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A B S T R A C T

Fine-grained visual classification (FGVC) is challenging to capture subtle yet distinct visual cues due to large
intra-class and small inter-class variances. To this end, we propose a new Siamese Self-supervised Learning
method to perform alignment between different views of one image. Specifically, we employ the attention
mechanism to explore the semantic parts of one image, and then generate different views by crop and erase
strategy. Meanwhile, we adopt the Siamese network to perform the feature alignment across various views and
capture the view-invariant feature in a self-supervised way. Finally, we introduce the center loss to explicitly
ensure consistency between different views. Extensive experimental results show the proposed method performs
on par with the state-of-the-art methods on three public benchmarks including CUB-200-2011, FGVC-Aircraft,
and Stanford Cars.
. Introduction

The FGVC aims to classify sub-categories under the same super-
ategory, for example, different species of birds and dogs. As a up-
tream research, FGVC has facilitated a wide variety of applications
n the downstream tasks such as person re-identification (Leng et al.,
020; Hong et al., 2021), instance segmentation (Zhang et al., 2021c)
nd emotion detection (Abdul-Mageed and Ungar, 2017). Nevertheless,
t remains a highly challenging task to date and has attracted extensive
esearch attention in computer vision field over the past few years.

As depicted in Fig. 1, FGVC is challenging due to two reasons:
1) high intra-class variances: the samples belonging to the same cate-
ory usually present significant different appearance, (2) low inter-class
ariances: the samples belonging to different categories usually share
imilar appearance. Recently, considerable efforts have been made to
lleviate these issues. A set of methods (Lin et al., 2015a; Chang et al.,
020; Zhuang et al., 2020; He et al., 2019) exemplify this research
trand. In specific, B-CNN (Lin et al., 2015a) utilizes the bilinear pool-
ng to encode features generated by parallel extractors to form richer
epresentations. MC-Loss (Chang et al., 2020) takes advantage of two
hannel-wise modules to excavate the discriminability and diversity
f features within a single network. However, the aforementioned
ethods fall short in ensuring the consistency of feature distribution

n each category explicitly, resulting in degraded performance.

∗ Corresponding author.
E-mail address: libo@iscas.ac.cn (L. Zhang).

To address this issue, we propose a novel end-to-end Siamese Self-
supervised Learning for the FGVC task in this study. The proposed
method is constructed on the concept of Siamese architecture. Driven
by the advantages of Siamese network, we apply it to encode view-
invariant features and align features of different views of one image.
Moreover, we impose the consistency constraint on features of different
views to prevent them from contradicting each other. In short, the
contributions of this paper are summarized as follows.

• To alleviate the issue of large intra-class and small inter-class
variances, a new Siamese Self-supervised Learning (SSSL) method
is proposed for the FGVC task, where we utilize Siamese ar-
chitecture with shared parameters to encode the feature from
different views and guide model to learn view-invariant features
in a self-supervised learning way.

• To our best knowledge, we are the first to introduce self-
supervised learning to ensure the consistency between different
views of an image explicitly and the proposed model relies on
the positive pairs for optimization, without the limitation of batch
size.

• The proposed method performs favorably against the state-of-the-
art methods on three challenging FGVC benchmarks including
CUB-200-2011, FGVC-Aircraft and Stanford Cars. Comprehensive
ablative studies are provided to shed light on the effectiveness of
model design choices.
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2. Related work

2.1. Fine-grained visual categorization

It is vital to characterize the detailed visual cues for the fine-
grained visual classification. Early, prior arts (Zhang et al., 2014,
2016; Lin et al., 2015b; Huang et al., 2016) directly guide models
to capture discrepancies in subtle regions with the supervision of
object- or part-level annotations. However, such annotation requires
expertise and is labor-intensive, making these methods inapplicable
for real scenarios. Later, developments over this task shift towards
weakly supervised learning with image-level label. Roughly speaking,
there are two primary research groups for the existing approaches.
The first category focuses on exploring the potential of neural network
to enrich feature representation. The representatives of this research
line are methods (Lin et al., 2015a; Yu et al., 2018). Specifically, Lin
et al. (2015a) popularize the bilinear pooling which assembles features
from two extractors into a high-order representation that characterize
pair-wise interaction information. Later, its follow-up approach (Yu
et al., 2018) presents hierarchical bilinear pooling to aggregate features
from the multiple scales. Nevertheless, this kind of learning discrim-
inative representation strategy is hard to verify whether higher-order
feature can pay enough attention to discriminative regions. The direct
influence is that the learned representation fails to characterize the
fine-grained object explicitly. To close this gap, the other category
attends to exploring object- or part-based discriminative visual cues.
Generally, the salient response of feature activation maps underpins
this research strand. For example, MMAL-Net (Zhang et al., 2021b)
locates the salient object based on activation maps and excavates di-
verse parts by a sliding window mechanism. Du et al. (2020) iteratively
encode image patches at multiple scales to capture multi-granularity
informative visual clues. Even though these models achieve decent
improvements, they disregard rich correlation information between
discriminative parts, resulting in the limited performance. Differing
from them, we focus on learning views-invariant feature from different
views of an image to form a robust representation and ensure class
consistency explicitly.

2.2. Siamese neural network

A Siamese Neural Network (SNN) is a commonly used strategy
to quantify the similarity between different instances. Since seminal
work is proposed by Chopra et al. (2005) for face verification, Siamese
neural network has been quite popular in the computer vision field and
derives many excellent variants in a wide range of visual understanding
tasks, such as object tracking (Shan et al., 2021) and image match-
ing (Melekhov et al., 2016). Encouraged by their success, we construct
network framework based on such architecture in our study. However,
rather than the similarities between sample pairs, we emphasize how to
derive the view-invariant information from the different views of one
image, which renders the base of the proposed method.

2.3. Self-supervised learning

Without the requirement of annotation information, self-supervised
learning is tasked with learning the discriminative representation from
unlabeled data. Early works of self-supervised learning usually re-
quire numerous negative pairs to circumvent collapsed solutions. For
instance, approaches (Xu et al., 2021b; Chen et al., 2020a,b, 2021)
intuitively adopt a large batch size to cover numerous negative samples.
To alleviate the limitation of excessive batch size, the work (Wu et al.,
2018) preserves all instance features in a memory bank. Method (He
et al., 2020) sets up a queue to contain samples from multiple mini-
batches with an updating mechanism of enqueuing and dequeuing.

Notably, contrastive learning (Hadsell et al., 2006) is introduced into

2

Fig. 1. Samples of fine-grained visual categories. FGVC remains challenging due to
the following two factors: (1) high intra-class variances: the birds belonging to the
same category usually present significantly different appearances, such as illumination
variations (the first column), clutter background (the second column), occlusion
(the third column) and view-point changes (the fourth column); (2) low inter-class
variances: the birds in different columns belong to different categories, but share similar
appearance in the same rows.

the above approaches to pull the positive sample pairs and push the
negative ones in the embedding space. The recent advance BYOL (Grill
et al., 2020) uses the online network to predict the output of target
network, and proves the feasibility of self-supervised learning without
negative sample pairs. BYOL adopts two different views of one im-
age as the inputs of online network and target network respectively,
which is suitable for various image augmentation as well. By contrast,
our model utilizes the self-supervised learning scheme to prevent the
learned feature of different views of one image from contradicting each
other.

2.4. Attention mechanism

Sharing the similar spirit with human visual system, attention mech-
anism is successfully adopted to highlight relevant parts and depress
the irrelevant parts. As one of the astounding works, Hu et al. (2018)
innovatively consider the attention mechanism from the channel per-
spective and assign the various weights based on the contribution
of each channel. To characterize discriminative feature, the CBAM
module (Woo et al., 2018) considers attention mechanisms from both
spatial and channel perspectives. Analogous to the CBAM (Woo et al.,
2018), Park et al. (2018) design a BAM module to build a hierarchical
attention at bottlenecks. Recently, Wang et al. (2020a) present a self-
attention importance-weighting module to assess the contributions of
samples during the training stage. Different from the aforementioned
methods, we rely on the attention mechanism to form the different
semantic views of one image.

3. Method

In this section, we describe the rationale behind Siamese Self-
supervised Learning for the FGVC task in detail. As shown in Fig. 2,
the proposed network is mainly composed of the following three com-
ponents: siamese encoder, self-supervised learning, and loss function.
First, the siamese encoder is used to extract latent features from raw
image. Then, we perform cropping and erasing operations on the high
response areas to form the different semantic views. Meanwhile, we
explicitly enforce consistency on category centers shared by different
observations via center loss in a self-supervised learning manner. In
the end, the shared fully-connected layer followed by a softmax layer
is adopted to finalize the prediction of subordinate category.
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Fig. 2. Illustration of our Siamese Self-supervised Learning network architecture for the FGVC task. The proposed method is built on the concept of Siamese architecture to
learn the class consistency of different views of attention guided feature representation. Wherein F , A, and BP represent extracted features, attention maps, and bilinear pooling,
respectively.
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3.1. Siamese encoder

In our design, the raw image and its two views share a siamese
encoder which is formed by the two major components: backbone and
attention module.

Backbone. It is well-known that fine-grained datasets are usually char-
acterized by small volume. For the sake of accurate performance, we
apply a truncated ResNet model (discarding the last fully-connected
layers) as our backbone, which is pre-trained on the ILSVRC CLSLOC
dataset (Russakovsky et al., 2015). Let an image  be fed into the
CNN-based backbone to extract basic features F ∈ R𝐶×𝐻×𝑊 , where
𝐶 represents the number of channel, 𝐻 and 𝑊 indicate the height
nd width of feature maps respectively. It is noteworthy that the
roposed method can work well on diverse pre-trained networks, such
s VGG (Simonyan and Zisserman, 2015), ResNet (He et al., 2015), and
nception (Szegedy et al., 2016).

ttention Module. Next, we employ Bilinear Pooling (BP) strategy to
xplicitly capture the second-order statistics of the basic features. In
etail, we first leverage the attention module to generate 𝐾 attention
aps A = {𝑎1, 𝑎2,… , 𝑎𝐾},A ∈ R𝐾×𝐻×𝑊 , which is mathematically

alculated as follows,

= 𝑅𝑒𝐿𝑈(𝐵𝑁(𝐶𝑜𝑛𝑣(F )) (1)

here 𝐶𝑜𝑛𝑣(⋅) indicates a convolution layer (kernel 1×1, output channel
, and stride 1), 𝐵𝑁(⋅) (Ioffe and Szegedy, 2015) denotes the batch
ormalization operation and 𝑅𝑒𝐿𝑈 (⋅) (Glorot et al., 2011) refers to
ectified Linear Unit. To highlight high response regions on attention
aps, we perform the broadcast element-wise multiplication between

eature and individual attention map in A, as formulated in Eq. (2),
′
𝑖 = F ⊙ 𝑎𝑖 (2)

here ⊙ denotes element-wise multiplication between feature maps

nd 𝑖-th attention map. Sequentially, we leverage the average global m

3

ooling followed by the concatenation operation to obtain the holistic
eature 𝑓𝑟 of the raw image.

𝑓𝑟 =
𝐾
∏

𝑖=1
(𝐺𝐴𝑃 (F ′

𝑖 )), 𝑓𝑟 ∈ R𝐾𝐶×1 (3)

where ∏ denotes the concatenation operation and 𝐺𝐴𝑃 (⋅) means the
global average pooling operation.

3.2. Self-supervised learning

Multi-view is of vital importance in computer vision, which provides
distinctive visual and semantic clues for recognition and understand-
ing. For fine-grained visual classification, apart from the appearance,
the multi-view also provide view consistency between views. Visual
consistency is imposed by ensuring that visually similar views of the
same image are encoded to have similar feature representation. For
semantic consistency, we impose the constraint that the various views
of an image should be predicted to have the same class. Such a schema
enforce model to focus on discriminative parts of a fine-grained target,
which effectively alleviate the issue of large intra-class and small inter-
class variance. In the following, we shift our focus on how to generate
different semantic views of an image based on the feature F and
attention maps A, and then present the optimization of self-supervised
earning for the proposed method in detail.

iew-cropped. As stated in method (Ding et al., 2019; Zhang et al.,
019), it can considerably enhance discriminative feature representa-
ion by removing irrelevant information on background. We randomly
hoose 𝑀 ∈ [1, 𝐾] feature maps from A to compose A′ ∈ R𝑀×𝐻×𝑊 .
he explanation of this schema is that a desirable cropped view should
nsure the semantic integrity of object and stable robustness of the
odel simultaneously. Moreover, we re-liberate importance feature

′
aps in A . To be specific, we first pool feature maps into the form
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Algorithm 1 Search Connected regions via a binary mask 𝑐

Require: A binary mask 𝑐 ;
1: Pick a pixel 𝑝 ∈ 𝑐 as the starting point;
2: while True do
3: Leverage a flood-fill algorithm to label all the pixels in the

connected region that covers the pixel 𝑝;
4: if All the pixels traverse then
5: Break;
6: end if
7: Search for the next unprocessed pixel as 𝑝;
8: end while
9: return Connectivity of the connected regions, and the according

region size

of estimated probabilistic distribution 𝛼𝑖 (𝑖 = 1, 2,… ,𝑀). Formally, 𝛼𝑖
s mathematically calculated as,

𝑖 =
𝐺𝐴𝑃 (A′

𝑖 )
∑𝑀

𝑗=1 𝐺𝐴𝑃 (A′
𝑗 )
, A′

𝑖 ∈ A′ (4)

Then, the regularized feature map  is derived by a weighted sum of
A′
𝑖 , which is expressed as,

 =
𝑀
∑

𝑖=1
𝛼𝑖A

′
𝑖 (5)

After that, we bilinearly interpolate the calculated  to match the
raw image resolution, i.e.,  → 𝑐 . Based on an empirical threshold
1, we crop an attentive area as a view of the raw image. Therein, the
alue in 𝑐 larger than 𝜀1 ∗ 𝑚𝑎𝑥 (𝑐) is set to 1, otherwise assigned
o 0. 𝑐 can be formulated as,

𝑐 (𝑖, 𝑗) =

{

1 𝑖𝑓 𝑐 (𝑖, 𝑗) ≥ 𝜀1 ∗ 𝑚𝑎𝑥(𝑐 ),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(6)

Next, we utilize the Algorithm 1 to search the largest connected
egion ̂𝑐 from the 𝑐 . Thereby, a view is formed by cropping
peration and resized to match the resolution of the raw image.

𝑐𝑟𝑜𝑝 =  ⊙ ̂𝑐 (7)

n our design, we experimentally observe that the multiple involved
eature maps ensure the integrity of decisive facade object while the
andom selection can enhance the robustness in training process.

iew-erased. It has been proven that intentionally erasing high re-
ponse region of an image can enforce neural network to focus on the
est of semantic parts. Inspired by prior works (Hu and Qi, 2019; Sun
t al., 2020), we introduce this strategy to construct the other view from
he raw image. In detail, we first randomly select one attention map
rom A as A′′ ∈ R𝐻×𝑊 and re-scale A′′ as an erasing mask 𝑒. Contrary
o cropping operation, we set the value in 𝑒 less than 𝜀2 ∗ 𝑚𝑎𝑥 (𝑒)
o 1, and assign others to 0, which is expressed as follows,

𝑒(𝑖, 𝑗) =

{

1 𝑖𝑓 𝑒(𝑖, 𝑗) ≤ 𝜀2 ∗ 𝑚𝑎𝑥(𝑒),
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(8)

where 𝜀2 is an empirical threshold as well. Then, we perform the
element-wise multiplication operation between the raw image  and

𝑒 to form the view-erased.

𝑒𝑟𝑎𝑠𝑒 =  ⊙𝑒 (9)

Notably, different from the view-cropped, here we focus on remov-
ng one of the discriminative parts. Therefore, randomly choosing one
eature map from A fits this goal well. Additionally, above strategy can
erve as one kind of data augmentation at the training stage.

ptimization. After generating view-specific representations, we need

o solve how to optimize the proposed model. As shown in Fig. 2,

4

e leverage the siamese encoder to encode features from two views
nd define them as 𝑓𝑐 and 𝑓𝑒 respectively. To train the proposed

method efficiently, similar to the BYOL (Grill et al., 2020), only positive
pairs are involved in our self-supervised learning pipeline to avoid the
shackles of overlarge batch size. We impose the 𝓁2 constraint on view-
specific features to capture view-invariant representation and ensure
class consistency, where the loss is formulated as follows,

𝑠𝑠𝑙 =∥ 𝑓𝑐 − 𝑓𝑒 ∥2 (10)

where ∥ ⋅ ∥2 represents 𝓁2 loss and 𝑓𝑖∈{𝑐,𝑒} ∈ R𝐾𝐶×1.

3.3. Loss function

Center loss. For each category, we first define the class centers as
 ∈ R𝐾𝐶×𝑁 whose initialization obeys uniform distribution, 𝑁 is the
number of subcategories. In forward propagation process, the class
center is updated by moving average in Eq. (11). It is clear that center
distribution is involved with feature representation of category from
preceding epochs.

𝑐′ ← 𝑐 +▽(𝑓𝑟 − 𝑐) (11)

where 𝑐 ∈  and 𝑐 ∈ R𝐾𝐶×1. Here 𝑐 and 𝑐′ refer to a specific class center
before and after iterations respectively. ▽ is the step for updating the
center. And we use the 𝓁2 loss to impose the constraint between 𝑓𝑟 and
, which is formulated as below,

𝑐𝑡𝑟 =∥ 𝑓𝑟 −  ∥2 (12)

Classification loss. Rather than aforementioned constraints, we adopt
the cross-entropy loss among category predictions and the correspond-
ing ground-truth label to optimize the proposed model.

𝑐𝑙𝑠 = 1∕3
∑

𝑖∈{𝑟,𝑐,𝑒}𝑐𝑒(𝑦𝑖, 𝑦∗) (13)

where 𝑐𝑒 is the cross-entropy loss between the predictions 𝑦𝑖∈{𝑟,𝑐,𝑒},
computed by the raw image and different views, and the corresponding
ground-truth label 𝑦∗,

Hence, we unify all above loss constraints together to guide model
towards the better performance at the training stage. The overall loss
of the proposed model can be written as following,

 = 𝑐𝑙𝑠 + 𝛼𝑐𝑡𝑟 + 𝛽𝑠𝑠𝑙 (14)

where 𝛼, 𝛽 are hyper-parameters to balance three loss items and set to
be 0.1 in our experiment empirically.

Notably, we assemble high response of all attention maps to assure
enough discriminative information at test stage. To be exact, we di-
rectly average 𝐾 attention maps to gain a holistic attention map, for the
purpose of streamlining the operation efficiently. Next, we locate and
crop the salient object from the raw image to finalize the prediction.

4. Experiments

4.1. Implementation details

We utilize PyTorch (Paszke et al., 2017) as default deep learning
framework to implement the proposed model and the entire model is
trained on a workstation with a 2.20 GHz Intel processor, 1 Tesla V100
GPU and 32 GB memory. Following common protocol in FGVC task, we
adopt a truncated model pre-trained on ILSVRC CLSLOC (Russakovsky
et al., 2015) as backbone. The input image is resized to be 448 × 448
with color jittering. Random rotation and random horizontal flip are
applied for data augmentation. All the above settings are standard in
the literature. Stochastic Gradient Descent (SGD) algorithm, with the
momentum of 0.9, epoch number of 160, weight decay of 0.00001,
batch size of 12, is applied to optimize the proposed model in an end-to-
end manner. The initial learning rate is set to 0.001, which is multiplied
by 0.9 in every 2 epochs by fixed step size decay learning rate schedule.
Unless otherwise specified, Acc@1 stands for the top-1 classification
accuracy in performance reports. All the source codes of the proposed

method will be made publicly available after the paper is accepted.
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Table 1
Comparison results on CUB-200–2011 dataset.

Methods Backbone Acc@1(%)

MC Loss (Chang et al., 2020) VGG-16 78.7
RA-CNN (Fu et al., 2017) VGG-19 85.3
Improved B-CNN (Lin and Maji, 2017) VGG-16 85.8
MAMC (Sun et al., 2018) ResNet-50 86.2
MA-CNN (Zheng et al., 2017) VGG-19 86.5
DFL-CNN (Wang et al.) VGG-16 86.7
AP-CNN (Ding et al., 2021) VGG-19 86.7
PC (Dubey et al., 2018) DenseNet-161 86.9
ACNet (Ji et al., 2020) VGG-16 87.8
CIN (Gao et al., 2020) ResNet-101 88.1
SnapMix (Huang et al., 2020) ResNet-101 88.4
Grad-CAM (Xu et al., 2021a) ResNet-50 88.5
ELoPE (Hanselmann and Ney, 2020) ResNet-101 88.5
S3N (Ding et al., 2019) ResNet-50 88.5
DB (Sun et al., 2020) ResNet-50 88.6
MPN-COV (Li et al., 2018) ResNet-101 88.7
PMG (Du et al., 2020) VGG-16 88.8
DF-GMM (Wang et al., 2020c) ResNet-50 88.8
PCA-Net (Zhang et al., 2021a) ResNet-101 88.9
FDL (Liu et al., 2020) DenseNet-161 89.1
Mix+ (Li et al., 2020) ResNet-50 89.2
WS_DAN (Hu and Qi, 2019) Inception-V3 89.4
TBMSL-Net (Zhang et al., 2021b) ResNet-50 89.6
API-Net (Zhuang et al., 2020) DenseNet-161 90.0
Stacked LSTM (Ge et al., 2019) GoogleNet 90.4

Baseline ResNet-101 85.7
Ours ResNet-101 90.6

Table 2
Comparison results on FGVC-Aircraft dataset.

Methods Backbone Acc@1(%)

Improved B-CNN (Lin and Maji, 2017) VGG-16 88.5
MA-CNN (Zheng et al., 2017) VGG-19 89.8
MC Loss (Chang et al., 2020) VGG-16 91.0
FDL (Liu et al., 2020) DenseNet-161 91.3
NTS (Yang et al., 2018) ResNet-50 91.4
MPN-COV (Li et al., 2018) ResNet-101 91.4
ACNet (Ji et al., 2020) VGG-16 91.5
DFL-CNN (Wang et al.) VGG-16 92.0
RA-CNN (Fu et al., 2017) VGG-19 92.5
PMG (Du et al., 2020) VGG-16 92.7
S3N (Ding et al., 2019) ResNet-50 92.8
PCA-Net (Zhang et al., 2021a) ResNet-101 92.8
EfficientNet-B7 (Tan and Le, 2019) EfficientNet-B7 92.9
PC (Dubey et al., 2018) DenseNet-161 92.9
WS_DAN (Hu and Qi, 2019) Inception-V3 93.0
Mix+ (Li et al., 2020) ResNet-50 93.1
GCL (Wang et al., 2020b) ResNet-50 93.2
CIN (Gao et al., 2020) ResNet-101 93.3
ELoPE (Hanselmann and Ney, 2020) ResNet-101 93.5
DB (Sun et al., 2020) ResNet-50 93.5
Multi Granularity (Chang et al., 2021) ResNet-50 93.6
SnapMix (Huang et al., 2020) ResNet-101 93.7
DF-GMM (Wang et al., 2020c) ResNet-50 93.8
API-Net (Zhuang et al., 2020) DenseNet-161 93.9
CAL (Rao et al., 2021) ResNet-101 94.5
TBMSL-Net (Zhang et al., 2021b) ResNet-50 94.7

Baseline ResNet-101 91.4
Ours ResNet-101 94.8

4.2. Fine-grained visual classification datasets

CUB-200-2011. The CUB-200-2011 is a bird species dataset, which
is competitive and widely-used for fine-grained image classification.
The dataset contains 11,788 images of 200 different bird subcategories,
which consists of 5,994 images for training and 5,794 images for
testing. There are roughly 30 train and test images for each subcategory.

Stanford Cars. The Stanford Cars dataset has 16,185 images from 196
classes, officially split into 8,144 training and 8,041 testing images for
5

Table 3
Comparison results on Stanford Cars dataset.

Methods Backbone Acc@1(%)

MPN-COV (Li et al., 2018) ResNet-101 93.3
TASN (Zheng et al., 2019) ResNet-50 93.8
NTS (Yang et al., 2018) ResNet-50 93.9
SEF (Luo et al., 2020) ResNet-50 94.0
GCL (Wang et al., 2020b) ResNet-50 94.0
PMG (Du et al., 2020) VGG-16 94.3
CIN (Gao et al., 2020) ResNet-101 94.5
WS_DAN (Hu and Qi, 2019) Inception-V3 94.5
Cross-X (Luo et al., 2019) ResNet-50 94.6
AP-CNN (Ding et al., 2021) VGG-19 94.6
S3N (Ding et al., 2019) ResNet-50 94.7
DF-GMM (Wang et al., 2020c) ResNet-50 94.8
AutoAugment (Cubuk et al., 2018) Inception-V3 94.8
Mix+ (Li et al., 2020) ResNet-50 94.9
ELoPE (Hanselmann and Ney, 2020) ResNet-101 95.0
TBMSL-Net (Zhang et al., 2021b) ResNet-50 95.0
Multi Granularity (Chang et al., 2021) ResNet-50 95.1
API-Net (Zhuang et al., 2020) DenseNet-161 95.3
CAL (Rao et al., 2021) ResNet-101 95.5

Baseline ResNet-101 92.8
Ours ResNet-101 95.5

196 categories. Each category’s number is roughly 50–50 split and the
sub-category can be determined by cars’ brand, model, and year.

FGVC-Aircraft. The FGVC-Aircraft dataset contains 10,000 images
for 100 categories, which are divided into 6,667 training and 3,333
testing images. And the train/test set split ratio is around 2 : 1. Most
images in this dataset are airplanes. And the dataset is organized in
a four-level hierarchy, from finer to coarser: Model, Variant, Family,
Manufacturer.

4.3. Comparison with state-of-the-art methods

CUB-200-2011. Table 1 shows our method can expressly outperform
FDL (Liu et al., 2020) and WS_DAN (Hu and Qi, 2019), even if they ap-
ply more complicated backbone. It can be observed that we exceed two
methods relying on data augmentation (WS_DAN (Hu and Qi, 2019)
and SnapMix (Huang et al., 2020)) by 1.2% and 2.2% top-1 accuracy,
espectively. Compared to Stacked LSTM (Ge et al., 2019), which relies
n additional object detection and instance segmentation to capture
omplementary information, we still show obvious advantage over it,
.e., 90.6% vs. 90.4%, demonstrate the effectiveness of the proposed
ethod.

GVC-Aircraft. As Table 2 reports, our method performs best on FGVC-
ircraft dataset. Compared to the methods like (PCA-Net (Zhang et al.,
021a) and API-Net (Zhuang et al., 2020)) construct image pairs elab-
rately to capture contrastive interaction information, we significantly
utperform them by absolute improvements of 2.0% and 0.9% in terms
f top-1 accuracy. Our method exceeds Improved B-CNN (Lin and Maji,

2017) by a large margin, i.e., 88.5% vs. 94.8%. Moreover, due to the
dynamic generation of various view of an image, we can relieve pro-
hibitive computation burden compared with TBMSL-Net (Zhang et al.,
2021b) which rigidly chooses 7 local parts based on the summation of
ach window.

tanford Cars. As listed in Table 3, our approach achieves a very
ompetitive result again. Compared to previous method CIN (Gao et al.,
020), our method achieves absolute improvement of 1.0% in terms
f Top-1 accuracy. The proposed method performs better than AP-
NN (Ding et al., 2021), even it adopts top-down pathway to fuse

nformation of different levels. We believe that the performance gap
etween the proposed method and those like AP-CNN (Ding et al.,
021) demonstrates that our model has strong ability to capture the
iscriminative cues for the FGVC task.
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Table 4
Ablation study on self-supervised learning, center loss
and bilinear pooling CUB-200–2011 dataset. Here SSL
denotes the self-supervised learning, CL means the
center loss and BL refers to the bilinear pooling.

SSL CL BL Acc@1(%)

✗ ✗ ✗ 85.7
✗ ✓ ✓ 89.3
✓ ✗ ✓ 89.7
✓ ✓ ✗ 89.6
✓ ✓ ✓ 90.6

Table 5
Ablation study on the effect of views on
CUB-200–2011 dataset.

Variants Acc.@1

variant w/o crop and erase 86.3
variant w/ crop 88.5
variant w/ erase 88.8
variant w/ crop and erase 89.6

Table 6
Ablation study on the effect of 𝛼 on CUB-200–2011 dataset.

value of 𝛼 0.01 0.1 0.3 0.5 0.7 1 2

Acc.@1 89.7 90.6 90.3 90.2 90.0 89.8 89.5

Table 7
Ablation study on the effect of 𝛽 on CUB-200–2011 dataset.

value of 𝛽 0.01 0.1 0.3 0.5 0.7 1 2

Acc.@1 89.6 90.6 90.5 90.5 90.2 90.1 89.7

Qualitative visualization. For an intuitive understanding and compar-
ison, we visualize the attention maps yielded by the baseline ResNet-
101 (He et al., 2015), approach (Hu and Qi, 2019) and ours in Fig. 3.
One can see that there is a dilemma for existing methods to eliminate
large intra-class and small inter-class variances in the feature space. It
is clearly observed that discriminative semantic parts pose challenges
on baseline ResNet-101 and high responses even diffuse into the back-
ground for approach (Hu and Qi, 2019). By comparison, our method
can locate the subtle discriminative parts more accurately and attend
more decisive facade parts such as the wings, tail, and head of an
airplane; doors, headlights, and glasses of a car; beak, breasts, and
wings of a bird.

4.4. Ablation studies

To pose insight into our design choices comprehensively, we per-
form the ablation studies on important components or hyper-
parameters in our model with ResNet-101 backbone on CUB-200-2011
dataset.

The effect of self-supervised learning. For better performance, self-
supervised learning is adopted to ensure the consistency of view-
specific features in our method. To investigate the effectiveness of
self-supervised learning in our design, we construct a variant without
the self-supervised learning scheme, namely, there is no guarantee to
explicitly ensure the consistency between different views. As can be
seen from Table 4, such strategy can bring an absolute increment of
1.3% in terms of classification accuracy (see the 2-nd row and the 5-
th row). To further analyze the effect of semantic views, we perform
additional experiments as demonstrated in Table 5, where ‘‘variant
w/o crop and erase’’ denotes that we adopt commonly used data
augmentation strategy (random erase) to generate a new view, ‘‘variant
w/ crop’’ indicates we only generate a crop view by the guidance of

ttention mechanism, ‘‘variant w/ erase’’ means that we only generate t

6

Fig. 3. The visual comparison between baseline, WS_DAN and ours.

a erase view by the guidance of attention mechanism, ‘‘variant w/ crop
nd erase’’ demonstrate that we generate two view just as described
n Section 3. As Table 5 shows, the performance of ‘‘variant w/o crop
nd erase’’ drops a lot compared with ‘‘variant w/ crop and erase’’.
nd ‘‘variant w/ crop’’ and ‘‘ariant w/ erase’’ validate the effectiveness
f such two views separately. We argue that the best performance,
.e., ‘‘variant w/ crop and erase’’ mainly comes from the consistency
etween two views, which allows the proposed method to perform
he alignment of view-specific features within the subcategory and
lleviates the issue of large intra-class and inter-class variances to a
ertain extent.

he impact of center loss. The performance comparison between the
roposed model and the variant without center loss is reported in last
ow and the third row of Table 4. When unpaired with the center
oss, there is a sharp drop in classification performance, i.e., 90, 6% vs.
9.7%. We conjecture that the center loss assists with the proposed
odel to learn intrinsic discriminative features shared by different

iews. Thereby, the feature similarities between samples in the class
re further enhanced.

he influence of the bilinear pooling. To verify the efficacy of
he bilinear pooling strategy in our method, we construct a variant
ithout the bilinear pooling, which means we directly perform global
verage pooling on the basic feature F and finalize the subcategory
rediction. As Table 4 shows, when coupled with the bilinear pooling
trategy, the classification accuracy achieves an absolute improvement
f 1% performance. We believe that bilinear pooling strategy allows the
roposed model to encode higher-order statistic information from the
asic feature, which facilitates model to achieve the accuracy results.

he influence of 𝛼 an 𝛽. To determine desirable values of the em-
irical thresholds 𝛼 and 𝛽, we conduct experiments with the different
hresholds and summarize results in Tables 6 and 7. Experiments in the
bove tables show that along with the values 𝛼 and 𝛽 varying from 0.01
o 2, the classification accuracy significantly fluctuates. And we show

hat the proposed model is saturated with the values of 𝛼 = 0.1 and
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Fig. 4. The influence of the empirical thresholds 𝜀1 and 𝜀2 on CUB-200-2011 dataset.

= 0.1. Hence, the values of 𝛼 and 𝛽 are empirically set to 0.1 in our
xperimental settings by default for better classification performance.

he analysis of 𝜀1 and 𝜀2. For the desire values of the empirical
hresholds 𝜀1 and 𝜀2, we investigate numerous variants with different
alues and visualize experiment results in Fig. 4. We show that there
s an obvious fluctuation on the classification accuracy as 𝜀1 and 𝜀2
hange. And we can see that the proposed model is saturated with the
alue of 𝜀2 = 0.5 and 𝜀1 = 0.3. Hence, for accurate performance, we set
1 and 𝜀2 to be 0.3 and 0.5 empirically in our default setting.

. Conclusion

In this paper, we propose a Siamese Self-supervised Learning for the
ine-grained visual classification task. Specifically, different semantic
iews of an image are generated by the strategy of cropping and
rasing under the guidance of attention mechanism and aligned to learn
iew-invariant representation by the Siamese architecture with shared
arameters. The whole network is optimized by stochastic gradient
ecent algorithm in an end-to-end manner. Extensive experimental
esults conducted on CUB-200-2011, FGVC-Aircraft, and Stanford Cars
emonstrate that the proposed method achieves favorable performance
gainst the state-of-art methods. Comprehensive ablation studies and
ualitative visualization further verify the efficacy of important compo-
ents in the proposed method. The promising results provided by our
odel pave the way for better classification models for the FGVC task

n the future. We hope the above findings shed light on the promising
irections for the fine-grained visual classification task.
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