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Abstract

Existing video captioning approaches typically require
to first sample video frames from a decoded video and
then conduct a subsequent process (e.g., feature extraction
and/or captioning model learning). In this pipeline, manual
frame sampling may ignore key information in videos and
thus degrade performance. Additionally, redundant infor-
mation in the sampled frames may result in low efficiency in
the inference of video captioning. Addressing this, we study
video captioning from a different perspective in compressed
domain, which brings multi-fold advantages over the exist-
ing pipeline: 1) Compared to raw images from the decoded
video, the compressed video, consisting of I-frames, mo-
tion vectors and residuals, is highly distinguishable, which
allows us to leverage the entire video for learning with-
out manual sampling through a specialized model design;
2) The captioning model is more efficient in inference as
smaller and less redundant information is processed. We
propose a simple yet effective end-to-end transformer in the
compressed domain for video captioning that enables learn-
ing from the compressed video for captioning. We show that
even with a simple design, our method can achieve state-of-
the-art performance on different benchmarks while running
almost 2× faster than existing approaches. Code is avail-
able at https://github.com/acherstyx/CoCap.

1. Introduction

Video captioning is a representative example of applying
deep learning to the fields of computer vision and natural
language processing with a long list of applications, such
as blind navigation, video event commentary, and human-
computer interaction. To generate captions for a video, the
model needs to not only identify objects and actions in the
video, but also be able to express them accurately in natural
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Figure 1. Comparing our method with prior methods for video cap-
tioning. Prior works are all based on decoding video frames. The
difference between them is that some methods use offline extracted
multiple features as input and generate captions, while others di-
rectly take dense video frames as input. By avoiding heavy re-
dundant information and offline multiple feature extraction, our
method speedup the caption generation process while maintaining
high quality results.

language. Despite significant progress, accurate and fast
video captioning remains a challenge.

Video captioning requires both 2D appearance informa-
tion, which reflects the objects in the video, and 3D action
information, which reflects the actions. The interaction be-
tween these two types of information is crucial for accu-
rately captioning the actions of objects in the video. Most
of the existing methods [36, 38, 22] are shown in Fig. 1
(the upper branch), mainly including the three-steps: (1)
Decoding the video and densely sampling frames. (2) Ex-
tracting the 2D/3D features of the video frames offline. (3)
Training the model based on these 2D/3D features. In these
methods, densely sampled video frames result in signifi-
cant redundancy, which in turn increases the computation
and inference time of the model. This is because the model
needs to extract features from each video frame and use all
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Figure 2. Comparison of model inference speed and CIDEr score
on MSRVTT dataset. I, MV and Res refer to I-frame, motion vec-
tor and residual respectively. The test is run on 1 Card V100 ma-
chine with batch size set to 1.

of these features as input. Furthermore, extracting 2D ap-
pearance features, 3D action features, and region features
for each video frame requires additional time. To address
the speed issue and improve inference speed, some recent
works [18, 29] have adopted an end-to-end approach that
avoids extracting multiple visual features offline. As shown
in Fig. 1 (The middle branch), the flow of their method is as
follows: (1) Decoding the video and densely sample frames.
(2) Take video frames directly as input and then end-to-end
training model. These approaches involve a trainable vi-
sual feature extractor, rather than relying on multiple offline
2D/3D feature extractors. For example, SwinBERT [18]
uses VidSwin [19] as the trainable feature extractor, while
MV-GPT [29] uses ViViT [1]. While these two-steps meth-
ods address the time consumption associated with offline
feature extraction, they do not alleviate the computational
burden and time required to handle the redundancy of infor-
mation.

To address the above problems, we propose an end-to-
end video captioning method based on compressed video.
Our work significantly simplifies the video caption pipeline
by eliminating time-consuming video decoding and feature
extraction steps. As in Fig. 1 (the lower branch), unlike
previous methods, we take compressed video information
as input and directly output a natural language description
of the video. Compressed video is mainly composed of I-
frame, motion vector and residual, and there is no redun-
dant information between them, and they are all refined in-
formation. Therefore, the model needs less computation to
process compressed domain information, and model infer-
ence is faster. At the same time, the end-to-end network
structure in our proposed method can also avoid the time
consumption caused by extracting multiple features. Be-
sides, Our model is better at understanding the content of
videos by utilizing the refined information in compressed
domain, including the 2D feature from I-frame and the 3D
action feature extracted from motion vector and residual.

As shown in Fig. 2, compared with other two-steps and
three-steps methods, such as SwinBERT [18], HMN [36]
and SGN [27], our method is not only faster, but also has
competitive performance. Our model comprises two parts,
as depicted in Fig. 4. One part consists of three encoders
that extract features and an action encoder that fuses them,
while the other part comprises a multimodal decoder that
generates video captions. Specifically, we first extract the
context feature, motion vector feature and residual feature
of the compressed video through I-frame Encoder, Motion
Encoder, and Residual Encoder, respectively. The context
feature contains information about objects in the video, but
action information is missing. In order to extract the ac-
tion feature of the video, we fuse the motion vector feature,
residual feature, and context feature through the action en-
coder. Then use the context feature and action feature as
visual input of the multimodal decoder to generate video
captions.

The contributions of this paper are summarized below:

1. We propose a simple and effective transformer that can
take compressed video as input and directly generate a
video description.

2. Our experimental results demonstrate that our method is
nearly 2× further than the fastest existing state-of-the-art
method in inference time, while maintaining competitive
results on three challenging video captioning datasets,
e.g., MSVD, MSRVTT and VATEX.

2. Related Work

Compressed vision task. The main idea of introducing
compressed video into current computer vision tasks is to
utilizing the motion vector and residual on the compressed
domain to avoid fully decode all frames from the video and
save the storage space at the same time. Early work mainly
base on MPEG-4 video codec [33, 16, 12, 4]. CoViAR [33]
proposed a back-tracking technique to trace motion vectors
back to I-frame, which works on MPEG-4. MM-ViT [4]
proposed a multi-modal transformer to process the I-frame,
motion vector, residual and audio in the compressed video.
Since the MPEG-4 codec is outdated, other works, e.g.,
MVCGC [13] and ATTP [14] , is designed to work on
other coedcs like H.264 and H.265 to ensure generaliz-
ability. Comparing with MPEG-4, H.264 and H.265 al-
low a more flexible yet complicated compression, which
makes it more challenging to learn from compressed do-
main. MVCGC [13] proposed a self-supervised method
to learn video representations by utilizing the mutual in-
formation between RGB video frames and motion vectors.
ATTP [14] designed a lightweight deep neural network to
process the compressed video and achieve real time action
recognition on embedded AI devices. Similarly, our work
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is conducted on H.264 video codec, which is currently one
of the most popular video codecs.
Video captioning. Video captioning aims to convert the
content of videos into natural language descriptions, which
requires the model to understand the objects in the video
and the behavior of the objects. Some works focus on
the design of the model structure. These methods usu-
ally extract features offline, and then models use these fea-
tures to generate captions by designing different network
architectures. HMN [36] proposed a hierarchical modu-
lar network that serves as a strong video encoder, which
bridges videos and languages. ORG-TRL [38] proposes
an object relational graph based encoder, which captures
more detailed interaction features to enrich visual represen-
tation. SGN [27] designed a semantic grouping network
to group video frames with discriminating word phrases
of partially decoded caption. Some works explore addi-
tional information to help the model generate more accu-
rate video captions. TextKG [9] propose a two-stream net-
work capable of knowledge-assisted video description us-
ing knowledge graphs. Univl [20] learns powerful vision-
and-language representations by pre-training the models on
large-scale datasets, e.g., HowTo100M [21] and WebVid-
2M [2]. Some other works focus more on end-to-end video
captioning generation. SwinBERT [18] proposed an end-
to-end transformer-based model, which takes video frame
patches directly as inputs and then uses VidSwin to extract
visual features. MV-GPT [29] designed an encoder-decoder
model end-to-end to generate the video caption from video
frames and transcribed speech directly. We propose an end-
to-end video captioning model based on the compressed do-
main without decoding video frames and extracting features
offline, which not only accelerates the generation of cap-
tions, but also performs favorably against the state-of-the-
art methods.

3. Methods
As mentioned above, our method aims to take the dense

information (including I-frame, motion vector and residual)
in compressed domain as input to accelerate inference and
improve performance for video caption. To this end, we de-
sign an end-to-end transformer-based network as shown in
Fig. 4. In this section, we first detail the information in the
compressed video in Sec. 3.1, then introduce the model net-
work in Sec. 3.2 and 3.3, and finally introduce the training
strategy of the model in Sec. 3.4.

3.1. The Structure of Compressed Video

Modern video codecs utilizing the temporal redundancy
of successive video frames to compress raw video. As
shown in Fig. 3, most modern codecs (e.g., H.264, and
H.265) divide video frames into three different types ac-
cording to their dependencies with other frames: I-frame

I-frame P-frame P-frameB-frame

...

GOP #1
P-frame I-frame

GOP #2

...

P-frame

: Motion

...

: Group of Pixels : Video Frames

GOP #N

Figure 3. The GOP structure in compressed video. In each GOP,
the first frame must be an I-frame, followed by several B/P-frames.

(intra coded frame), P-frame (predictive coded frame) and
B-frame (bipredictive coded frame). I-frame is fully en-
coded independently using intra-prediction without relying
on other frames. Other frames like B-frame and P-frame
are encoded by referring to the other frames using inter-
prediction, which is stored in the form of motion vector.
Motion vector describes the movement of a group of pixels
from source (reference frames) to destination (current B-
frame or P-frame), which contains highly compressed mo-
tion information of successive video frames. The difference
between P-frame and B-frame is that B-frame could refer to
the frames before or after it, while P-frame only refer to the
frames before it. Since predicting a frame using neighbor-
ing frames could be inaccurate, an additional residual error
between the current frame and the prediction is calculated.
We denote II , IP and IB as decoded I-frame, P-frame, and
B-frame, and Imv and ∆res as the motion vector and resid-
ual of P-/B-frame respectively. In compressed domain, the
P-frame and B-frame could be reconstructed by

IB/P = Pred(Imv, Iref ) + ∆res (1)

where Iref is the referenced frame, and Pred is the predic-
tion method to reconstruct current frame based on motion
vector and referenced frame. Since the reconstruction pro-
cess is time consuming, our model takes highly compressed
information from compressed domain directly as input to
achieve end-to-end video captioning.

Moreover, successive frames are divided into several
groups, which is called Groups of Pictures (GOP). GOP
is an independent encoding or decoding unit, which means
that the frames in a GOP do not refer to any frames on other
GOP. Each GOP starts with an I frame, followed by sev-
eral P-frames or B-frames. For each GOP, we take one I-
frame and M B-/P-frames as inputs. The B-/P-frames are
uniformly sampled from each GOP, and we only use their
motion vector and residual as replacements. Therefore, the
visual inputs of our model would be

X = [I(1)
I , I(1,1)

mv ,∆(1,1)
res , . . . , I(M,1)

mv ,∆(M,1)
res ],

. . . , [I(N)
I , I(1,N)

mv ,∆(1,N)
res , . . . , I(M,N)

mv ,∆(M,N)
res ]

where N is the number of GOP sampled from each video
and M is the total number of P-/B-frames sampled from
each GOP. We set N according to the average GOP number,
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and M is equal to the maximum number of P-/B-frames in
each GOP, which is a hyper-parameter during encoding.

3.2. Model Architecture for Compressed Domain

Based on the GOP structure mentioned above, we pro-
posed a transformer based structure to utilizing the dense
information from the compressed domain. Fig. 4 (left)
shows the main framework of our proposed compressed
video transformer. The model takes all information of the
compressed video as inputs, including I-frame, motion vec-
tor and residual, while maintaining a fast inference speed.
Specifically, we use three different Vision Transformers [8]
(ViT) as encoder to extract the visual features for I-frame,
motion vector and residual. We adopt a pretrained Vision
Transformer as the encoder to extract the context feature
from the I-frame:

F (n)
ctx = EncoderI(I(n)

I ).

For each B-frame or P-frame, we get a motion vector
and a residual from the compressed domain. We use two
lightweight Vision Transformers as encoders to extract fea-
tures from motion vectors and residuals. The motion and
residual features is added together to generate the B-/P-
frame features F (m,n)

BP :

F (m,n)
BP = Encodermv(I(m,n)

mv ) + Encoderres(∆
(m,n)
res ).

In this way, for each GOP we obtain M B-/P-frame features

F (n)
BP = [F (1,n)

BP , . . . ,F (M,n)
BP ].

As motion vector and residual lack fine-grained context
information, we use features from motion vector and resid-
ual as queries to retrieve the rich context information in
RGB frames instead of simply fusing them. We employ ac-
tion encoder to integrate the object information of I-frame
into the action information of motion vector and residual,
which takes B-/P-frame features in current GOP F (n)

BP and
the context feature F (n)

ctx as input to generate the action fea-
ture F (n)

act of current GOP. The action encoder is constructed
by Na sets of alternately stacked self-attention and cross-
attention blocks.

Specifically, the workflow of the action encoder is as fol-
lows. Firstly, according to the reconstruction process de-
scribed in Eq. 1, we utilize the self-attention module fuse
the temporal representation of successive frames to obtain
F (n)

att :

X = F (n)
BP + Embp + Embt,

Q = Wq ∗X,K = Wk ∗X,V = Wv ∗X,

F (n)
att = SelfAttention(Q,K, V ),

where Embp is the positional embeddings, Embt is the type
embeddings, and Wq,Wk,Wv are learnable matrices. The
type embeddings are added to distinguish B-frames and P-
frames. And then we use the cross-attention to integrate the
F (n)

ctx from I-frame into the F (n)
att from the motion vector and

residual. Finally, the action feature F (n)
act

Q′ = W ′
q ∗ F

(n)
att ,K

′ = W ′
k ∗ F (n)

ctx , V
′ = W ′

v ∗ F
(n)
ctx ,

F (n)′

att = CrossAttention(Q′,K ′, V ′),

F (n)
act = Mean(F (n)′

att ),

where W ′
q,W

′
k,W

′
v are learnable matrices and Mean() is a

function that calculates the average feature.

3.3. Multimodal Decoder for Video Captioning

The context features F (n)
ctx and action features F (n)

act for
each GOP are contacted to form the visual representation:

V = [F (1)
ctx ,F

(1)
act , . . . ,F

(N)
ctx ,F (N)

act ].

Then we design a multimodal decoder to predict the
video captions based on the visual representation V . The
multimodal decoder is composed of Nm masked self-
attention modules stacked as shown in Fig. 4 (right) and
the workflow is as follows:

T<t = Embedding(Y<t),

X = Concat(V, T<t),

X ′ = X + Emb′p + Emb′t,

Q′′ = W ′′
q ∗ X ′,K ′′ = W ′′

k ∗ X ′, V ′′ = W ′′
v ∗ X ′,

ht = MaskedSelfAttention(Q′′,K ′′, V ′′),

p(yt|V, T<t) = softmax(Linear(ht)),

where Y<t is the words generated in previous t − 1 steps,
Embedding() is a function that converts one-hot word vec-
tors into word embeddings, Emb′p is the positional embed-
dings, Emb′t is used to distinguish different modality of in-
puts, W ′′

q ,W
′′
k ,W

′′
v are learnable matrices and yt is the pre-

diction of current step. In the multimodal decoder, position
embedding and type embedding is added to distinguish the
order and type of features respectively.

3.4. Optimization

We train our model using the cross-entropy loss func-
tion. Given the ground-truth indices of previous (t-1) words
and the visual representation V , we can get the predictions
of the current t-th word y∗t . After that, the training loss is
computed as

L = −
∑l

t=1 log p(y
∗
t |y∗:t−1,V),
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Figure 4. The architecture of our proposed Compressed Video Captioner. Left: The Compressed Video Transformer which extract video
representation for each GOP. A large visual backbone is used to extract visual representations from I-frame, and two small Vision Trans-
former is used to extract residual and motion representations from compressed domain. After that, an action encoder is used to fuse the
features. Right: The Multimodal Decoder. We use a multimodal decoder with causal mask to learn caption.

where y∗1:T is the ground truth sequence and l is the to-
tal length of predicted captions. Notably, we add the label
smoothing to mitigate overconfidence in implementation.

4. Experiments
4.1. Datasets

MSRVTT [34] is a generic video captioning dataset that
comprises 10, 000 video clips, with each clip annotated with
20 captions. On average, each video clip lasts about 15 sec-
onds. The standard split involves the use of 6, 513 clips for
training, 497 clips for validation, and 2, 990 clips for test-
ing.
MSVD [3] contains 1, 970 videos, with each video clip hav-
ing 40 captions. The average duration of each video clip is
around 10 seconds. We adopt the standard split, which in-
volves using 1, 200 videos for training, 100 videos for vali-
dation, and 670 videos for testing.
VATEX [32] is a large-scale dataset which contains about
41, 250 video clips. The duration of each video clip is be-
tween 10 seconds, and 10 English captions are manually
annotated per clip. We use the official training set for train-
ing and evaluate the results using the public test set.

4.2. Evaluation Metrics

To evaluate the effectiveness of our approach, we use the
standard metrics for video captioning: BLEU@4 (B4) [23],

METEOR (M) [7], ROUGE (R) [17], and CIDEr (C) [31].
Each metric provides a unique perspective on the quality of
the generated captions. BLEU@4 evaluates sentence flu-
ency, METEOR assesses semantic accuracy, ROUGE mea-
sures word order, and CIDEr evaluates the degree to which
the caption conveys key information. By considering these
different metrics, we can comprehensively evaluate the per-
formance of our model.

4.3. Implementation Details

Our model is implemented using PyTorch, and to read
motion vectors and residuals from the compressed video,
we utilize the x264 library in FFmpeg. Before training and
testing, the videos are resized to 240 on its smallest edge
and compressed using the H.264 codec with KeyInt set to
60. For each video, we fixedly sampled 8 GOPs, each of
which contains 1 I-frame, 59 motion vectors, and 59 resid-
uals. The size of the I-frame and residual is 3 ∗ 224 ∗ 224,
and the size of the motion vector is 4 ∗ 56 ∗ 56. We use
Adam with initial learning rate of 1e-4, β1=0.9, β2=0.999
and the warmup strategy is adopted in the training. The
maximum length of the caption sentence is set to 22, which
contains two special tokens, e.g., [CLS] token and [EOS]
token. The feature dimension in each block is set to 768,
and the number of heads in multi-head architecture is set to
12 for all layers. The batch size is set to 64 and the train-
ing epochs to 20. The I-frame encoder has 12 layers and is
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Method Decoding E2E
Features MSVD MSRVTT

2D Appearance 3D Action Object Detection B4 M R C B4 M R C
SAAT [39] ✓ - IncepResnetV2 C3D - 46.5 33.5 69.4 81.0 39.9 27.7 61.2 51

STG-KD [22] ✓ - ResNet101 I3D FasterRCNN 52.2 36.9 73.9 93.0 40.5 28.3 60.9 47.1
PMI-CAP [5] ✓ - IncepResnetV2 C3D - 54.6 36.4 - 95.1 42.1 28.7 - 49.4

ORG-TRL [38] ✓ - IncepResnetV2 C3D FasterRCNN 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9
OpenBook [37] ✓ - IncepResnetV2 C3D - - - - - 42.8 29.3 61.7 52.9

SGN [27] ✓ - ResNet101 C3D - 52.8 35.5 72.9 94.3 40.8 28.3 60.8 49.5
MGRMP [6] ✓ - IncepResnetV2 C3D - 55.8 36.9 74.5 98.5 41.7 28.9 62.1 51.4
HMN [36] ✓ - IncepResnetV2 C3D FasterRCNN 59.2 37.7 75.1 104 43.5 29 62.7 51.5
UniVL [20] ✓ - S3D - - - - 42.2 28.8 61.2 49.9

SwinBERT [18] ✓ ✓ VidSwin 58.2 41.3 77.5 120.6 41.9 29.9 62.1 53.8
MV-GPT [29] ✓ ✓ ViViT - - - - 48.9 38.7 64 60

Ours - ✓ CLIP 55.9 39.9 76.8 113.0 43.1 29.8 62.7 56.2
Ours(ViT/L14) - ✓ CLIP 60.1 41.4 78.2 121.5 44.4 30.3 63.4 57.2

Table 1. Comparison with state-of-the-art methods on the test split of MSVD and MSRVTT. Decoding means decoding video frames, and
E2E means end-to-end training without offline feature extraction. For a fair comparison, we gray out models that pre-train on large-scale
datasets.

B4 M R C
NITS-VC [30] 20.0 18.0 42.0 24.0
VATEX [32] 28.4 21.7 47 45.1

ORG-TRL [38] 32.1 22.2 48.9 49.7
Support-set [24] 32.8 24.4 49.1 51.2
SwinBERT [18] 38.7 26.2 53.2 73
VideoCoCa [35] 39.7 - 54.5 77.8

Ours 31.4 23.2 49.4 52.7
Ours(ViT/L14) 35.8 25.3 52.0 64.8

Table 2. Comparison with state-of-the-art methods on the test split
of VATEX. For a fair comparison, we gray out models that pre-
train on large-scale datasets.

initialized with pre-trained weights from the CLIP [25] vi-
sual encoder, while the other encoders and the multimodal
decoder are randomly initialized. The layers for the motion
encoder, residual encoder and action encoder are 2, 2 and 1,
respectively. Lastly, we set the hyperparameters M , N , Na,
and Nm to 60, 8, 2 and 2.

4.4. Performance Comparison with SOTA Methods

In order to verify the effectiveness of the method, we
evaluated the proposed model against state-of-the-art meth-
ods on three public benchmark datasets.
MSVD dataset. The evaluation results on the MSVD
dataset are reported in Table 1 (left). We conducted experi-
ments using two sizes of the I-frame encoder, namely B/16
and L/14, with the results reported in the article based on
B/16, unless otherwise stated. Our method using the L/14
I-frame encoder achieves the best performance on all met-
rics, with only SwinBERT [18] performing better than our

method using B/16. Our approach stands out by being able
to directly utilize compressed domain information and ex-
tract visual features in real-time. The result shows that our
model can efficiently extract information from the refined
compressed domain information.

MSRVTT dataset. In the MSRVTT benchmark, our
method outperforms other approaches in all metrics, as
shown in Table 1 (right). Specifically, both the based on
B/16 model and based on L/14 model achieve higher
scores compared to other methods. In particular, our
method achieves a CIDEr score of 56.2 / 57.2, which rep-
resents a significant improvement of +2.4 / +3.4. This re-
sult demonstrates that our approach can generate captions
with higher semantic accuracy than other methods based on
video decoding [31]. CIDEr is particularly effective at cap-
turing human consensus, which makes our achievement in
this metric even more impressive.

VATEX dataset. Our method is evaluated on a large-scale
dataset, as shown in Table 2. We achieve the second-best
results on all metrics, falling behind SwinBERT [18]. Our
approach involves extracting visual features using three Vi-
sion Transformer encoders, while the I-frame encoder is ini-
tialized with the pre-trained CLIP [25] model on LAION-
400M [28]. In contrast, SwinBERT uses the VidSwin
backbone [19], which is pre-trained on the Kinetic-600
dataset [15]. It is worth noting that LAION-400M is a
large image-text dataset, while Kinetics-600 is a video-text
dataset, and VATEX dataset is a subset of Kinetics-600
videos. SwinBERT outperforms our method on VATEX due
to its backbone pre-trained on Kinetics-600.
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Method Data Type Inference Time ↓ CIDEr ↑Feature Extraction Model Time Total
SGN RGB Video Frames 303 ms 275 ms 578 ms 49.5
HMN RGB Video Frames 2,710 ms 108 ms 2,818 ms 51.5

SwinBERT RGB Video Frames 339 ms 339 ms 53.8
Ours I-frame 146 ms 146 ms 54.1
Ours I-frame+MV 153 ms 153 ms 55.3
Ours I-frame+MV+Res 178 ms 178 ms 56.2

Table 3. A detailed comparison of speed with other methods on the test split of the MSRVTT dataset. During the test, the model is running
on a NVIDIA Tesla V100 GPU and the batch size is set to 1. The time cost is computed on the overall MSRVTT test split.

4.5. Speed Comparison with the SOTA Methods

To evaluate the speed of our method, we compared it to
three representative methods, namely SGN [27], HMN [36],
and SwinBERT [18], as reported in Table 3. SGN is a three-
step method that first decodes video frames and densely
sample, then extracts the 2D appearance and 3D action fea-
tures based on ResNet101 [11] and C3D [10] (consuming
303 ms) offline, and finally uses the visual features as the
input of the model (consuming 275 ms). Therefore, the total
time for SGN to generate a video caption is 578 ms. HMN
achieves the best results among the three-steps models, but
it is relatively slow as it requires offline region feature ex-
traction based on Faster RCNN [26] (consuming 2, 520 ms),
leading to its total time of 2, 818 ms. SwinBERT, on the
other hand, is an end-to-end method that does not extract
multiple features offline, using only 339 ms.

Compared to these methods, our proposed method does
not require a dense sampling of video frames or the ex-
traction of multiple features offline. As shown in Table 3,
our baseline method only considers the I-frame of the entire
video, achieving a CIDEr score of 54.1 and a total time of
146 ms. By integrating the motion vector, we improved the
CIDEr to 55.3, demonstrating that the action information in
the motion vector helps the model generate captions. Fur-
thermore, by incorporating residual information, the CIDEr
score is further improved by 0.9 to reach 56.2. Although
considering three inputs increases our total inference time,
our speed is still nearly 2 times faster than SwinBERT, 3
times faster than SGN, and 15 times faster than HMN.

4.6. Ablation Study

Impact of input information. To evaluate the effectiveness
of different input information in our method, we conducted
several experiments on the MSRVTT dataset, as shown in
Table 4. To investigate the role of I-frame, motion vec-
tor, and residual, we first experimented with using only
one of them. As shown in Table 4, using only I-frame,
motion vector, or residual achieved CIDEr scores of 54.1,
19.4, and 13.0, respectively. This indicates that the model
can directly use I-frame instead of motion vector and resid-

Input Module B4 M R CII Imv ∆res En A
✓ - - - 41.6 29.7 62.3 54.1
- ✓ - - 27.3 21.6 52.6 19.4
- - ✓ - 23.9 20.5 51.0 13.0
✓ ✓ - ✓ 43.4 29.9 62.6 55.3
✓ - ✓ ✓ 42.2 30.0 62.5 54.9
✓ ✓ ✓ - 42.1 30.1 62.4 54.3
✓ ✓ ✓ ✓ 43.1 29.8 62.7 56.2

Table 4. Ablation study of different input on the test subset of
MSRVTT. The II , Imv and ∆res mean decoded I-frame, motion
vector and residual respectively. And the En A means the action
encoder.

KeyInt (M ) GOP Nums (N ) Inference Time B4 M R C
250 2 153 ms 39.6 28.7 60.8 49.5
60 2 131 ms 41.6 29.3 61.7 52.4
60 4 139 ms 42.8 29.9 62.6 55.3
60 8 178 ms 43.1 29.8 62.7 56.2
60 10 187 ms 42.7 29.8 62.6 55.5

Table 5. Ablation study of GOP numbers on MSRVTT test subset.

ual. By jointly using I-frame and motion vector and fusing
their information through the action encoder, we achieved
a CIDEr score of 55.3. Similarly, using I-frame and resid-
ual achieved a score of 54.9. This demonstrates that motion
vector and residual can help the model generate more accu-
rate captions. The performance of the model is further im-
proved by inputting all three types of information, achieving
a CIDEr score of 56.2, an improvement of 1.7. Removing
the action encoder from the proposed method resulted in a
slight drop in CIDEr scores, from 56.2 to 54.3. This demon-
strates that the action encoder can help the model integrate
the object information of I-frame into the action information
of motion vector and residual.
Impact of GOP numbers. GOP is a fundamental unit in
compressed video that affect the compression rate. A larger
GOP size results in fewer GOP numbers and commonly
higher compression rates. In video codec (e.g. FFmpeg),
the GOP size is determined by the KeyInt parameter. To
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Figure 5. Qualitative results on the MSRVTT, MSVD and VATEX dataset. We show the input of our model, which is in compressed
domain. The red, green and blue borders indicate I-frame, motion vector and residual, respectively.

En I En M En R En C De M CIDEr
12 2 2 1 2 56.2
24 2 2 1 2 57.2
12 4 4 2 2 55.2
12 2 2 1 4 54.9
12 4 4 2 4 55.4

Table 6. Ablation study about module layers on the MSRVTT test
subset. En I, En M, En R, En A and De M refer to the I-frame en-
coder, motion encoder, residual encoder, action encoder and mul-
timodal decoder of the model respectively.

investigate the impact of GOP size on our video caption
model, we experimented with different GOP numbers and
KeyInts, as shown in Table 5. Comparing KeyInt values of
250 and 60, we observed that a smaller GOP size led to bet-
ter model performance (49.5 CIDEr vs 52.4 CIDEr). By
sampling different GOP numbers under the same KeyInt,
the best performance is achieved by setting GOP size to 8
and KeyInt to 60. While the performance is improved with
more GOPs, yet speed is decreased due to increased com-
putation as more information is included.

Impact of model layers. To investigate the impact of dif-
ferent model layers on our proposed method, we conducted
an ablation study on the MSRVTT test subset, as shown
in Table 6. Giving that I-frame contains more complex in-
formation, we design a deep encoder with more layers for
I-frame, while using a shallow encoder for motion vector
and residual. Our results show that the performance of the
model improves with an increase in the number of layers in
the I-frame encoder (56.2 CIDEr to 57.2 CIDEr). However,
adding more layers to other modules did not result in further

improvements in model performance.

4.7. Qualitative Results

As shown in Fig. 5, we present the qualitative results
of our proposed method on three datasets (e.g., MSVD,
MSRVTT, and VATEX). Specifically, we visualize the in-
put I-frame, motion vector, and residual and compare the
predicted description to the ground truth. Our method con-
sistently produces semantically consistent descriptions that
closely align with the ground truth across all three datasets.
Furthermore, the results demonstrate a superior ability to
capture motion behavior in the videos.

5. Conclusion
In this paper, we introduce an end-to-end transformer-

based model for video captioning that takes compressed
video as input to eliminate redundant information. Our pro-
posed method is evaluated on three challenging datasets and
demonstrates that our proposed method is not only fast, but
also competitive in performance with SOTA. In the future,
we plan to further improve our method in two ways: (1) Add
additional modalities such as audio, text, and knowledge
graphs to enhance the quality of the generated captions. (2)
Pre-train the model on a large-scale dataset to further boost
the overall performance in compressed domain.
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video action recognition. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 6026–6035,
2018. 2

[34] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A
large video description dataset for bridging video and lan-
guage. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5288–5296, 2016. 5

[35] Shen Yan, Tao Zhu, Zirui Wang, Yuan Cao, Mi Zhang, So-
ham Ghosh, Yonghui Wu, and Jiahui Yu. Video-text model-
ing with zero-shot transfer from contrastive captioners. arXiv
preprint arXiv:2212.04979, 2022. 6

[36] Hanhua Ye, Guorong Li, Yuankai Qi, Shuhui Wang, Qing-
ming Huang, and Ming-Hsuan Yang. Hierarchical modu-
lar network for video captioning. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17939–
17948, 2022. 1, 2, 3, 6, 7

[37] Ziqi Zhang, Zhongang Qi, Chunfeng Yuan, Ying Shan, Bing
Li, Ying Deng, and Weiming Hu. Open-book video caption-
ing with retrieve-copy-generate network. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9837–9846, 2021. 6

[38] Ziqi Zhang, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang,
Weiming Hu, and Zheng-Jun Zha. Object relational graph
with teacher-recommended learning for video captioning.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13275–13285, 2020. 1, 3, 6

[39] Qi Zheng, Chaoyue Wang, and Dacheng Tao. Syntax-aware
action targeting for video captioning. In IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13093–13102, 2020. 6

15567


