
ROG: A High Performance and Robust Distributed Training System for Robotic IoT

Xiuxian Guan1,#, Zekai Sun1,5,#, Shengliang Deng1, Xusheng Chen1, Shixiong Zhao1,∗,
Zongyuan Zhang1, Tianyang Duan1, Yuexuan Wang1, Chenshu Wu1,
Yong Cui2, Libo Zhang3, Yanjun Wu3, Rui Wang4, and Heming Cui1,5

1Department of Computer Science, The University of Hong Kong, Hong Kong, China
Email: {xxguan, zksun, sldeng, xschen, sxzhao, zyzhang2, tyduan, amywang, chenshu, heming}@cs.hku.hk

2Tsinghua University, Beijing, China, Email: cuiyong@tsinghua.edu.cn
3Institute of Software, Chinese Academy of Sciences, Beijing, China, Email: {libo, yanjun}@iscas.ac.cn

4EEE, Southern University of Science and Technology, Email: wang.r@sustech.edu.cn
5Pujiang Lab, Shanghai, China

Abstract—Critical robotic tasks such as rescue and disas-
ter response are more prevalently leveraging ML (Machine
Learning) models deployed on a team of wireless robots, on
which data parallel (DP) training over Internet of Things of
these robots (robotic IoT) can harness the distributed hardware
resources to adapt their models to changing environments
as soon as possible. Unfortunately, due to the need for DP
synchronization across all robots, the instability in wireless
networks (i.e., fluctuating bandwidth due to occlusion and
varying communication distance) often leads to severe stall
of robots, which affects the training accuracy within a tight
time budget and wastes energy stalling. Existing methods to
cope with the instability of datacenter networks are incapable
of handling such straggler effect. That is because they are
conducting model-granulated transmission scheduling, which
is much more coarse-grained than the granularity of transient
network instability in real-world robotic IoT networks, making
a previously reached schedule mismatch with the varying
bandwidth during transmission.

We present ROG, the first ROw-Granulated distributed
training system optimized for ML training over unstable wireless
networks. ROG confines the granularity of transmission and
synchronization to each row of a layer’s parameters and
schedules the transmission of each row adaptively to the
fluctuating bandwidth. In this way the ML training process
can update partial and the most important gradients of a stale
robot to avoid triggering stalls, while provably guaranteeing
convergence. The evaluation shows that, given the same training
time, ROG achieved about 4.9%˜6.5% training accuracy gain
compared with the baselines and saved 20.4%˜50.7% of the
energy to achieve the same training accuracy.

Keywords-distributed training, wireless networks, training
throughput, robust, energy efficient

I. INTRODUCTION

Critical robotic tasks such as rescue [1] and disaster

response [2] are more prevalently leveraging machine learning

models (e.g., objective recognition models [3] or action

control models [4], [5]) deployed over a team of mobile

robots. These models typically require real-time training to

#Xiuxian Guan and Zekai Sun equally contributed. ∗Shixiong Zhao is
the corresponding author.

adapt pre-trained parameters to changing environments [6],

[7] (e.g., from sunny to foggy), but it is often expensive for

the robots to access a cloud data center for model training due

to the lack of stable internet access. Therefore, such training

for critical robotic tasks is often distributedly deployed among

a team of robots over the robotic IoT networks [8], [9].
Such distributed training typically adopts the parameter

server paradigm [10], [11]: each device keeps a copy of

the model and computes the model’s parameter updates

(gradients) on its own data iteratively; between iterations, a

synchronization barrier (BSP [12]) is inserted, where each

device pauses its computation, pushes the computed gradients

of the whole model to and pulls the averaged gradients from a

parameter server (located on one of the devices) over wireless

networks. The process of training iterates until the shared

model converges (i.e., reaches a desired accuracy).
To ensure high performance of the critical robotic tasks

with the typically limited computation power and battery

energy on robots, we identify that such distributed training

should meet the following requirements (3Rs):
• Robust (R1): The critical robotic tasks are often

confronted with complex environments (e.g., crowds,

damaged areas). The performance of the distributed

training should be resilient to these environments for

the robots to adapt to various changing environments

and fulfill the critical tasks.

• High training throughput (i.e., the number of training

iterations in unit time) (R2): Given a tight time budget,

high training throughput is crucial for high training

accuracy to better adapt to the changing environments.

• High statistical efficiency (i.e., the training accuracy

gain per training iteration) (R3): With higher statistical

efficiency, the training model can reach higher accuracy

with the same number of training iterations.

3Rs are important for the training model to reach high

accuracy given a tight training time budget, while preserving

battery energy to reach a desired accuracy.
Unfortunately, although such distributed training with BSP
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empirically achieves high statistical efficiency (R3) [13],
the instability of real-world robotic IoT networks hinders

it from meeting R1 and R2 by causing the straggler
effect: the transmission of gradients from some devices (i.e.,

stragglers) can be dramatically delayed (e.g., transmission

time prolonged from 1.43s to 12.9s recorded in an unstable

environment, see Sec. II-B) by sharp bandwidth degradation

due to movement of the devices [14], [15], occlusion from

obstacles [16], [17], etc; the devices that finish transmission

(i.e., non-stragglers) have to stall until the delayed gradients

from stragglers are transmitted in severely downgraded

bandwidth, prolonging training iterations (violating R1 and

R2) and wasting energy stalling.

Although mainly designed for datacenter networks, Stale

Synchronous Parallel (SSP) [13], [18] has the potential to

mitigate such straggler effect. SSP allows non-stragglers

to continue computing without the latest gradients from

stragglers and only stall when the gradients from stragglers

fall behind (stale) for a preset number of iterations (staleness

threshold).

However, when coping with the instability of real-world

robotic IoT networks, R2 and R3 are contradictory in

SSP: high statistical efficiency requires a small staleness

threshold [13], while high training throughput requires a

large staleness threshold. In our evaluation (Fig. 1), SSP with

a small threshold (4) achieved similar statistical efficiency as

BSP but suffered severe straggler effect (stall time on average

takes up 44.1% of the duration of a training iteration); a larger

threshold (20) slightly reduced the stall time to 42.5% of a

training iteration, at the cost of lower statistical efficiency.

Recent studies [19], [20] extend SSP by dynamically

assigning (scheduling) the staleness threshold to simulta-

neously fulfill R2 and R3: higher staleness threshold for

devices that are estimated to have low bandwidth and less

contribution to training accuracy; smaller threshold for the

opposite. However, they are designed for datacenter networks

and wired edge networks and cannot fulfill R1, because
the random and rapid nature (see Sec. II-B) of bandwidth

degradation in wireless networks can transform the non-

stragglers estimated during scheduling into stragglers during

the actual transmission, making the scheduling mismatch

with the actual bandwidth. In our evaluation (Fig. 1), such

methods still suffered the straggler effect, which caused stall

time to on average take up 45.2% of a training iteration,

violating R1.
The key reason for the problem of the above methods

is that they are synchronizing the model gradients on the

granularity of a whole model, whose transmission time is

typically coarser (longer) than the granularity (or frequency)

of bandwidth fluctuation in real-world robotic IoT networks.

From the view of robustness (R1) and training throughput
(R2), the scheduling based on the granularity of a whole

model can not adapt to the real-time fluctuation of bandwidth

and will be frequently invalidated, causing more stall and

reduced training throughput. From the view of statistical

efficiency (R3), the scheduling treats all computed gradients

from a device as a whole and neglects that gradients from a

device have different contributions to training accuracy (e.g.,

gradients with small absolute values contribute little). Thus, it

is a must to break up the gradient transmission and schedule

the transmission of the gradients with a finer granularity.

(a) Average time composition of a train-
ing iteration.

(b) Statistical efficiency.

(c) Training accuracy against wall-
clock time.

(d) Energy consumption against train-
ing accuracy.

Figure 1: Comparison between ROG and the baselines on

the unsupervised domain adaptation application paradigm in

the outdoor environments.

In this paper, we present ROG, a ROw-Granulated, high-

performance and robust wireless distributed training system

optimized for real-world robotic IoT networks. We choose

the granularity of rows after comparing three typical levels

of granularity to break up the parameters of an ML model:

layers (matrixes), rows (matrix rows), and elements (indi-

vidual parameters). Specifically, element granularity requires

indexing each element of the whole model for management,

taking up data volume comparable to the whole model (high

management cost); layer granularity is large in size and is

still comparable with the granularity of bandwidth fluctuation

(low transmission flexibility). Row granularity best trades off

between management cost and transmission flexibility and

enables that whenever bandwidth fluctuation happens, ROG

can in real-time adapt to it by adjusting the scheduling of

rows to be transmitted, at a negligible cost of transmitting

only one row in degraded bandwidth.

The design of ROG is confronted with two major chal-

lenges. The first one is how to guarantee convergence in

ROG when synchronizing gradients on row granularity. We

propose Row Synchronous Parallel (RSP) that breaks up and

enforces the staleness control of SSP to each row of a model

across different devices and different rows within a device.
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RSP guarantees convergence by confining the divergence of

rows within the staleness threshold and thus confining the

divergence of the whole training model on different devices.

We formally prove that RSP achieves the same convergence

guarantee as SSP (see Sec. IV-C).

The second challenge is under RSP, how to properly

schedule the transmission of each row from different devices

to fulfill 3Rs. ROG adaptively aligns the transmission time

of each device by speculatively transmitting each row with

a novel Adaptive Transmission Protocol (ATP). In a training

iteration, ATP monitors the transmission time taken by the

transmitted rows and in real-time updates the scheduling of

the pending rows to be transmitted, to ensure that all devices

roughly spend equal time transmitting gradients under random

and sharp bandwidth fluctuation (R1), avoiding the straggler

effect (R2). ATP further prioritizes the transmission of

different rows based on their staled versions and contribution

to model convergence (e.g., the absolute values of the

gradients), reducing stall and accelerating convergence (R3).
We implemented ROG in PyTorch [21] and evaluated ROG

on a team of mobile robots under two representative real-

world online training application paradigms (unsupervised

domain adaptation and implicit mapping and positioning,

see II). We compared ROG with BSP [12], SSP [13] and

a SOTA dynamic threshold method [19] (referred to as

FLOWN) under different real-world robotic IoT networks

environments (namely indoor with moderate instability and

outdoor with more severe instability). We also minimized

the communication volume with gradient compression [22]

(the compressed gradients were only sized at 2.1 MByte and

0.75 MByte in the two paradigms) to conduct the tightest

comparison between ROG and the baselines. Evaluation

shows that:

• ROG achieves high accuracy. ROG achieved a 4.9%

˜6.5% accuracy gain over the baselines after training

for 60 minutes, due to 25.2%˜80.4% higher training

throughput and non-degraded statistical efficiency under

outdoor and indoor environments.

• ROG is energy-efficient. With the above advantage

of training throughput and statistical efficiency, ROG

reduced battery energy consumption by 20.4%˜50.7%

compared with the baselines when the training model

reached a same high accuracy,

• ROG is scalable. When increasing the number of robots

involved or increasing the batch size of training, ROG

still achieved a 3.0%˜5.3% accuracy gain and a 30.3%

˜55.1% energy consumption reduction over the baselines.

• ROG is easy to use. It took only tens of lines of code

to apply ROG to existing ML applications.

Our main contribution is RSP, a new row-granulated

synchronization model and ATP, a fine-grained scheduling

strategy optimized for distributed training over real-world

robotic IoT networks. ROG fulfills 3Rs: while conducting row-
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Figure 2: The instability of real-world robotic IoT networks.

granulated staleness control to guarantee convergence with

RSP, ATP schedules the transmission of each row adaptively

to the fluctuating bandwidth (R1), so as to avoid the straggler
effect (R2) and make gradients with more contribution to

training accuracy be transmitted first (R3). We envision

that ROG will nurture diverse ML applications deployed on

mobile robots in the field, such as robot rescue [1], disaster

response [2], and robot surveillance [23], [24], making them

fast and energy-efficiently adapt to changing environments

under an extremely unstable local wireless network without

being affected by the straggler effect. ROG’s code is released

on https://github.com/hku-systems/ROG.

In the rest of this paper, we introduce the background of

this paper in Sec. II, give an overview of ROG in Sec. III,

present the detailed design of ROG in Sec. IV, evaluate ROG

in Sec. VI, and finally conclude in Sec. VII

II. BACKGROUND

A. Online training on Robotic IoT

While machine learning methods heavily rely on labeled

training datasets (supervised training), it is costly to label

datasets in every possible environment. As a result, various

unsupervised training algorithms are developed to learn

knowledge from unlabeled data. For example, adversarial

unsupervised domain adaptation methods [25], [26] typically

adapt a pretrained model to a new environment by training

it with both shifted (noised) unlabeled data from the new

environment and labels predicted with generative methods.

With such methods, robots can adapt their pretrained models

to new environments after training with online collected data

to retain high accuracy of the models. As another example,

implicit mapping and positioning [27], [28] construct a

machine learning model representation of a 3D dense

map by training the model with online collected unlabeled

image sequences. We envision that the prosperity of these

unsupervised training algorithms is making online training

on online collected data on robots feasible and practical.

B. Characteristics of Robotic IoT Networks

In real-world robotic IoT applications (Fig. 2), devices typ-

ically need to move around for rescue, search, etc. Although

wireless networks suffice for high mobility, the occlusion
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of obstacles and the change of distances among devices

cause instability in the bandwidth capacity: sharp bandwidth

fluctuation with random duration happens frequently and

randomly. This causes divergence in gradient transmission

time from different robots and the straggler effect.

To demonstrate the instability, we set up a robot surveil-

lance task: two four-wheel robots navigate around several

given points at 5˜40cm/s speed in our lab (indoors) and

campus garden (outdoors). The hardware and wireless

network settings are as described in Sec. VI. We believe

our setup represents the state-of-the-art (SOTA) computation

and communication capabilities of robotic IoT devices.

We saturated the wireless network connection with

iperf [29] and recorded the average bandwidth capacity

between these two robots every 0.1s for 5 minutes, shown

in Fig. 3. Both indoor and outdoor records show frequent

and sharp bandwidth fluctuation. Statistically, on average a

20% fluctuation of bandwidth capacity happened every 0.4s,

and a 40% fluctuation typically happened every 1.2s. Such

times are comparable to the time of transmitting compressed

gradients recorded with ideal wireless networks (e.g., 1.47s),

causing high variability of transmission time. Besides, the

outdoors bandwidth more frequently dropped to extremely

low values around 0Mbit/s, exhibiting higher instability than

indoors. The reason is the outdoor open area lacks walls

to reflect wireless signals. When there are obstacles (e.g.,

trees) between communicating robots, fewer signals could

be received in the outdoor area than the indoor.

Comparison with Datacenter Networks and Edge
Networks. Compared with robotic IoT networks, datacenter

networks (for distributed training in datacenter) and edge

networks (for federated learning) are wired and often exhibit

much lower bandwidth fluctuation. In datacenter networks,

bandwidth fluctuation is typically caused by congestion on

intermediate switches, and could be mitigated by scheduling

traffic on switches [30]. In edge networks, bandwidth

fluctuation is often caused by the variation of overall traffic

volume, and typically happens at the scale of hours [31].

Existing methods target these two types of networks, and are

not designed for handling instability in robotic IoT networks.

C. Impact of Straggler Effect on Power Consumption

People may think a stalling robot can be consuming little

energy. However, we recorded the energy consumption when

a robot is stalling due to the straggler effect and found

that a stalling robot still consumed almost one third of the

energy consumption when the robot was computing (see

Sec. VI). That is because the device cannot be put into low

power sleep mode even when stalling, as it has to wait for

messages from the parameter server and promptly continue

working when stragglers catch up, and chips like CPU,

GPU, and memory consume non-negligible power even when

not computing, due to the static power consumption rooted

in transistors’ leakage current [32]. Consequently, besides

(a) Indoors. (b) Outdoors.

Figure 3: The instability of robotic IoT networks. A

40% fluctuation of bandwidth typically happens every 1.2s,

comparable to the time of transmitting compressed model

gradients.

damaging training throughput, stall caused by the straggler

effect also has a major impact on the power consumption of

the training process.

D. Related Work

BSP, SSP and their Variants. Bulk Synchronous Parallel
(BSP) methods [13] enforces synchronization between each

iteration. Therefore, it could easily get blocked by stragglers.

To mitigate the straggler effect in datacenter networks while

guaranteeing model convergence, SSP is usually adopted [13]

in practice. By loosening the synchronization barrier, SSP

allows fast workers to continue their iterations when the

updates from slow workers are staled until the staled

version reaches a staleness threshold. With a small staleness

threshold, SSP ensures that all gradients extracted from each

device’s dataset equally contribute to the SGD convergence

(same as BSP), which is widely reported to be necessary

for an SGD process to achieve high statistical efficiency

and high final accuracy [33], [34], [35], [36]. However, a

small threshold cannot contain the instability in real-world

robotic IoT networks while a large threshold sacrifices high

statistical efficiency.

Inheriting SSP’s more flexible synchronization model

compared with BSP, subsequent studies (including federated

learning) [19], [20], [37] extensively explored the scheduling

of synchronization among workers according to network

conditions and the contribution to training accuracy. Schedul-

ing strategies work well in datacenter networks and edge

networks with slow and moderate bandwidth fluctuation.

However, these scheduling strategies are not robust to the

rapid and random bandwidth fluctuation in robotic IoT

networks, because their model-granulated scheduling and

transmission are often coarser-grained than the transient

instability of real-world robotic IoT networks.

Gradient Compression. Gradient compression greatly

reduces the communication traffic volume and is indeed

essential for practical distributed training over wireless

networks. Some lossy gradient compression methods [38]
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(information is lost during compression and cannot be

recovered) achieve up to 0.1% compression rate (i.e., size

after compression divided by original size), but they cannot

provide convergence guarantee [38]. In this paper, we

only consider lossless compression methods (e.g., the lost

information during compression is compensated with error

compensation [22]) which have a typical compression rate

of around 3% [22].

Even with gradient compression, communication still takes

a major time portion in distributed training on robotic IoT

devices for two reasons. First, the devices typically share the

same wireless channel, incurring traffic volume proportional

to the number of devices involved in the distributed training

process. Second, with the rapid advancement of SOTA robotic

IoT devices [39], the computation time on each device is also

decreasing. As a result, the communication time is typically

comparable to the computation time.

Consequently, even with gradient compression, the strag-

gler effect, which severely prolongs the communication time,

still has a major impact on the distributed training process. In

our experiments, a Jetson Xavier NX [40] device out of a four-

device team computed gradients in 2.18s and ideally needed

to wait for 1.47s upon the synchronization barrier in BSP

(four devices push and pull the compressed gradients sized

2.1MByte, summing up to 134.4Mbit), which is comparable

to (equal to 67.4% of) the computation time. Meanwhile,

the straggler effect in the above indoor scenario caused each

device to on average stall for 2.23 s in each iteration, equal

to 102.2% of the computation time, severely degrading the

training throughput.

III. OVERVIEW

A. Workflow

Fig. 4 presents the workflow of ROG and compares it

with BSP and SSP in unstable networks. The random and

sharp wireless bandwidth fluctuation causes the transmission

time of each model among devices in BSP and SSP to

diverge and causes the straggler effect. Since the transmission

time of each row among the devices also diverge in ROG,

to avoid the straggler effect, the main idea of ROG is to

align the transmission time among all devices in real-time

by dynamically and adaptively scheduling the transmission

of rows, as shown in Fig. 4. The design of ROG tackles

three problems: how to properly break up the gradient

synchronization granularity, how to guarantee convergence,

and how to schedule the gradient transmission in real-time.

The choice of granularity. Out of three possible granular-
ity choices: elements, rows and layers, we choose rows to best

tradeoff between the management overhead and flexibility

in transmission (duration of transmission of the smallest

unit). While ROG is adaptively transmitting the smallest

units, it causes a management overhead that we need to at

least maintain a list of indexes of all the smallest managed

units on the whole model and transmit the list during every

model synchronization, so that the adaptively transmitted

units can be correctly indexed to its position on the model.

On the one hand, element granularity will apparently cause

an index list as large as the number of elements of the

whole model; as an integer (an index) and a floating-point

number (an element) typically take up the same amount of

data volume when being transmitted (i.e., the default int32

and float32 encoding configuration of PyTorch [21]), the

transmission data volume will be doubled during every model

synchronization. On the other hand, layer granularity typically

causes a small index list (e.g., 226 layers in the model [41]

with 16.95M elements we evaluated for the first application

paradigm); however, a layer of a model can be still large

at size (e.g., the largest layer of the aforementioned model

has 1.18M elements) and bandwidth degradation during its

transmission will still evidently prolong the training iteration.

Overall, as a row of a model is neither too small (33307 rows

on the aforementioned model that take up data volume only

sized 0.24% of the model size for indexing in our evaluation)

nor too big (a row typically contains several to hundreds of

elements), row granularity is the best choice for ROG.

Row Stale Parallel (RSP). Since not all rows are

synchronized in an iteration in ROG, gradients of different

rows of the training model on a device can have different

versions. Uncontrolled version differences could slow down

the training and even fail to guarantee convergence. We find

that breaking up and applying the staleness control of SSP to

each row of the training model would confine the divergence

of the same row across different devices and thus confine

the divergence of the training model across different devices,

which is key to the convergence of the distributed training

process [13]. Consequently, we design RSP that adopts a

two-level row-granulated staleness control: for the same row

on the training model across different workers, the staled

version should be within a preset staleness threshold; for

different rows within the same worker, the staled version

should also be within the same staleness threshold. Workers

are forced to wait when these two requirements are not met,

as shown in Fig. 4. In this way, RSP provably achieves the

same level of convergence guarantee as SSP (see Sec. IV-C).

Adaptive Transmission Protocol (ATP). To align the

transmission time among all devices, for a straggler in

an iteration, ATP controls it to transmit MTA (minimum

transmission amount, an empirical lower bound of the number

of rows to be transmitted by stragglers to avoid stall) of

the total rows and reports its transmission time of MTA

(MTA time) to other devices. A non-straggler then keeps

transmitting rows for MTA time (or all of their rows if

the transmission finishes before MTA time), so that the

transmission time among stragglers and non-stragglers is

balanced and the straggler effect is avoided. Among rows

within a device, ATP maintains the importance (depth of the
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Figure 4: Workflow of ROG. The training model in RSP is divided into four rows and each row is synchronized in one

row-level transmission. The bandwidth on these three devices is identical at the same time point in the three cases and the

bandwidth is interfered by distance, occlusion, etc.

red color in Fig. 4) of each row based on its possibility to

cause stall (e.g., the staled version) and the contribution of

gradients of each row to training accuracy (e.g., the absolute

value of the gradients); the rows with the highest importance

will be transmitted first to minimize stall time and optimize

statistical efficiency.

Technically, besides the management overhead, smaller

granularity also brings extra transmission overhead. To ensure

that non-stragglers keep transmitting rows only for MTA

time, a straightforward approach is inserting judgement about

whether MTA time is reached between the transmission

of each two successive rows. However, such an approach

is infeasible in ROG because empirically the transmission

time of a row is comparable to the time cost of the

inserted judgement, leading to severe under-utilization of

the bandwidth capacity. Instead, we co-design ATP with

the underlying transmission protocol and enable speculative
transmission: the device continuously transmits rows in the

priority determined by their importance without inserting

judgement and discards the ongoing transmitting row once

the MTA time is reached (see Sec. IV). In this way, the

transmission overhead is reduced to possibly discarding the

last row transmitted if its transmission is incomplete, which

is also negligible.

B. Architecture of ROG

Fig. 5 shows the architecture of ROG. On each worker

and the parameter server, ROG divides the parameters of

the shared model into rows and maintains the gradients

and staled version of each row individually. In an iteration,

each worker computes gradients of the model based on

its own share of the dataset, and Importance Metric sorts

the order of transmission of each row according to the

row’s staled version and the average absolute values of the

gradients. Speculative Transmission keeps transmitting for the

aforementioned MTA time on non-straggler or transmits MTA

on stragglers, balancing the transmission time of each worker.

ROG increases the staled version of un-transmitted rows by

one and set the staled version and gradients of transmitted

rows to zero, so that only gradients of un-transmitted rows

will be accumulated.

The parameter server aggregates and averages the received

gradients, and updates Version Storage of the corresponding

rows. If the requirements of RSP are met, ROG will

similarly determine the importance of the rows in Importance

Metric and transmit the most important rows’ gradients in

Speculative Transmission for MTA time or transmit MTA;

otherwise, idle time (stall) will be inserted until RSP is met.

Note that ROG maintains a copy of the gradients for each
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Figure 5: Architecture of ROG. Note that on the parameter

server, similar to the worker side, ROG checks whether a

row is transmitted and manages its accumulated gradients

and the version storage accordingly. We leave out this part

of the figure for simplicity.

worker, because the importance of each row can differ for

different workers and thus different rows can be transmitted

for different workers. If ROG sends the gradients of a row

to a specific worker, ROG will only set the gradients on the

copy for this worker to zero and the gradient copies for other

workers are not affected.

On reception of gradients of certain rows, the worker

optimizes the parameters of these rows with the received

gradients. It is worth noting that, since the produced gradients

of each worker will either be accumulated at the worker side

or the parameter server side and eventually be sent to each

worker, the model on each worker will be optimized with

exactly the same gradients. Thus convergence of the shared

model will not be affected.

IV. DETAILED DESIGN

A. Algorithms of ROG

Here we present how ROG integrates RSP and ATP to

achieve finer-grained staleness control and adaptive schedul-

ing. The local worker part is given in Algo. 1 and the

parameter server part is given in Algo. 2. Details of ATP

are mainly described in Algo. 3 and Algo. 4 in the next

subsection.

On the worker side in Algo. 1, when gradients are

computed in a training iteration, they are added to the

accumulated gradients (line 2, 3) and we then transmit the

accumulated gradients to the parameter server in PushGradi-

ents(). PushGradients() sorts the transmission order of the

accumulated gradients of each row and then speculatively

Algorithm 1 Local Worker

Function LocalWorker ROG(): // On workers
Data: w: local model parameters; η: learning rate; N:

total training iterations; iters: training iterations

that each row is pushed; g′: accumulated gradients;
t: staleness threshold

1 for each iteration n: 1...N do
2 g← Training(w)
3 g′ ← g′+g
4 iters← PushGradients(g′, n, iters)
5 PullAveragedGradients(w, eta)
6 Function PushGradients(g′, n, iters, t):

// Worker mode of ImportanceMetric

7 ImportanceMetric(g′, iters, ′worker′)
8 Transmitted← SpeculativeTransmission(g′, n, t)
9 for each row i in Transmitted do

10 g′i← 0

11 itersi← n;
12 end
13 Function PullAveragedGradients(w, eta):
14 ḡ← RecvGradients()

15 for each ḡi received from server do
16 wi← wi−η ḡi
17 end

Algorithm 2 Parameter Server

Function ParameterServer ROG():
Data: ḡr: averaged gradient for worker r; ḡr

i : i-th row

of ḡr; vr
i : the latest training iteration on worker r

that updates row i; V : {vr
i}; num: the number of

workers; P: rows’ priority; t: staleness threshold
1 upon receive gradients g′ from worker r do

// Worker r push gradients

2 g′,n← RecvGradients(r)
3 for each row i in g′ do
4 vr

i ← n
5 for each worker s do
6 ḡs

i ← ḡs
i +

g′i
num

7 for each row i in g′ do
// vr

i triggers the finer-grained

threshold

8 while vr
i −min(V )≥ t do

9 wait for other worker to update ḡi
// Worker r pull gradients

// Server mode of ImportanceMetric

10 ImportanceMetric(ḡ, V , ′server′)
11 Transmitted← SpeculativeTransmission(ḡ, t)
12 for each row i in Transmitted do
13 ḡr

i ← 0
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transmits these rows such that the transmission time among

different workers is balanced in SpeculativeTransmission()

(line 7 to 8). SpeculativeTransmission() also reports the

latest training iteration that produced these gradients to

the parameter server for it to maintain its Version Storage.

Accumulated gradients of the transmitted rows will be

assigned to zero and their latest training iteration that is

pushed to the parameter server is recorded in line 9 to 11.

In PullAveragedGradients(), pulled averaged gradients of

certain rows would be used to update the parameters of the

corresponding rows in line 15 to 16.

On the parameter server side in Algo. 2, upon reception

of gradients of certain rows from a worker r, ROG on the

parameter server side first finds the corresponding rows on the

shared model and then accumulates the averaged gradients as

shown in line 2 to 6. From line 7 to line 9, we only consider

the situation that the times (training iterations) that gradients

of row i (ḡi) are updated by worker r (vr
i ) should not be ahead

of the updated times of any rows by any workers (min(V ))
more than the threshold. That’s because when the threshold is

triggered, we only need to stall the non-stragglers and wait for

stragglers to catch up to satisfy RSP. In line 10 to 13, ROG

determines the transmission priority of rows, speculatively

transmits these rows, and manages the accumulated gradients

of transmitted rows similar to the worker side.

B. Adaptive Transmission Protocol

Algorithm 3 Importance Metric

Function ImportanceMetric:
Data: g′: gradients of all rows; iters: training iterations

that each row is updated; mode: worker or param-
eter server mode

1 importance←{}
2 for each row i in g′ do
3 if mode==’worker’ then
4 j← f1×mean(abs(gi′)) + f2×(max(iter) - iteri)

5 else
6 j← f1×mean(abs(gi′)) + f2×(iteri - min(iter))
7 end
8 importance.append( j)
9 Sort(g′, importance)

The ATP protocol consists primarily of two functions:

ImportanceMetric (Algo. 3) that prioritizes the transmission

of different rows, and SpeculativeTransmission (Algo. 4) that

records and aligns the gradient transmission time among

different workers.

Importance Metric in Algo. 3 shows our scheme to

prioritize the gradient rows. Notably, we treat workers and

the parameter server differently (line 3 to 6). Besides absolute

values of gradients (mean(abs(gi′))), since the staleness

threshold is triggered and handled at the parameter server

side, workers pushing gradients to the parameter server need

Algorithm 4 Speculative Transmission

Function SpeculativeTransmission:
Data: g′: sorted gradients of all rows; n: current training

iteration training; t: staleness threshold
1 MTA← MTATable(t) × len(g′)
2 tMTA← GetMTATime()

3 Transmitted← SendWithTimeout(g′, tMTA)

4 if len(Transmitted) < MTA then
5 Send(g′[len(Transmitted): MTA])
6 Transmitted←MTA
7 end
8 UpdateMTATime()

9 return Transmitted

to especially give priority (bigger j) to the staled rows, so
as to reduce the possibility to trigger the staleness threshold

and cause stall. Thus we add a term max(iter)− iteri to

the importance of each row on workers to estimate the

number of iterations that the row has not been pushed (staled)

to the parameter server (line 4, f1 and f2 are empirical

coefficients). On the contrary, pulling gradients from the

parameter server will not affect the triggering of the staleness

threshold, and thus we give extra priority to fresher rows

(estimated with iteri−min(iter) in line 6) that typically have
higher contribution to training accuracy. These rows are

then sorted in descending order according to their assigned

importance and will be transmitted in the sorted order.

After sorting these rows, Speculative Transmission

(Algo. 4) retrieves the scheduled transmission time (tMTA) and

enforces the transmission time limit by setting the timeout

of the ongoing transmission to tMTA (line 3). Upon timeout,

the ongoing transmission will be immediately stopped and

the transmitted gradients will be recorded in Transmitted.
If at least P percent of rows are transmitted each time, at

most (1−P)s percent of the row will remain un-transmitted

after s steps, because all rows are transmitted and updated
independently of each other. In order to ensure all rows

are transmitted before triggering the threshold, there should

be (1−P)S−1 < P, where the staleness threshold is S. We

set a minimum transmission amount (MTA), which the

percentage of rows per transmission cannot be lower than,

to be the solution to the above inequality in Table I. If

the amount of transmitted rows has not reached MTA,
Speculative Transmission would go on transmitting the

remaining rows of MTA in line 4 to 7. The possible cost of

such speculative transmission is that the transmission of the

last row transmitted could be incomplete and needs to be

discarded, which is a negligible cost thanks to the small size

of a row.

C. Proof of guaranteed convergence

Following the convention in [13], we refer to x as the

“system state”, and the operation x← x+u as “writing an
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Threshold 2 3 4 5 6 7 8

MTA 0.5 0.38 0.32 0.28 0.25 0.22 0.2

Table I: MTA values under different thresholds

update”, where u is a “model update”. We define D(x||x′) =
1
2
‖x− x′‖2 and assume that P workers write model updates to

the parameter server independently. Let ut be the tth update

written by workers and x̃t be the tth model parameters read

by workers, and we divide the whole model parameters into

M parts by row, which means ut = [u1t ,u
2
t , ...,u

M
t ]T where ui

t
is the ith row of ut and x̃i

t is the ith row of x̃t .

In this paper, we focus on SGD [42] and prove convergence

of each row and further convergence ot the entire model.

Since ROG either synchronizes or aggregates each row of

parameter updates, no parameter update in a row is lost;

thus the final convergence of the whole training model can

provably have the same convergence guarantee as SSP.

Theorem 1 (SGD under RSP): Suppose we want to find

the minimizer x� of a convex function f (x) = ∑T
t=1 ft(x),

via gradient descent on one component ∇ ft at a time.

We assume the components ft are also convex. Let ut =
−ηt∇ ft(x̃t), where ηt =

σ√
t with σ = F

L
√
2(S+1)P

for certain

constants F , L, and Smax =MAXi=1,2,...,M(Si). Then, assuming
that ||∇ ft(x)|| ≤ L for all t (i.e. ft are L-Lipschitz), and

that MAXx,x′∈xD(x||x′)≤ F2 (the optimization problem has

bounded diameter), we claim that R[x] = ∑T
t=1( ft(x̃t)−

f (x�)) ≤ o(T ), which implies Et [ ft(x̃t) − ft(x�)]→ 0 and

thus convergence.

Proof: We define g̃t = ∇ ft(x̃t) = [g̃1t , g̃
2
t , ..., g̃

M
t ]T and

there is

R[x] =
T

∑
t=1

( ft(x̃t)− f (x�))≤
T

∑
t=1
〈∇ ft(x̃t), x̃t − x�〉

(the property of convex functions)

=
T

∑
t=1
〈g̃t , x̃t − x�〉=

T

∑
t=1

M

∑
i=1

〈
g̃i

t , x̃
i
t − xi,�〉

(the property of inner product)

=
M

∑
i=1

T

∑
t=1

〈
g̃i

t , x̃
i
t − xi,�〉 (since i and t are independent)

(1)

Then, we are going to prove the convergence of each row

by finding the upper boundary of ∑T
t=1

〈
g̃i

t , x̃
i
t − xi,�

〉
for each

row. Thanks to SSP’s pioneering work [13], we can learn

the following Lemma 1.

Lemma 1: For P workers with staleness threshold S′, we
assume that ||∇ f ′t(x)|| ≤ L′ and maxxi,x′i∈XiD(xi||x′i) ≤ F ′2.
If we set the initial step size σ = F

L
√
2κ
, where κ = (s+1)P

and assume T is large enough that 1
2κ + κ√

T
≤ 1, then

R[X ]≤ F ′L′
√
2κT

[
3+

1

2κ
+

κ√
T

]

≤ 4F ′L′
√
2(S′+1)PT

(2)

Because the parameters of each row are independent of each

other, RSP keeps the same staleness threshold control for

each row as SSP does. In this way, RSP breaks the granularity

of the synchronization model from the whole model to rows

and still achieves the same convergence guarantee for any

single row as SSP from Lemma 1, which means each RSP’s

row still satisfies Inequality 2:

R[Xi] =
T

∑
t=1

〈
g̃i

t , x̃
i
t − xi,�〉≤ 4F ′L′

√
2(Si +1)PT

≤ 4F ′L′
√
2(Smax +1)PT (Smax = MAXi=1,2,...,M(Si))

(3)

Based on Inequality 1 and Inequality 3, we further have

R[X ]≤
M

∑
i=1

T

∑
t=1

〈
g̃i

t , x̃
i
t − xi,�〉≤M ∗MAX(R[Xi])

= M ∗4F ′L′
√
2(Smax +1)PT

(4)

As x = [x1,x2, ...,xM]T and the parameters of each

row are independent of each other, there is ‖x− x′‖2 =

∑M
i=1

∥∥xi− x′i∥∥2, and we can further have

D(x||x′) = 1

2
‖x− x′‖2 = 1

2

M

∑
i=1

∥∥xi− x′i∥∥2 = M

∑
i=1

D(xi||x′i)
(5)

Since D(xi||x′i) is independent of each other with various

i, in order to maximize D(x||x′), all D(xi||x′i) need to be

maximized, which means

MAX(D(x||x′)) =
M

∑
i=1

MAX(D(xi||x′i)) = M ∗MAX(D(xi||x′i))
(6)

In other words, there is F2 = M ∗F ′2 and F ′ = F√
M
can be

obtained after deformation. In the same way, we can have

L′= L√
M
.

Returning to the proof of Theorem 1, we substitute F ′,L′
into Inequality 4 and

R[X ]≤M ∗4F ′L′
√
2(Smax +1)PT

= M ∗4 F√
M

L√
M

√
2(Smax +1)PT

= 4FL
√
2(Smax +1)PT ≤ o(T )

(7)

Until now, we have completed the proof of Theorem 1,

which means x̃t converges in expectation to the minimizer

x�.
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V. IMPLEMENTATION

ROG is implemented as an optimizer in PyTorch [21] with

nearly 1200 lines of code. ROG exposes similar APIs as

existing PyTorch optimizers (torch.optim [43]), so that

it can be integrated by simply replacing the application’s

original optimizer with ROG’s optimizer. Under the hood,

ROG launches a parameter server on one of the devices to

keep track of the training process among all the devices.

On each device, ROG transparently inspects the underlying

tensors storing parameters of the model and tracks each row’s

versions. Each time optimizer.step() is called, ROG

updates the parameters and row versions of the local model,

and synchronizes with the parameter server according to the

ATP protocol.

During the synchronization process, the communicated

gradients are compressed before transmission and decom-

pressed after reception using the lossless one-bit compression

algorithm described in [22] which typically reduces the trans-

mission volume to 3.2% of the uncompressed counterpart.

Our implemented compression process is as follows: the

gradients are first compressed to one-bit tensors as defined

in [22] on GPU (or CPU on devices without a GPU) and

these tensors are then serialized and moved to CPU using

cupy.packbits() [44] (or numpy.packbits() [45] on devices

without a GPU) for transmission. The decompression process

is exactly the reversion of the compression process. For

the underlying optimizer, we implemented the block-wise

distributed SGD-momentum algorithm in [22] and integrated

it with [46] which supports staleness and local updates in

SGD-momentum algorithms without damaging convergence.

In Speculative Transmission of ATP, we implemented

SendWithTimeout() that enforces a time limit for the

transmission and discards the ongoing transmission if

the time limit is reached. The enforcement of the time

limit is simply accomplished with socket: setting a time-

out with socket.settimeout() and then transmitting with

socket.sendall(). One issue is that once the ongoing transmis-
sion is discarded, it is difficult for the receiver to be aware of

the ending of the transmission and the discarded transmission

can bring many fragments of incomplete information into

the buffer of the receiver. To cope with it, we wrap such

transmission with several unique bytes at both the beginning

and the ending of the transmission, so that the receiver can

be aware of the start and the ending of the transmission

once it retrieves these unique bytes and the fragments are

skipped.

VI. EVALUATION

Testbed. The evaluation was performed on five devices

consisting of three four-wheel robots and two laptops. Each

robot was equipped with an NVIDIA Jetson Xavier NX [47]

and each laptop was equipped with an Intel Core i7-8565U

CPU@1.80GHz CPU and a 940mx GPU (weaker than the

NVIDIA Jetson Xavier NX in computation power). One

laptop was chosen as the parameter server and directly con-

nected to all other devices by enabling an IEEE802.11ac [48]

hotspot over 80MHz channel at 5GHz frequency. Since the

heterogeneity in computation power among the devices is

out of our scope, we adopted dynamic batching in [49] to

make all the involved devices spend equal time computing

gradients in each iteration (see Table II).

Experiment Scenarios. Our first evaluated online training
application paradigm is referred to as coordinated robotic

unsupervised domain adaptation (CRUDA): a team of robots

are recognizing the images of objectives captured by their

cameras with a shared objective recognition model, and

the recognition accuracy is accidentally degraded by en-

vironmental noises (domain shift) such as fog. Such a

paradigm is fundamental and representative [50], [51], [52]

in typical robotic application scenarios including search,

rescue, surveillance, and field exploration. In these scenarios,

powerful datacenter servers are typically unavailable due to

the lack of internet access in damaged buildings and outdoor

fields. To recover the recognition accuracy as soon as possible,

the team of robots adapt the shared model to the noises via

wireless distributed training on collected noised images. We

assume the dataset with noise for online adaptation can

be generated following the unsupervised domain adaptation

methods [25], [26], which typically train the model on

generated adversarial (noised) examples for adaptation; we

generated these adversarial examples by adding noise to the

original datasets for simplicity.

The second paradigm is referred to as coordinated robotic

implicit mapping and positioning (CRIMP): a team of robots

continuously collect images of their surroundings through

their cameras; meanwhile, the team of robots cooperatively

constructs a shared implicit map (a machine learning model

representing the 3D map of an area) over the collected images

and positions themselves in the shared map. This is also

an important task for robotics, as it provides not only 3D

reconstruction of the area of interest, but also the real-time

positioning information of the robots which is essential for

many robotic tasks such as navigation and exploration. The

major metric we use for CRIMP is the trajectory error (i.e.,

the error between the ground-truth positions of the robots

and their predicted positions).

Experiment Environments. We setup two real-world

environments for our evaluation, namely indoors and out-
doors. In the indoors scenario, robots move around in our

laboratory with desks and separators interfering with wireless

signals. In the outdoors scenario, robots move around in our

campus garden with trees and bushes interfering with wireless

signals and this scenario imposes higher level of instability

as discussed in Sec. II-B.

Baselines. We compared ROG with BSP [12], SSP [13]

and the framework proposed in [19] (referred to as FLOWN).
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FLOWN is one of the most SOTA scheduling-based methods

specified for distributed training over unstable wireless

networks.

Datasets. For CRUDA, we use the well-studied Fed-

CIFAR100 [53], [54] as the image dataset of objectives,

with 50000 samples (100 types and each has 500 images)

for training and 10000 samples (100 images for each type)

for testing. This dataset is also plausible for simulating

the real-world unbalanced data distribution by partitioning

the images into 500 shards using the Pachinko Allocation

Method [55] and we equally divided the dataset into four

parts without overlap, each for one of the workers. We follow

the methods of DeepTest [56], a DNN testing framework, to

add noises to the Fed-CIFAR100 dataset to simulate fog and

brightness changes. For CRIMP, we use a short sequence of

500 continuous images captured inside an apartment from the

ScanNet dataset [57] and separate the sequence into several

continuous sequences for each robot. One of the images is

fixed and shared among all the robots as the shared starting

point of mapping and positioning.

Models. We choose different model sizes for the two

applications respectively to evaluate how ROG performs under

different communication data volumes. For CRUDA, we

choose ConvMLP [41] as the objective recognition model

as it achieves both lightweight (total gradients are sized 65

MB before compression and 2.1MB after compression) and

high recognition accuracy (89.13%) on the Fed-CIFAR100

dataset. Our added noise leads to a lowered recognition

accuracy (52.88%) of ConvMLP and we need to online train

the ConvMLP model to recover its accuracy. For CRIMP, we

choose nice-slam [58], one of the SOTA implicit mapping and

positioning methods. The nice-slam model we used is sized

24.2MB before compression and 0.76MB after compression,

which is much smaller than the size of ConvMLP.
The default training configuration of ConvMLP [41] and

statistics are listed in Table II and we used the default training

configuration of the demo of nice-slam [28]. Note that we

include time cost for compression and decompression in the

computation time.

batch size batch size learning compress + decompress
(robot) (laptop) rate time cost
24 16 1e-6 0.42s to 0.51s

Table II: Default Setup

The evaluation questions are as follows:

• RQ1: How does ROG benefit real-world robotic applica-

tions compared to baseline systems in terms of training

accuracy and power consumption by fulfilling 3Rs?
• RQ2: How does ROG handle the unstable wireless

networks?

• RQ3: How sensitive is ROG to different batch sizes,

different numbers of devices, and different thresholds?

• RQ4: What are the limitations and potentials of ROG?

A. End-to-end Performance

(a) Average time composition of a
training iteration.

(b) Statistical efficiency.

(c) Training accuracy against wall-
clock time.

(d) Energy consumption against train-
ing accuracy.

Figure 6: Comparison between ROG and the baselines with

CRUDA in indoors.

We first compare the training accuracy/trajectory error

of the two applications and energy consumption of their

training processes over time under different training systems.

The training accuracy of CRUDA and trajectory error of

CRIMP were both obtained by checkpointing and validating

the training model on each worker every 50 training iterations

and then averaging the validated accuracy/trajectory error

among the workers. We measured and averaged the energy

consumption of the whole development board including

CPU, GPU, memory and wireless card on all robots with

jtop [59], a well-recognized monitoring tool for NVIDIA

Jetson boards. Since jtop only reports transient power

consumption, we approximated the energy consumption of

each run by recording the power consumption at 10 Hz

and calculating the total power consumption with numerical

integration.

CRUDA. Our evaluation results of CRUDA in Fig. 1

and Fig. 6 show that ROG achieved both high training

accuracy and high energy efficiency. When training for 30

minutes, ROG achieved 3.3%˜6.8% higher accuracy than the

baselines in outdoors in Fig. 1c, and up to 1.8% accuracy

gain in indoors in Fig. 6c due to reduced instability. When

training for 60 minutes, ROG achieved 4.9%˜6.5% higher

accuracy than the baselines in outdoors. Such accuracy

gains have been reported as critical in real-world robotic

applications [50], [60]. In terms of energy consumption, when

the training model reached an accuracy of 64.0%, ROG saved

20.4%˜50.7% of the battery energy in outdoors (Fig. 1d).

The reduction of energy consumption was up to 41.3% in

indoors still due to reduced instability.

346

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on November 19,2022 at 02:08:30 UTC from IEEE Xplore.  Restrictions apply. 



The key reason for ROG’s high performance is its miti-

gation of stall time (high training throughput, R2) without
sacrificing statistical efficiency (high statistical efficiency, R3)
in various environments with different levels of instability

(robustness, R1). Fig. 1a and Fig. 6a show the recorded

average time composition of a training iteration where a

shorter total time duration of a training iteration implies

higher training throughput. In a training iteration while all

systems took almost the same time computing gradients and

communicating the compressed gradients, BSP, SSP-4, SSP-

20 and FLOWN suffered at least 4.8s stall in outdoors and
0.4s stall in indoors. ROG reduced the stall time by 49.1% to

86.5% in outdoors and by 42.4% to 97.6% in indoors. ROG
achieved less stall time reduction in indoors because the

wireless networks are less unstable in indoors. By breaking

down the whole model into rows and transmitting at the row

granularity, ROG prevents transiently degraded bandwidth

from blocking the overall training process.

Fig. 1b and Fig. 6b show that ROG achieved similar

statistical efficiency as BSP. To avoid being blocked by

degraded bandwidth during synchronization, it is inevitable

to reduce the transmission traffic volume and postpone the

synchronization of some rows, which causes staleness in un-

transmitted gradients. To minimize its impact on statistical

efficiency, ROG’s ATP identifies rows with large gradients

and prioritizes them. Therefore, even if stragglers transmit

fewer gradients than non-stragglers, important changes to the

model are always synced, resulting in a comparable statistical

efficiency as BSP.

To further understand the energy consumption statistics,

we identify three major states, namely computation, commu-
nication, and stall of a system during training, and measure

the power consumption of each state. We obtained the power

consumption of different states in Table III by matching

power consumption records with the training system status

log. There was minor (below 5%) difference across all the

evaluated systems, since all the systems do not change how

computation and stall states behave, while the overhead

of scheduling during communication is negligible. The

stall state power was nearly 30% of the computation state

power, since chips like CPU, GPU, and memory consume

non-negligible power even when not computing (i.e., in

stall state) due to the static power consumption rooted in

transistors’ leakage current [32]. Note that communication

and stall have similar power consumption, this may be due

to the relatively low wireless transmission rate (compared

to high-speed datacenter networks), involving little energy-

consuming operations. Since ROG reduced stall time, the

corresponding power consumed during stall was reduced

accordingly, accounting for ROG’s high energy efficiency.

CRIMP. We mainly evaluated CRIMP in outdoors, as
shown in Fig. 7. As shown in Fig. 7c and Fig. 7d, ROG also

achieved similar high training accuracy (less trajectory error)

(a) Average time composition of a
training iteration.

(b) Statistical efficiency.

(c) Training accuracy against wall-
clock time.

(d) Energy consumption against train-
ing accuracy.

Figure 7: Comparison between ROG and the baselines with

CRIMP in outdoors.

computation communication stall
Power (W) 13.35 4.25 4.04

Table III: Power (Watt) in different states.

and high energy efficiency in CRIMP. When training for 30

minutes, ROG reduced 6%˜13% trajectory error compared

with the baselines in Fig. 7c. After training for 60 minutes,

the reduction of trajectory error of ROG over the baselines

increased to 16%˜30%. Also, the energy consumption reduc-

tion of ROG over the baselines is outstanding: 32%˜41% less

energy to reach the trajectory error of 0.5 in Fig. 7d. Note that

while the model size of CRIMP amounts to only one third

of CRUDA and its average communication time is reduced,

the straggler effect of CRIMP is still severe with stall time

taking up 60% of the communication time in BSP in Fig. 7a.

That is because with a smaller model, the computation time

in a training iteration is also reduced and communication

remains the bottleneck of the training process.

B. Micro-Event Analysis

To further understand the performance gain of ROG, we

recorded the real-time bandwidth and how ROG responded

to it by adjusting the percentage of rows to be transmitted

out of all rows in each iteration (referred to as transmission

rate) on one robot, as shown in Fig. 8. How many training

iterations that this robot fell behind the fastest worker is

also recorded (referred to as staleness). Since proactive

methods (e.g., measuring with iperf) would affect the

application traffic and bandwidth, we passively measured the

real-time bandwidth with the expected throughput reported by

iw [61]. Note that iw’s output is an estimation of the physical
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Figure 8: Real-time bandwidth and the percentage of rows

transmitted by ROG

layer bitrate which deviates from the actual bandwidth the

application could exploit, we normalize the output with its

average.

When bandwidth was fluctuating in the former part

of Fig. 8, ROG responded immediately and adjusted the

transmission rate on a robot accordingly. This aligned the

transmission time between this robot and the fastest, avoiding

possible straggler effect and the staleness was in a low level

(0 to 1). In this way, ROG prevented a robot from straggling

and stalling the training process. When bandwidth degraded

to an extremely low level and lasted for a long time in the

middle part of Fig. 8, it was impossible to perform even

minimal necessary synchronization under such conditions,

and no system could keep in sync. Thus staleness slowly

accumulated on this robot. When bandwidth recovered in the

latter part of Fig. 8, this robot caught up quickly (staleness

decreased) because it was allowed to transmit partial of its

rows.

C. Sensitivity Studies

batch size. We varied the batch size (x2, x4) of training

in CRUDA in outdoors to examine how ROG performs

with different ratios of computation and communication,

as shown in the left column of Fig. 9. As FLOWN typically

achieved performance between SSP and BSP, we omit it in

the following sections for simplicity. When the batch size

increased, the computation time proportionally increased and

thus communication time would take a smaller portion in

a training iteration. In this case, the straggler effect will

be less severe (stall time decreased in the baselines) and

ROG’s potential gain over the baselines is limited. When

training for 30 minutes, ROG achieved 5.3% accuracy gain

over the baselines and 30.3% energy consumption reduction

when training accuracy reached 64% in the doubled batch

size case; When the batch size was increased to four times,

ROG achieved 3.5% accuracy gain over the baselines and

33.7% energy consumption reduction when training accuracy

reached 64%.

Number of workers. Increasing the number of training
workers (4, 6, 8 workers) in CRUDA caused more severe

(a) Accuracy with various batch sizes. (b) Accuracy with various numbers of
workers.

(c) Energy consumption with various
batch sizes.

(d) Energy consumption with various
numbers of workers.

(e) Average time composition with
various batch sizes.

(f) Average time composition with
various numbers of workers.

Figure 9: Sensitivity Studies about different batch sizes (left

column) and worker numbers (right column)

straggler effect, as shown in the right column of Fig. 9. First,

as the workers all share a same wireless channel, varied num-

ber of workers involved will incur traffic volume proportional

to the number of workers, causing communication time to

take a larger portion in a training iteration. Second, the

contention for wireless channel among workers is an extra

source of instability, deteriorating the straggler effect. In this

case in Fig. 9, when training for an hour, ROG achieved

3.0% accuracy gain over the baselines and 48.1% energy

consumption reduction when training accuracy reached 64.2%

in the 6 workers case; When the number of workers was

increased to 8, ROG achieved 3.7% accuracy gain over the

baselines and 55.1% energy consumption reduction when

training accuracy reached 64%.

Threshold. We empirically evaluated ROG’s performance

under a wider variety of staleness thresholds with the default

training configuration with CRUDA, as shown in Fig. 10.

From Fig. 10 we can learn that there is a tradeoff between

training speed and final training accuracy when using different

thresholds in ROG: while a large threshold (30 or 40)

brings higher training throughput and potentially even higher

statistical efficiency in the early stage of training, a too
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(a) Training accuracy against wall-
clock time.

(b) Statistical efficiency.

Figure 10: Sensitivity Studies about different thresholds

large threshold will degrade the statistical efficiency in the

late stage of training and lead to slightly degraded final

training accuracy (similarly reported by SSP with different

staleness thresholds [13]). The reason could be although ROG

limits divergence of training models on different workers and

guarantees convergence, a large threshold inevitably leads

to larger level of divergence among the models and leads to

suboptimal final training accuracy. Depending on whether the

training task requires extra fast training speed or high training

quality, there would be an optimal threshold selection for

it and we leave automatic finding the optimal threshold as

future work.

D. Lessons learned

Wireless distributed training over robots still faces
many challenges. During the implementation and evaluation
of ROG, we find that wireless distributed training over

robots is challenging both systematically and algorithmically.

Systematically, unlike GPU clusters equipped with fast

interconnects such as InfiniBand [62], robots lack fast and

stable network connection between each other for model

synchronization and lack enough power for long-term train-

ing, which are partially mitigated by ROG. Algorithmically,

the collected data of different robots are typically non-IID

(e.g., different robots are surveilling and capturing data from

different parts of an area), while there is not yet a well-

recognized method for distributed training over non-IID

datasets.

Generalizability of ROG. Due to limitations of our

hardware, we did not evaluate ROG’s performance on a wider

variety of wireless networks such as 5G [63] or WiMAX [64],

but only the most common and easily accessible Wi-Fi

networks on robots under different environments. However,

while these various wireless networks differ in throughput

and communication range, decay of wireless signals due to

varying distance or occlusion is still a common issue among

them. The resulting throughput fluctuation will still cause

the straggler effect in these wireless networks, where ROG

will be beneficial. Overall, ROG is optimized for distributed

training over any wireless LAN with frequent bandwidth

fluctuation and we leave the evaluation of ROG over a wider

variety of wireless networks as future work.

Finer granularity brings extra management overhead
and transmission overhead. While Finer granularity in

ROG enables more flexibility in scheduling to adapt to the

instability of real-world robotic IoT networks, it also brings

extra management overhead (e.g., index) and transmission

overhead in the wireless distributed training process. Al-

though we minimized these overheads by choosing a balanced

granularity of rows and enabling speculative transmission,

such overhead cannot be eliminated and potentially limits

the performance gain of ROG over the baselines.

Future work. We would like to apply and evaluate ROG in

a wider variety of online learning robotic tasks and environ-

ments in the future. Also, it is of interest to explore further

improvements of ROG such as pipelining communication and

computation on a robot in the training process as described

in [65] or even decoupling communication and computation.

We believe such investigation will enable even faster and more

robust wireless distributed training in real-world Robotic IoT

Networks.

VII. CONCLUSION

In this paper, we present ROG, a Row-granulated dis-

tributed training system optimized for robotic IoT networks.

By breaking up the granularity of model synchronization into

rows and applying adaptive scheduling to the transmission of

each row, ROG is able to balance the transmission time among

different workers under unstable wireless bandwidth and

prevent the straggler effect from causing stall in workers. In

this way, ROG optimizes training throughput while providing

high statistical efficiency and achieves high accuracy and

high energy efficiency in distributed training. We envision

that ROG will nurture diverse ML applications deployed

on mobile robots in the field, making them fast adapt to

changing environments under an extremely unstable local

wireless network without being affected by the straggler

effect.
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APPENDIX

A. Abstract

This artifact presents the availability, functionality and key

reproducible results of this paper (ROG: A High Performance

and Robust Distributed Training System for Robotic IoT).
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We provide bash and python scripts which would reproduce

our results on at least 5 robots, PCs, or laptops, each with

at least 8GB CPU memory or 8GB GPU memory.

B. Artifact check-list (meta-information)
• Program: Docker [66]; Traffic Control (TC) [67]
• Model: ConvMLP-M [41], [68].
• Data set: Fed-CiFar100 [53], [54]; scripts provided to

generate the noised dataset from DeepTest [56].
• Run-time environment: Arm64 or X86/64; Ubuntu18.04;

Python3.6
• Hardware: NVIDIA Jetson Xavier NX [47], PCs, or laptops,

each with at least 8GB CPU memory or 8GB GPU memory;
Wireless network interface controller (WNIC).

• Execution: Bash and python scripts.
• Output: Raw data and figures reproducing results of

CRUDA in Sec. VI-A and Sec. VI-C.
• How much disk space required (approximately)?: 30GB

disk space on each device involved.
• How much time is needed to prepare workflow (approxi-

mately)?: 1˜2 hours.
• How much time is needed to complete experiments

(approximately)?: 2˜3 days.
• Publicly available?: Yes. https://github.com/hku-systems/

ROG.
• Workflow framework used?: PyTorch [21].
• Archived (provide DOI)?: Yes. https://doi.org/10.5281/

zenodo.6941140.

C. Description

1) How to access: We provide access to a well-prepared

environment (a cluster with 2 PC, 1 laptop and 2 NVIDIA

Jetson Xavier NX) with code we used via a ZeroTier

network [69] during artifact evaluation, to ease the burden

of configuring. After joining our ZeroTier network, you can

access the devices we used by ssh commands. All code and

data are also publicly available at https://github.com/hku-

systems/ROG and https://doi.org/10.5281/zenodo.6941140.

2) Hardware dependencies: At least 5 NVIDIA Jetson

Xavier NX [47], PCs, or laptops, each with a WNIC and at

least 8GB CPU memory or 8GB GPU memory are required.

We recommend all the devices involved are homogeneous

but we also support heterogeneous settings. Mobility is not

necessary for the devices, since we provide scripts using

TC [67] to reproduce the real-time bandwidth capability

recorded in the identical settings in Sec. VI.

3) Software dependencies: Ubuntu18.04 with TC en-

abled [67]. Docker [66] is required to build the runtime

environments with the dockerfile that we provide. The

docker images that we rely on are nvidia/cuda:10.2-runtime-

ubuntu18.04 for X86/64 environments and dustynv/

ros:foxy-pytorch-l4t-r34.1.1 for Arm64 environments.

4) Data sets: The used Fed-CiFar100 dataset [53], [54] is

pulled from Tensorflow [70] and noised with scripts modified

from DeepTest [56].

5) Models: The used ConvMLP-M model and its related

code are pulled from [68], the official GitHub repository of

[41].

D. Installation

To ease the burden of configurations, we provide access

to a well-prepared environment. Installation from a clean

environment is also possible: download the artifact or clone

the GitHub repository; download the data set and the model

we used using utils/download data.sh if they are not in place;

change directory to the downloaded repository, build the

docker image and then run the built image:

$ git clone https://github.com/microP156/rog

$ cd ROG

$ bash utils/download data.sh

# For X86/64 devices
$ docker build −f Dockerfile x86−64 −t ROG

# For Arm64 devices please replace
# Dockerfile x86−64 with Dockerfile arm64

$ docker run −td −−name rog −v /tmp/.X11−unix −−gpus

all −e DISPLAY=:0 −−privileged −v /dev:/dev −−

network=host −−cap−add=NET ADMIN −−ipc=host

−v ”$PWD”:/home/work ROG bash

Some extra configurations are required:

• Enable WiFi hotspot on one of the devices involved

and connect all other devices to the hotspot. The device

enabling hotspot will act as the parameter server and

all others act as workers.

• In the file scripts/run.py on the parameter server, replace

the IP addresses and WNIC names with the wireless

IP addresses and WNIC names of all the devices as

instructed in the file. Also, replace the code repository

location of workers in that file with the actual location

you cloned the repository on the workers.

• Set up SSH key based authentication between the

parameter server and the workers on the hotspot network,

so that you do not need to enter your username and

password multiple times.

E. Experiment workflow

If you have installed and configured the evaluation envi-

ronments properly (or in the environment we provide), the

experiments can be started up by simply running the script

run\ all.sh on the parameter server (the device with hotspot

enabled) with

$ bash run all.sh

The default evaluation items will be run consecutively as

defined in the script without any extra operations.

The default evaluation items include end-to-end evaluation

of ROG on CRUDA in the outdoor environment (Sec. VI-A),

ROG’s performance with varied thresholds and varied batch

sizes (Sec. VI-C). Note that we omit the cases with different

numbers of workers since we are incapable of keeping that

many devices online in our laboratory.
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F. Evaluation and expected results

Raw evaluation results will be generated in the ./result

repository; at the end of each evaluation item, figures

concluding the results will be drawn automatically in the

./figure repository. The lines in the figures are expected to

be similar to those in our evaluation.

G. Notes

We recommend disabling the mobility of all the devices

involved during artifact evaluation (the devices we provide

are stationary and being charged); to introduce instability of

wireless networks in artifact evaluation, we instead provide

scripts based on TC [67] to replay on each device the real-

time bandwidth that we recorded in the identical settings

in our evaluation. That is because we need to ensure

reproducibility of the results as well as reliability of the

devices during artifact evaluation, since the moving devices

can easily run out of energy or crash into obstacles if not

being supervised.
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