temporal consistency with a SSIM consistency
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constraint. Moreover, Deng et al. [7] learn the per-channel
correlation via a transformed self-attention. On this routine,
Liu et al. [25] improve the temporal consistency via a mod-
ified self-attention and a cross-image similarity loss. Simi-
larly, Wu et al. [38] devise a generic contrastive coherence
preserving loss applied to local patches. Despite meeting
multi-task domains, the results are somewhat flawed.

In this work, without using any inter-frame information
like optical flows, UniST takes advantage of the unified
image-video joint learning style transfer framework to facil-
itate video stylization effects. And the experiments demon-
strate that it also achieves great temporal consistency.

3. Methodology
Overall Framework. Given a style image Is ∈ RH×W×3

and the content sequence Seqc ∈ RT×H×W×3, which
is the concatenation of image and video. Our frame-
work eventually synthesizes the stylized sequence Seqcs ∈
RT×H×W×3. As in Figure 2, our framework leverages lo-
cal and long-range dependencies jointly. Notably, the CNN
encoder is not only used for local spatial information ex-
traction, but also for tokenization. Then we use DIT to ac-
complish two types of style transfer task jointly, which first
explores context information within the content and style
domains and then interacts contextualized domain informa-
tion for joint learning. Below, we will detail our framework.

3.1. Tokenization

As discussed above, Deng et al. [9] split the input im-
ages into patches directly for transformer input with the
necessary position encoding, resulting in low efficiency. In
this work, we take advantage of CNNs to strengthen local-
ity and improve the efficiency. Similar to [16], we use the
pre-trained VGG-19 network [30] to extract feature maps of
input images. Then, the 512-dim vector at each pixel in the
relu4 1 layer is treated as a token for further transformer
encoders. In this way, we combine CNNs and transformer
to exploit both local and long-range dependencies. Mean-
while, there is no need to maintain the position encoding.

3.2. Domain Interaction Transformer

As in Figure 2, DIT consists of three modules in turn,
namely intra-domain extraction, video-image and style-
content interaction. Specifically, the domain-specific ex-
traction module is stacked with Nc, Ns transformer encoder
blocks for the Seqc and Is respectively. While content-style
interaction is stacked with Nt transformer decoder blocks.

In-Domain Extraction Based on the tokenization, the
local context has already been extracted. So DIT fur-
ther exploits domain-specific information with a number of
consecutively stacked transformer encoder blocks in Figure
2(b). Taking either Seqc or Is as input, the in-domain ex-
traction module simultaneously capture the long-range in-
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Figure 3: The structure of the AMSA. Norm here denotes
the layer normalization.

formation within the content and style domains. Normally,
the transformer encoder block consists of a multi-head self-
attention (MSA) layer and a feed-forward network (FFN).
For the better efficiency, we develop the Axial Multi-head
Self-Attention (AMSA) mechanism to replace MSA, com-
bined with a 1× 1 convolutional layer for locality strength-
ening. And this mechanism is applied to all of the trans-
former blocks mentioned below. In addition, residual con-
nections and layer normalization are deployed after each
layer. The transformer encoder block is defined as:

S ′ = AMSA(Conv(Q),Conv(K),Conv(V )) +Q, (1)

S = FFN (S ′) + S ′, (2)

where S is the output sequence.
Video-Image Interaction. After domain-specific exca-

vation, DIT presents a symmetric module based on two
transformer encoder blocks to interact contextual informa-
tion between two types of content modalities. Notably, we
split the input content sequence into two parts: one half is
video Seqv and the other half is image SeqI . As illustrated
in Figure 2, one of the blocks takes the Seqv as Q, the SeqI
as K, V , and the other one does the opposite. In this way,
joint learning is performed for style transfer. And two types
of content sequence are concatenated after interaction.

Content-Style Interaction. To finally capture the rele-
vance between the content and the style domain, this mod-
ule consists of a set of stacked transformer decoder blocks.
As in Figure 2(c), each transformer decoder block takes the
content as Q while the style as the K and V , alternately
containing two ASMA layers and one FFN layer. Similarly,
layer normalization and residual connections are applied af-
ter each layer. The transformer decoder block is defined as:

S
′′
= AMSA(Conv(Q),Conv(K),Conv(V )) +Q, (3)

S ′ = AMSA(Conv(S
′′
),Conv(K),Conv(V )) + S

′′
, (4)

S = FFN (S ′) + S ′. (5)

3.3. Axial Multi-head Self-Attention.

Inspired by [32], DIT computes self-attention along a
separate axis, rather than in feature maps like other trans-
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former models [9,11,14,35,40]. The improved AMSA layer
is specialized for style transfer without position encoding.

An AMSA layer consists of two MSA [31] layers in to-
tal, operating sequentially along the height and width axes.
As in Figure 3, we first reshape Q, K, V to separate the
width dimension information, then use the first MSA layer
to calculate self-attention along the height axis, and the out-
put f is normalized using the layer normalization (LN )
layer. Following almost the same process as before, except
that what we separate in the second MSA layer is the height
dimension. Notably, we use the previous output f as Q and
V , while keeping K unchanged. Experiments in Table 4
verify this dedicated AMSA layer reduces the memory con-
sumption and meanwhile improves inference efficiency.

The reasons behind our AMSA are two-fold. First, the
information contained in the previous K, V is crucial for the
second MSA layer to learn contextual dependencies either
within or across domains. Besides, the V of the second
MSA contains the last axial information, which is critical to
ensure the stability of stylization. Experiments in Figure 10
show that our design effectively prevents artifacts caused by
side effects of axial attention in style transfer.

3.4. Unimodal input for inference.

In inference, UniST takes bimodal content input and
outputs both style transfer results simultaneously, achiev-
ing two birds with one stone. Since the model has learned
complementary content knowledge, UniST could also take
unimodal content input into account by replacing the cross-
attention with self-attention in the video-image interaction
without compromising the quality of results. As in Table 6,
unimodality obtains the consistent scores with bimodality.

3.5. Loss functions.

The overall loss function is the weighted summation of
the content loss Lc, style loss Ls, identity loss Lid and tem-
poral loss Lt:

L = λcLc + λsLs + Lid + λtLt, (6)

where λc, λs and λt are balancing factors. UniST uses
the pre-trained VGG-19 to extract feature maps as ϕ =
{relu1 1, relu2 1, relu3 1, relu4 1}. In our experiment,
we use the above four layers with equal weights to calcu-
late the loss below.

We use Euclidean distance [10] to compute content loss
Lc:

Lc =

4∑
i=1

∥ϕi(Seqcs)− ϕi(Seqc)∥2 . (7)

Following [16], the style loss Ls is defined as:

Ls =

4∑
i=1

(
∥µ(ϕi(Seqcs))− µ(ϕi(Is))∥2

+ ∥σ(ϕi(Seqcs))− σ(ϕi(Is))∥2
)
,

(8)

Figure 4: Illustration of the identity loss.

where µ(·) and σ(·) denote the mean and variance of fea-
tures separately. We further use the identity loss Lid [27] to
promote more accurate content and style representation:
Lid = λid1(∥Seqcc − Seqc∥2 + ∥Iss − Is∥2)

+ λid2(

4∑
i=1

∥ϕi(Seqcc)− ϕi(Seqc)∥2 + ∥ϕi(Iss)− ϕi(Is)∥2),
(9)

where λid1 and λid2 both are balancing factors. Seqcc/Iss
denote the results synthesized from two identical content
sequences or style images. Figure 4 illustrates the identity
loss for better understanding.

Following the recent work AdaAttN [25], we preserve
the temporal consistency via a cross-image temporal loss.
This loss promotes the cosine distance Dcs between adja-
cent stylization frames to be closer to the cosine distance
Dc between adjacent origin frames.

Lt =
4∑

i=3

ϕi(
1

Nc1Nc2

∑
m,n

∣∣∣∣ Dm,n
c1,c2∑

m Dm,n
c1,c2

−
Dm,n

cs1,cs2∑
m Dm,n

cs1,cs2

∣∣∣∣),
(10)

where Dm,n
u,v = 1− Fm

u ·Fn
v

∥Fm
u ∥×∥Fn

v ∥ . N is the spatial dimension
of the current feature map. Dm,n,x

u,v measures cosine dis-
tance, and F k represents the feature vector of the k-th entry.
Note, we only adopt layer relu3 1 and relu4 1 to calculate
Lt. Meanwhile, in each training iteration, we compute the
temporal loss between the consecutive video frames. Noted
that temporal information is implicitly encoded in this way.

4. Experiment
4.1. Implementing Details

UniST is trained with MS-COCO [24] (image), MPI [2]
(video) as the content datasets and WikiArt [28] as the style
datasets. For Seqc, the ratio of the two types of content is
1 : 1, and the total number is 6. In the training phase, all
images are loaded with the resolution of 256 × 256. While
in the inference phase, UniST can be applied to any resolu-
tions. Therefore, we manage to extend the UniST to multi-
granularity style transfer (see supplementary material). In
experiments, we adopt the resolutions of 1024 × 1024 and
1024× 2048 for image and video respectively. For the loss
function, the balancing factors λc, λs, λt, λid1, λid2 are set
as 0.1, 1.5, 90, 0.1, 0.5, empirically. The number of trans-
former blocks Nc, Ns, Nt are empirically set as 2, 1, 3. Our
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Figure 5: Qualitative comparison in image style transfer. Please zoom in for better view. Additional vivid stylization results
are provided in our supplementary materials.

network is trained for 50K iterations on a NVIDIA Tesla
V100 GPU with a batch size of 3. We use the Ranger opti-
mizer [34] with initial learning rate of 0.00005.

4.2. Image Style Transfer

We compare our method with 13 state-of-the-art meth-
ods, including AdaIN [16], SANet [27], Linear [21], MC-
CNet [7], MAST [8], Artflow [1], AdaAttN [25], Style-
Former [37], IEST [4], Stytr2 [9], CCPL [38], epsAM [5],
MicroAST [33], MCCNetV2 [20].

Quantitative comparison. We randomly collect 17, 124
content images from ImageNet [6] and 17, 124 style images
from WikiArt [28] which are separated from the training set
to generate 17, 124 stylization results. Similar to Stytr2 [9],
we use the mean euclidean distance and the mean instance
statistics difference mentioned in section 3.5 as metrics for
content preservation and stylization degree. Furthermore,
we conduct the color distribution experiments by adopting
color loss in DSLR [17] and adopt the Gram matrices [13]
for texture difference. As in Table 1, compared with exist-
ing methods, UniST achieves the best performance in both
content and style differences and obtains promising results
on texture and color differences of style aspects.

Qualitative comparison. As in Figure 5, AdaIN [16]
transfers the style patterns but losses important content de-
tails (1st, 2nd rows). SANet [27] fails to align the dis-
tribution of the style patterns, leading to the distorted ob-
ject boundaries (1st, 3rd, 5th rows) and inconsistent content
background structures (2nd, 4th rows). The stylization of
Linear [21] is not satisfactory enough, resulting relatively
light migration effects such as pink in the 5th row. As with
the linear transformation, MCCNet [7] learns the correla-
tion of each channel through the transformed self-attention,
slightly improving the transfer effect, but there are serious

overflow problems around the object boundaries (1st, 3rd,
4th rows). MAST [8] distorts the content background struc-
ture with excessive style transfer (3rd, 4th rows). Based on
WCT [22] in our setting, Artflow [1] leads to conspicuous
vertical artifacts at the edges of the generated results(3rd,
5th rows). AdaAttN [25] does the decent foreground style
transfer, but requires further rendering of the background
(3rd, 5th rows). StyleFormer [37] provides vivid style pat-
terns, but the colors of the results are inconsistent with the
style reference images (1st, 3rd, 4th rows). On the contrary,
IEST [4] presents stylization results with consistent colors,
lacking more desirable style patterns (3rd, 4th, 5th rows).
Stytr2 [9] fails to preserve the background structure of the
content inference image (2nd, 5th rows). CCPL [38] trans-
fers the style patterns with a lot of vertical artifacts (1st,
3rd, 4th rows). In contrast, based on the inductive bias of
CNNs, our method captures the relevance between content
and style sequences jointly and efficiently. As a result, we
provide vivid stylized results with desirable style pattern de-
tails, while keeping the content structure well-maintained.

4.3. Video Style Transfer

For video style transfer, we compare our method with
four state-of-the-art methods including Linear [21], MCC-
Net [7], AdaAttN [25], and CCPL [38]. Note, optical flow
is not used for stabilization when conducting comparison.

Quantitative comparison. Following Liu et al. [25], we
adopt the official optical flow [2] to wrap the output stylized
frame and compute the per-pixel difference between warped
and stylized frames. Meanwhile, we use the LPIPS [41]
to measure the diversity of adjacent stylized frames, with
smaller values indicating better consistency.

In practise, the style input is fixed at 512× 512, and the
content input is fixed at 256× 256. Table 2 presents optical
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Methods Ours epsAM MicroAST MCCNetv2 CCPL StyleFormer IEST Stytr2 AdaAttN MCCNet Artflow MAST SANet Linear AdaIN
DC(↓) 12.36 20.30 13.18 16.15 14.66 16.82 15.38 13.67 14.54 15.51 12.55 17.83 17.96 15.04 18.42
DS(↓) 0.46 1.03 0.92 1.06 0.71 0.80 1.38 0.50 1.07 0.74 0.85 0.60 0.47 0.61 0.52
T D(↓) 69.69 155.54 177.20 143.68 163.00 115.84 241.69 89.93 173.87 107.91 169.39 94.58 74.39 87.72 66.95
CD(↓) 17894 16546 21128 20292 21971 18344 23953 21543 21739 20566 19618 20241 19811 20948 21120

Table 1: Quantitative comparison in image style transfer. The best two results are highlighted in bold and underline.

flow error and LPIPS metrics for 20 styles over 23 videos of
compared methods. UniST achieves the best scores in both
metrics and thus has the best temporal consistency.

Methods
Optical flow error(↓) LPIPS(↓)

DS(↓)
Style1 Style2 Style3 Mean Style1 Style2 Style3 Mean

Ours 3.64 6.16 5.78 3.86 1.73 2.05 2.04 1.79 13.70

AdaAttN (ICCV 2021) 4.26 7.09 6.71 3.91 2.26 2.49 2.46 2.05 14.56

MCCNet (AAAI 2021) 4.60 6.83 6.50 4.57 2.13 2.36 2.34 2.07 15.21

Linear (CVPR 2019) 4.23 6.81 7.10 4.25 2.08 2.27 2.26 2.02 14.70

CCPL (ECCV 2022) 5.14 7.65 7.57 4.90 2.10 2.33 2.30 2.06 14.69

Table 2: The optical flow error (×10−2) and LPIPS of SO-
TAs using 20 styles. Smaller values mean better tempo-
ral consistency. For clarity, only three styles are presented.
Please refer to supplementary material for more details.

Qualitative comparison. Figure 7 shows the results of
the video qualitative comparison. To better verify long-
term temporal consistency, we take the 5-th, 15-th and 25-th
frames of the example video as the reference content im-
ages, where the character in the video has large movements.
The results show that all four methods visually satisfy the
long-term temporal consistency. To be specific, Linear [21]
uses the shallower feature map in video style transfer task,
sacrificing the stylization effects for temporal consistency
in some way. MCCNet [7] produces distorted results with
severe artifacts along object contours, where the same draw-
back appears in image style transfer. AdaAttN [25] pro-
vides a well-transferred foreground leaving the background
requires further rendering. Using the same model as im-
age style transfer, CCPL [38] also shows a huge number
of vertical artifacts in video stylization results. In contrast,
benefiting from the joint learning framework, our video re-
sults are enhanced by the rich texture from images beyond
the reference video. Besides, the difference map in col-
umn 4 shows that our joint learning framework is stable
enough when dealing with the motion blur. Based on the
above analysis, our method can generate video results with
more pleasing stylistic patterns while maintaining tempo-
ral consistency well. Notably, when applied to image style
transfer, some of these compared methods [21, 25] need to
be retrained with extra changes and consumption, while the
rest [7, 38] use the same model directly with the flawed re-
sults. In contrast, our joint learning framework can perform
well on both image and video style transfer in one go. Ad-
ditional vivid stylization results are provided in our supple-
mentary materials.
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Figure 6: The user study for images (a) and video (b) style
transfer. Best viewed by zooming in.

4.4. User Study

Furthermore, we carry out the user study experiment for
comparison. Specifically, we use 27 content images and
21 style images to synthesize 567 images in total. Given
20 randomly combinations of content and style, the gener-
ated results obtained by 12 image-based style transfer meth-
ods. Then, we ask 100 participants to select their favorite
one from three aspects: content preservation, style transfer,
and overall preference. We collect 2, 000 votes and show
results in Figure 6(a). The results verifies the superiority
of our method over other models for image style transfer.
Similarly, we take 12 videos of 50 frames and 21 style im-
ages to synthesize 252 video stylized clips in total. Given
4 random combinations of video and style, the stylization
clips obtained by 5 video-based style transfer solutions.
Then, we ask another 50 subjects to select their favorite one
from three views: temporal consistency, stylization effect
(considering both content preservation and stylization de-
gree), and overall preference. We collect 200 votes and our
method is selected as the best as shown in Figure 6(b).

For participants, there are 83 males and 67 and females
(55/45 males/females for image, the other 28/22 males/fe-
males for video), aged from 23 to 42.

4.5. Efficiency Analysis

In Table 3, we report the inference time of our joint learn-
ing method and other approaches. Note that all the meth-
ods are run using a single TITAN XP GPU card. Although
our joint learning framework consists of many stacked self-
attention layers, our model can still achieves 35 FPS at
256px, which is comparable with attention-based methods
such as AdaAttN [25] and Stytr2 [9]. The main limitation
of our work is the inference speed is limited when applied
for high resolution input, which may hinder its usage.

Notably, our AMSA mechanism is crucial for the joint
learning framework to address the expensive memory con-
sumption and huge computation complexity. In particular,
the computation complexity can be reduced from O(H2 ×
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Figure 7: Qualitative comparison in video style transfer. Column 4 shows the difference map between the adjacent frames at
frame 20.

Methods Ours SANet Linear MCCNet Artflow Stytr2 CCPL

256× 256 0.028 0.016 0.011 0.067 0.144 0.109 0.019

512× 512 0.111 0.053 0.062 0.141 0.363 0.751 0.061

Methods Ours w/ MSA AdaATTN Avatar-Net AdaIN MAST StyleFormer IEST

256× 256 0.030 0.040 0.116 0.012 0.022 0.018 0.019

512× 512 0.182 0.127 0.339 0.037 0.092 0.062 0.059

Table 3: Inference time (sec./image) comparison.

W 2) to O(H2 + W 2) theoretically. As shown in Ta-
ble 4, AMSA is much lighter compared to MSA under the
same experiment setting, demonstrating the great potential
for high-resolution image and long video style transfer. Al-
though the framework consists of many self-attention lay-
ers, the UniST is still fully capable of practical applications.

Memory(MiB) FLOPS (G)
MSA 1.8x104 4.29

AMSA 1.1x104 0.27

Table 4: Efficiency of AMSA by comparison with MSA.

4.6. Ablation Study

Video-image interaction module. Since images and
videos have different domain features, we design a cross-
attention domain-interaction module for joint learning of
two domains for better content knowledge, which improves

the overall stylization results. We conduct an experiment by
removing the cross-attention interaction module. As in the
2nd, 3rd columns of Table 5, both content preservation and
style transfer are highly degraded without this module.

To further demonstrate the superiority of UniST, we
compare 3 training strategies without video-image interac-
tion module. As shown in the 4th, 5th, 6th columns of Ta-
ble 5, UniST achieves the best performance compared with
training separately and sequentially. Meanwhile, as shown
in Figure 8, video style transfer is improved by learning
complex appearances and textures from the image domain

Figure 8: Visualization of video style transfer with different
training strategies.
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with UniST framework. Similarly, Figure 9 shows UniST
enhances image stylization effects with more vivid results.

UniST Image+Video Video Only Image Only Sequential Training
DC (↓) 12.36 15.44 14.42 19.29 16.36
DS (↓) 0.46 0.69 0.89 0.64 0.69

Table 5: Effectiveness of joint learning framework. “video
only” and “image only” indicate unimodal input for train-
ing, and “Sequential learning” means that we first train the
network with one modality and then fine-tune it with an-
other. Specifically, except for the UniST, the others all use
the version without video-image interaction module.

Figure 9: Visualization of image style transfer with different
training strategies.

Image Video Image+Video
DC (↓) 12.36 n/a 12.36
DS (↓) 0.46 n/a 0.46

Mean optical flow error(↓) n/a 3.86 3.86
Mean LPIPS(↓) n/a 1.79 1.79

Table 6: Metrics comparison of different input.

Inconsistent datasets concerns. In our method, we
adopt two datasets from different modalities for learning.
To ensure fairness, we have retrained five image style trans-
fer models, while keeping the training dataset consistent
with us. We provide the quantitative comparison in Table
7. Meanwhile, we conduct extra experiments by training
the image-only UniST with different dataset scales in Table
8. The results show simply using more images for image-
only UniST brings no obvious improvements, while gains
come from different modalities and beneficial interactions,
and further illustrating the superiority of our model.

Methods UniST CCPL StyleFormer IEST Stytr2 AdaAttN
DC(↓) 12.36 14.32 (↓ 0.34) 13.12 (↓ 3.70) 15.72 (↑ 0.34) 12.87 (↓ 0.80) 14.76 (↑ 0.22)
DS(↓) 0.46 0.85 (↑ 0.14) 1.13 (↑ 0.33) 0.97 (↓ 0.41) 0.61 (↑ 0.11) 1.24 (↑ 0.17)

Table 7: Quantitative comparison under consistent training
dataset conditions.

Axial Multi-head Self-Attention. To verify the effec-
tiveness of AMSA layer, we conduct two different design
comparisons in Figure 10. First, the information contained

Training with different images Dc ↓ Ds ↓
UniST with videos and 60K images 12.36 0.46

UniST using videos and 60K images without interaction 15.44 0.69
Image-only UniST with 60K images 19.80 0.73
Image-only UniST with 70K images 19.80 0.76
Image-only UniST with 80K images 19.98 0.71

Table 8: Comparison of UniST with image-only UniST us-
ing more training images.

in the previous K, V is crucial for the second MSA layer
to learn contextual dependencies either within or across do-
mains. Therefore, we uniformly take the output of the first
MSA as the Q, K, V for the second MSA. The results in 4th
column show that it is difficult for the model to capture the
relevance between content and style domains in this way.
Second, the first axial information is necessary for the V of
the second MSA to maintain the stable stylization results.
To demonstrate this, we use the output of the first MSA as
the Q for the second MSA, while keeping the K and V
unchanged. As in the 5th column, the style patterns trans-
ferred are mixed with bar artifacts. From the results in the
3th column, the original design in Figure 3 is necessary for
our model to prevent side effects caused by axial attention.

Figure 10: Ablation study of the AMSA layer. “Standard”
is the normal version in Figure 3. (a) We uniformly take
the output of the first MSA as the Q, K, V of the second
MSA. (b) We use the output of the first MSA as the Q for
the second MSA, while keeping K and V same as the first.

5. Conclusion

In this work, we propose an unified style transfer frame-
work, dubbed UniST, for image and video. The key is our
novel domain interaction transformer that enables effective
mutual feature learning from different modalities for en-
hancements. Besides, an axial multi-head attention is pro-
posed to capture attentions either within or across the field
efficiently. Experiment shows the mixing content input ef-
fectively improves stylization results via UniST.
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