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Abstract. Image inpainting is an ill-posed problem to recover miss-
ing or damaged image content based on incomplete images with masks.
Previous works usually predict the auxiliary structures (e.g., edges,
segmentation and contours) to help fill visually realistic patches in a
multi-stage fashion. However, imprecise auxiliary priors may yield biased
inpainted results. Besides, it is time-consuming for some methods to be
implemented by multiple stages of complex neural networks. To solve
this issue, we develop an end-to-end multi-modality guided transformer
network, including one inpainting branch and two auxiliary branches
for semantic segmentation and edge textures. Within each transformer
block, the proposed multi-scale spatial-aware attention module can learn
the multi-modal structural features efficiently via auxiliary denormaliza-
tion. Different from previous methods relying on direct guidance from
biased priors, our method enriches semantically consistent context in
an image based on discriminative interplay information from multiple
modalities. Comprehensive experiments on several challenging image
inpainting datasets show that our method achieves state-of-the-art per-
formance to deal with various regular/irregular masks efficiently. The
code is available at https://github.com/yeates/MMT.

Keywords: Biased prior · Multi-modality guidance · Auxiliary
denormalization · Image inpainting

1 Introduction

Image inpainting aims to repair missing or damaged image content based on
known information of an image. It has been applied on many real-world scenar-
ios, such as image editing [1,3], unwanted object removal [8,30], and old photo
restoration [31].
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Following the assumption that corrupted images have adequate knowledge for
inpainting [19,42], modern image inpainting methods [19,20,25,27,39] employ
an encoder-decoder architecture. Concretely, they focus on various contextual
attention mechanisms to learn the known visible content and fill the missing
region. However, this assumption does not hold if the image is damaged by larger
masks. It is difficult to provide sufficient semantically consistent information for
realistic image inpainting based on known area in a RGB image.

Fig. 1. Architecture of our Multi-modality guided Transformer that couples various
modalities including RGB image, semantic segmentation, and edge textures.

Therefore, recent approaches [4,21,25,32,39] have made great efforts to intro-
duce auxiliary priors, such as edges, segmentation, and contours, to facilitate
improving image inpainting performance. However, they still suffer from the
biased prior issue by using predicted auxiliary structures to guide image inpaint-
ing intermediately. Without ground-truth in testing phase, such direct guidance
is inevitably biased, resulting in more deviations and errors for image inpaint-
ing. On the other hand, previous works [23,32] are usually divided into multiple
stages of neural networks under the U-Net architecture. If each stage contains
a complex subnetwork, it is time-consuming for potential real-world inpainting
applications. This problem becomes more prominent when extending to video
inpainting. For example, Liu et al. [23] tackle the image inpainting problem by
a two-stage process, i.e., two individual U-Nets for rough inpainting and refine-
ment inpainting, yielding the running speed of only 1.37 FPS.

To solve the above issues, we propose a new multi-modality guided trans-
former network for image inpainting. As shown in Fig. 1, it follows the U-Net
style [28] encoder-decoder architecture. In the encoder, we first develop the adap-
tive contextual bottlenecks for better context reasoning. To adapt to the current
image content and missing region, the gating mask is updated to weight differ-
ent dilated convolutions to enhance base features. Then, the multi-modal mutual
decoder is proposed to decode the enhanced features into three modalities, i.e.,
RGB image, and corresponding semantic segmentation and edge textures. It
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consists of one image inpainting branch and two auxiliary branches for seman-
tic segmentation and edge textures. Unlike existing approaches based on direct
guidance from predicted auxiliary structures, we focus on jointly learning the
unbiased discriminative interplay information among the three branches. Specif-
ically, the proposed multi-scale spatial-aware attention mechanism integrates
multi-modal feature maps via auxiliary denormalization to reduce duplicated
and noisy content for image inpainting. Supervised by ground-truth RGB images,
semantic segmentation and edge maps, the whole network is trained in an end-
to-end fashion efficiently. Note that segmentation and edge annotations can be
provided by the off-the-shelf algorithms [6,25].

As shown in Fig. 2, previous image inpainting methods fail to restore correct
faces and buildings based on either biased edge [25] or segmentation [32] prior.
On the contrary, our method still achieves robust results even though the glasses
are not repaired in edge prior (see Ours∗ in the 1st row of Fig. 2) or the roof
shape is not predicted correctly in segmentation prior (see Ours∗ in the 2nd row
of Fig. 2). It demonstrates that our method can extract discriminative unbiased
context information to guide image inpainting. To verify the effectiveness of our
method, the experiment is conducted on three datasets including CelebA-HQ [17,
18], OST [35] and CityScapes [7]. The results show our method achieves the
state-of-the-art image inpainting performance. For example, our method obtains
the best FID score on the CelebA-HQ dataset with both regular and irregular
masks, yeilding ∼ 2 gain over the second best performer CTSDG [12]. By using
segmentation results from DeepLabv3+ [6], our method still performs well on
those datasets without segmentation annotation (e.g., Places2 [50]).

Contributions. 1. We propose an end-to-end multi-modality guided trans-
former to learn interplay information from multiple modalities including RGB
image, edge textures and semantic segmentation. 2. We develop the multi-
scale spatial-aware attention mechanism with auxiliary denormalization to cap-
ture compact and discriminative multi-modal features to guide unbiased image
inpainting. 3. Comprehensive results on several datasets demonstrate the effec-
tiveness of our unbiased multi-modality guidance, especially for irregular masks.

2 Related Work

Image Inpainting. Mainstream image inpainting methods employ the encoder-
decoder architecture based on the U-Net [28]. For example, Pathak et al. [27]
introduces an adversarial network [11] to help train the U-Net and mitigate
the blurring caused by the pixel-level averaging property of a reconstruction
loss. After that, Contextual Attention (CA) [42] is a two-stage coarse-to-fine
model to weight known region as the reference of mission region. Using partial
conv [22], Recurrent Feature Reasoning (RFR) [19] applies multiple iterations
at the bottleneck of the encoder from outside to inside for large corrupt areas.
Different from partial conv [22] with a heuristic mask update step to standard
convolution, Gated Conv (GC) [43] improves this mask update process with a
learnable convolution layer.



Unbiased Multi-modality Guidance for Image Inpainting 671

Fig. 2. Influence of biased prior guidance. � means no edge prior for SPG [32] and
segmentation prior for EC [25]. Ours∗ denotes the variant of our multi-modality guided
image inpainting method with inaccurate edge and segmentation priors by reducing the
loss weights of two auxiliary branches by 30 times.

To better exploit context between missing and uncorrupted regions,
GLILC [16] first introduces multiple residual modules [13] of dilation convo-
lution [41] as the bottleneck in the encoder. However, it may bring the “grid-
ding” problem [5,34] due to only sampling non-zero positions. That is, a single
constant dilation rate results in either sparse convolution kernels (large hole
rate) or difficulty crossing over large masks (small hole rate). To this end,
Wang et al. [36] develop a generative multi-column network for image inpaint-
ing. Recently, Zeng et al. [46] propose the AOT blocks to aggregate contextual
transformations from various receptive fields, which capture both informative
distant image contexts and rich patterns of interest. Different from above meth-
ods, we introduce a new adaptive contextual bottleneck in the encoder, where
the dynamic gating updating weights different pathways of dilated convolutions
based on various masks.

Image Inpainting with Auxiliary Structures. Due to the ill-posed nature
of reconstructing missing regions, additional structural priors (e.g., edges, seg-
mentation, and contours) are used to facilitate image inpainting models for more
realistic results. Edge Connect (EC) [25] relies on the corrupted canny edge image
to deliver finer inpainting results. Cao and Fu [4] introduce an extra encoder to
infer precise wireframe sketches to bypass the pool coherence of canny edge.
According to the style and spatial consistency of semantic segmentation, Seg-
mentation Prediction and Guidance network (SPG) [32] is a two-stage based
segmentation and RGB image inpainting model, where DeepLabv3+ [6] is used
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to estimate the segmentation of corrupted image. Another work [39] is a new
three-stage based model to locate and fill foreground object and its contour by
disentangling the inter-object intersection.

However, the above multi-stage methods are usually time-consuming. For
better efficiency, the Semantic Guidance and Evaluation (SGE) network [20]
couples with segmentation and image inpainting at different layers of decoder,
where the segmentation after completing and confidence scoring guides image
inpainting by semantic normalization [26]. Liao et al. [21] propose the Semantic-
wise Attention Propagation (SWAP) module to capture the semantic relevance
between segmentation and image textures in non-local operation. Recently,
Yang et al. [40] predict explicit edge embedding with an attention mechanism
to facilitate image inpainting by the multi-task learning strategy. It worth men-
tioning that most aforementioned works use estimated auxiliary structures as
the direct guidance of image inpainting. On the contrary, we develop the multi-
head spatial-aware attention module to guide image inpainting based on jointly
learned discriminative features from unbiased auxiliary priors.

Transformers in Image Inpainting. Inspired by Vision Transformer [10],
recent methods [9,44] decode the long-range dependencies between input fea-
tures for better image inpainting. Deng et al. [9] learn relations between the
corrupted and uncorrupted regions and exploit their respective internal close-
ness. Yu et al. [44] introduce the bidirectional autoregressive transformer that
enables bidirectionally modeling of contextual information of missing regions.
In contrast, our method propose a new multi-modality guided transformer to
capture interplay information across three modalities.

3 Multi-modality Guided Transformer

The original image I is degraded as a corrupted image Im = I�(1−M), where the
pixel values in the missing region M equal to 0 are defined as invisible pixels. Our
goal is to produce semantically reasonable and visually realistic reconstructed
images Ipred with the input of the corrupted image Im. Similar to previous
works [16,19,27,43], we retain the U-Net style encoder-decoder architecture. As
illustrated in Fig. 1, the multi-modality guided transformer contains an encoder
with adaptive contextual bottlenecks, and a multi-modal mutual encoder with
multi-scale spatial-aware attention, described in detail as follows.

3.1 Encoder with Adaptive Contextual Bottlenecks

For better context reasoning, the multi-stream structure is used in the encoder
to weight dilated convolutions and encode the current image content and missing
region. Unlike simply stacking parameters in previous ASPP [5] and AOT [46],
we develop a stack of Adaptive Contextual Bottlenecks (ACB) to adapt to the
specific mask shape size and image context by dynamic gating. As shown in
Fig. 3, the ACB module consists of four parallel pathways of convolutional layers
with different dilation rate and one gating mask to weight dilated convolutions.



Unbiased Multi-modality Guidance for Image Inpainting 673

In this way, the encoder can enlarge the perceptual field of convolutions and find
the most plausible pathway according to the current missing region.

Fig. 3. Structure of adaptive contextual bottlenecks in the encoder.

Given the corrupt image Im, the base features f0
∗ and gating g0∗ are initialized

by the last layer (gated conv) of encoder. Then f l
∗ and gl∗ at each layer is updated

by the ACB block. The gating mask gl∗ is used to estimate the probability of
missing region based on the feature map at the l-th layer (l = 1, · · · , L), i.e.,
gl∗ = gconv(f l

∗), where gconv denotes the gated conv operation [43]. In terms
of each pathway with dilation rate r, we compute the dilated feature maps f l

r

based on f l
∗ and corresponding weight al

r. Similar to [38], the spatial-wise weight
al
r is calculated based on both average and max pooling of concatenation of

dilated feature maps f l
r and gating masks gl∗, g

l−1
∗ , i.e., al

r = σ(fc(avg(glr)) +
fc(max(glr))), where σ is the sigmoid function, and avg and max are the average
and maximal pooling respectively. fc denotes the fully-connected layer, and the
gating mask for each pathway is calculated as glr = conv([f l

r; g
l
∗; g

l−1
∗ ]). Finally,

the feature map at the (l + 1)-th ACB layer is updated by the spatial-wise
weighted summation of f l

r as

f l+1
∗ =

∑

r∈R

exp(al
r)∑

r∈R exp(al
r)

· f l
r + f l

∗, (1)

where R denotes the set of different dilation rates. The fractional term denotes
element-wise product between dilated feature map f l

r and attention vector al
r,

weighting dilation block based on mask and image context. For simplicity, we
omit the subscript l in the following sections.

3.2 Multi-modal Mutual Decoder

Given enhanced features f∗, the decoder use stacks of transformer blocks to learn
the structural multi-modal information jointly. It consists of three branches, i.e.,
one inpainting branch to recover the damaged image, and two auxiliary branches
with additional segmentation and edge priors.
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As shown in Fig. 1, within each transformer block, we first calculate the
attention among feature maps from three branches by the proposed Multi-Scale
Spatial-aware Attention (MSSA). Then, the enhanced features are split to com-
bine the previous feature maps in each branch for attention calculation at next
stage. Note that the skip connections between the encoder and decoder are used
to prevent network degradation. After three stages, we predict the inpainted
image Ipred, edge and segmentation maps. Thus we leverage the structural fea-
tures from auxiliary branches to enforce the model focus on discriminative inter-
play features for more realistic image inpainting.

Fig. 4. Illustration of multi-scale spatial-aware attention.

To learn mutual features from different modalities, it is intuitive to sim-
ply concatenate or add the feature maps in three branches. Nevertheless, such
strategies may introduce duplicated and noisy content for image inpainting. To
effectively integrate compact features from auxiliary branches, we introduce a
new Multi-Scale Spatial-aware Attention (MSSA) mechanism as follows.

Multi-scale Spatial-Aware Attention. Based on the encoded feature maps
f∗, we use finpt, fedge, fseg to denote the input feature maps for the inpaint-
ing branch, edge branch, and segmentation branch, respectively. As illustrated
in Fig. 4, we combine the feature maps from three branches by the following
Auxiliary DeNormalization (ADN):

ADN(finpt|[fedge; fseg]) = γ � LN(finpt) + β, (2)

where [; ] denotes the matrix concatenation along channel dimension, and � the
element-wise multiplication. LN denotes layer normalization [2]. γ and β are
the affine transformation parameters learned by two convolutional layers based
on [fedge; fseg] (see the top-right corner of Fig. 4). In this way, the multi-modal
features are merged based on context from auxiliary structures that varies with
respect to different spatial location.

Then, the merged features are embedded into query Q, key K and value V .
Similar to [45], the embedded feature map is spatially split into N patches, i.e.,
Pi ∈ R

h×w×c(i = 1, . . . , N), where h,w, c denote the height, width and channel
of patches respectively. The normalized self-attention αi,j between patches i and
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j can be calculated as αi,j = softmax(Qi·KT
j√

h·w·c ), i, j ∈ 1, . . . , N . Note that we
can perform multi-head self-attention like [10]. Thus the feature map of each
patch is updated in a non-local form, i.e., P̂i =

∑N
j=1 αi,jVj .

Comparison Between Existing Denormalization Methods. Our ADN
is related to two previous denormalization methods including AdaIN [15] and
SPADE [26]. As shown in Fig. 5, we compare the networks of three denormal-
ization methods. However, they are different in two aspects:

Fig. 5. (a) Our Auxiliary DeNormalization (ADN). (b) SPatially-Adaptive DEnormal-
ization (SPADE) [26]. (c) Adaptive Instance Normalization (AaIN) [15]. LN, BN and
IN denote layer, batch and instance normalizations respectively.

– AdaIN [15] and SPADE [26] learn the affine transformation parameters {γ, β}
based on the predicted auxiliary structures. Without ground-truth in testing
phase, the predicted auxiliary structures are inevitably biased and result in
inferior performance. In contrast, our ADN is based on the multi-modal fea-
tures from two auxiliary branches.

– AdaIN [15] leverages the image’s mean and variance instead of learnable affine
parameters. SPADE [26] learns the spatial style of features by two convolu-
tions after Batch Normalization. However, we combine features from both
inpainting and auxiliary branches to learn the affine parameters.

Gated Feed-Forward. Finally, we piece all feature maps P̂i together and
reshape them with the original scale of input inpainting features finpt. Following
the gated feed-forward layer, we can output the final feature maps for inpainted
image prediction. Similar to gated conv [43], the gated feed-forward layer can
ease the color discrepancy problem by detecting potentially corrupted and uncor-
rupted regions.

3.3 Optimization

To train our network, the overall loss consists of three terms, i.e.,

L = Linpt + λedgeLedge + λsegLseg, (3)

where Linpt, Ledge and Lseg denote the loss terms for inpainting branch, edge
branch and segmentation branch respectively. λedge and λseg are the balancing
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factors. The inpainting loss Linpt follows the work in [22]. Similar to [25], we
use both binary cross-entropy and adversarial loss functions to train the edge
branch, i.e.,

Ledge = w1LBCE + Ladv, (4)

where w1 is the balancing weight. LBCE = 1
N

∑N
i=1 −[Ci

gt log Ci
pred + (1 −

Ci
gt) log(1 −Ci

pred)] predicts the edge structure, and Ladv = −E [D (Cpred)] jus-
tifies if the predicted edge is fake or real. Cpred is the probability map between
0 and 1 for the reconstructed edge while Cgt is the ground-truth edge based on
the canny operator [25]. D denotes the spectral normalization discriminator [24]
that is composed of five convolutional layers. For the segmentation branch, we
use the cross-entropy loss denoted by Lseg = 1

N

∑N
i=1 −Si

gt log Si
pred, where Si

gt

and Si
pred denote the ground-truth category and predicted probability for pixel

i.

Table 1. Quantitative comparison with the state-of-the-art approaches on CelebA-
HQ. Easy, medium, and hard irregular masks denote the mask with coverage ratio of
10% ∼ 20%, 30% ∼ 40%, and 50% ∼ 60%, respectively. ↑ higher is better, and ↓ lower
is better. Best and second best results are highlighted and underlined.

Mask type Irregular Regular

Easy Medium Hard

PSNR↑ GC [43] 29.30 25.72 23.77 25.75

RFR [19] 29.22 26.12 24.31 24.85

CMGAN [48] 29.06 25.79 23.90 24.33

ICT [33] 28.07 24.56 22.70 24.51

CTSDG [12] 29.59 26.59 24.69 26.56

Ours 29.94 26.88 25.12 26.70

SSIM↑ GC [43] 0.96 0.93 0.90 0.90

RFR [19] 0.96 0.94 0.91 0.87

CMGAN [48] 0.97 0.94 0.91 0.87

ICT [33] 0.96 0.92 0.89 0.87

CTSDG [12] 0.97 0.94 0.92 0.91

Ours 0.97 0.95 0.93 0.92

FID↓ GC [43] 15.00 18.41 21.28 22.45

RFR [19] 7.37 10.74 13.45 14.35

CMGAN [48] 6.80 11.85 14.12 12.91

ICT [33] 6.54 11.80 15.93 11.90

CTSDG [12] 7.80 10.14 13.30 14.52

Ours 6.47 9.32 11.61 11.40

4 Experiment

We compare our method with state-of-the-arts on three large-scale datasets. An
extensive ablation study is conducted to investigate the important designs in our
model. All experiments are conducted on two 24 G TITAN RTX GPUs.
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Datasets. CelebA-HQ dataset [17,18] is a large-scale face image dataset with
30K HD face images, where each image has a semantic segmentation mask cor-
responding to 19 facial categories. Outdoor dataset (OST) [35] includes 9, 900
training images and 300 testing images for 8 semantic categories, which are
obtained from the outdoor scene photography collection. Cityscapes dataset [7]
contains 5, 000 street view images belonging to 20 categories. We expand the
number of training images in this dataset, i.e., 2, 975 images from the training
set and 1, 525 images from the test set are used for training, and 500 images
from the validation set are used for testing. In addition, the Places2 dataset [50]
contains 10 million images covering more than 400 different types of scenes. We
generate both regular and irregular masks to verify the ability of image inpaint-
ing methods. For regular masks, we draw a 128 × 128 centered square mask for
CelebA-HQ and OST, and a 96 × 96 centered square mask for Cityscape. For
irregular masks, we settle masks from [19] for CelebA-HQ and masks from [22]
for Cityscape and OST.

Evaluation Metrics. Similar to the previous works [20,46], we use three metrics
as follows. Peak Signal to Noise Ratio (PSNR) is an objective evaluation metric
to assess the quality of generate images. Structural Similarity Index (SSIM) [37]
uses the mean as an estimate of luminance, standard deviation as an estimate
of contrast, and covariance as a measure of structural similarity to compare the
difference between the generated and original images. Frechet Inception Distance
(FID) [14] evaluates the accuracy and diversity of generated images. Notably,
the Inception network [29] is used to extract the image features when calculating
the FID score, and then calculate its mean and covariance matrix to estimate the
distance between the ground-truth and generated data distribution. According
to [47], deep metrics like FID are close to human perception.

Fig. 6. Qualitative results of existing methods on CelebA-HQ.
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Fig. 7. Qualitative results of our method on Cityscape (1 to 4 columns) and OST (5
to 8 columns).

4.1 Implementation Details

Our model is supervised by auxiliary structures including edge textures and
semantic segmentation. With regard to edge structure, we employ the canny
detection method [25] to generate edges of images. Besides, the CelebA-HQ,
CityScapes and OST datasets all contain hand-crafted semantic segmentation,
hence we can easily adopt these official labels for the segmentation part. More
details of implementation are shown in the supplementary.

Table 2. Quantitative comparison with previous auxiliary prior guided approaches on
OST and Cityscapes datasets.

Method Auxiliary prior OST CityScapes

Regular Irregular Regular Irregular

PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓ PSNR↑ SSIM↑ FID↓
EC [25] edge 19.32 0.76 41.25 19.12 0.74 42.27 21.71 0.76 19.87 17.63 0.72 39.04

SPG [32] seg 18.04 0.70 45.31 17.85 0.74 50.03 20.14 0.71 23.21 16.41 0.67 43.63

SGINet [1] seg. – – – – – – 25.74 0.87 23.02 18.53 0.77 57.53

SGE [20] seg. 20.53 0.81 40.67 19.46 0.76 39.14 23.41 0.85 18.67 17.78 0.74 41.45

SWAP [21] edge, seg. 21.18 0.81 38.15 20.31 0.80 36.74 23.89 0.84 18.14 17.86 0.76 38.18

Ours w/o seg. edge 20.91 0.76 41.85 21.48 0.80 39.00 25.10 0.86 19.33 19.17 0.78 37.50

Ours w/o edge seg. 21.80 0.77 40.96 22.58 0.81 36.03 25.95 0.87 17.85 20.49 0.79 34.79

Ours edge, seg. 21.84 0.77 40.15 23.15 0.82 35.77 26.13 0.88 17.52 20.43 0.79 33.45

Fig. 8. Visual comparisons on Places2.
From left to right: input, GC [43],
EC [25], our method, and ground truth.

Fig. 9. Segmentation results with
different bottlenecks on CelebA-HQ
dataset with 128 × 128 regular center
masks.
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4.2 Result Analysis

We compare our model with several state-of-the-art methods including GC [43],
RFR [19], CMGAN [48], ICT [33], CTSDG [12], SPG [32], SGINet [1], SGE [20],
and SWAP [21]. A quantitative comparison is carried out on three datasets in
terms of both regular and irregular masks with different coverage ratios. Full
comparison results [23,25,46,49] we put in the appendix.

From Table 1, our method achieves the best or comparable performance
among state-of-the-art image inpainting approaches that may not adopt aux-
iliary priors. Our method produces much better FID score than others for
both regular and irregular masks, indicating that our inpainted results are
more realistic. In Table 2, we compare several auxiliary prior guided inpaint-
ing approaches [20,21,25,32]. For a fair comparison with the methods relying
on only one auxiliary structure, we construct two variants, denoted by “Ours
w/o seg.” and “Ours w/o edge”. Compared with existing methods, our method
achieves considerable gain respective to PSNR and FID especially on irregular
masks. This is because our method focuses on the interplay representation from
three modalities rather than directly guiding the image inpainting branch by
predicted auxiliary structures (see Table 4).

In addition, we provide some visual examples on the CelebA-HQ dataset in
Fig. 6. It can be seen that our method can generate more semantically consistent
results compared with other approaches. More learned auxiliary priors of our
method from CityScapes and OST datasets are visualized in Fig. 7.

Table 3. Contribution of two auxiliary branches in our method.

Edge branch Segmentation branch PSNR↑ SSIM↑ FID↓
� � 25.88 0.90 12.36

� � 26.47 0.91 11.42

� � 26.19 0.90 11.95

� � 26.70 0.92 11.40

Table 4. Comparison with different attention mechanisms.

Variant Biased prior Attention mechanism PSNR↑ SSIM↑ FID↓
MMT-1 � Concat 26.17 0.89 20.01

MMT-2 � AdaIN [15] 26.17 0.89 21.71

MMT-3 � SPADE [26] 26.29 0.90 14.60

MMT-4 � MSSA+ADN 26.24 0.91 12.59

MMT-5 � MSSA+add 26.37 0.91 12.64

MMT-6 � MSSA+conv 26.50 0.91 11.90

MMT-7 � MSSA+AdaIN [15] 26.36 0.91 12.81

MMT-8 � MSSA+SPADE [26] 26.42 0.91 12.17

MMT-9 � MSSA+ADN 26.70 0.92 11.40
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Additional Results on Places2. Similar to SGE [20] and SWAP [21], we also
conduct additional experiment on the Places2 dataset [50] for a comprehensive
evaluation. Since there is no ground-truth segmentation, we use the segmentation
results by DeepLabv3+ [6] to supervise the segmentation branch in our model.
As shown in Fig. 8, the visual results show that our method still generate realistic
inpainted images without ground-truth segmentation labels.

4.3 Ablation Study

To verify the effectiveness of the proposed modules in our network, the ablation
experiments are carried out on the CelebA-HQ dataset.

Contribution of Auxiliary Branches. In Table 3, we construct three vari-
ants to verify the contribution of two auxiliary branches in our method. By
learning from two auxiliary modalities, our method considerably outperforms
the non-auxiliary variant w.r.t PSNR, SSIM, and FID. In addition, semantic
segmentation contributes slightly more to image inpainting than edge textures.
In summary, our Multi-Modal Mutual Decoder enriches semantic content on the
inpainting branch by cross-attending segmentation and edge structures.

Biased Prior Guidance. Different from previous works [20,21,25,32,39] rely-
ing on biased prior guidance from predicted auxiliary structures, we jointly learn
the interplay information of multi-modal features across the three branches and
guide image inpainting based on ADN. To demonstrate its effectiveness, we con-
struct four variants that are directly guided by predicted auxiliary structures.
In practice, we first add one convolutional layer at different stages to predict the
auxiliary structures (Fig. 1), and then combine multi-modal features (Fig. 4).

In Table 4, MMT-1 denotes concatenating predicted structures with feature
maps in the inpainting branch. MMT-2, MMT-3 and MMT-4 denote that we use
AdaIN [15], SPADE [26], and MSSA with ADN to calculate the affine transfor-
mation parameters (γ, β) based on predicted structures, respectively. Compared
with our method without biased prior guidance (i.e., MMT-9), the FID score is
significantly reduced based on predicted auxiliary structures. The results sup-
port our statement that predicted structures may introduce additional noises in
image inpainting intermediately without ground-truth.

Effectiveness of Multi-scale Spatial-Aware Attention. To verify the effec-
tiveness of Multi-Scale Spatial-aware Attention (MSSA), we construct four
baseline feature fusion strategies from MMT-5 to MMT-8 in Table 4. MMT-5
means that we directly perform element-wise summation on features from three
branches, while MMT-6 means that we splice the features from three branches
together and then fuse them by two convolutional layers.

From Table 4, our MSSA performs the best in terms of three metrics. Com-
pared with simple addition or convolution, our MSSA can provide reliable cross-
attention among multiple modalities to guide high-quality reconstructed images.
We also replace ADN by AdaIN [15] and SPADE [26] in MSSA for MMT-7 and
MMT-8 respectively. The results show that our ADN performs better than pre-
vious normalization methods, demonstrating its effectiveness.
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Effectiveness of Adaptive Contextual Bottlenecks. In Table 5, we compare
our Adaptive Contextual Bottlenecks (ACB) with the vanilla ResNet block [13]
and the recently proposed AOT [46]. ACB@L (L = 2, 4, 6, 8) denotes L layers
of ACB modules; RES@8 and AOT@8 denote 8 ResNet blocks [13] or 8 AOT
blocks [46] respectively. † means quadrupling the channels of feature maps in
ResNet blocks or copying base feature maps for different pathways in AOT
blocks. The results show that the performance of ACB is improved along with the
number of blocks is increased from 2 to 8. Using 8 ResNet or AOT blocks achieves
similarly as that using 4 ACB blocks. It is worth mentioning that ResNet and
AOT blocks have less number of channels of feature maps in each pathway. For a
fair comparison, we construct two variants †RES@8 and †AOT@8 with the same
channels as our ACB blocks. However, more channels in feature maps do not help
improve the performance by using ResNet or AOT blocks. We speculate that the
gating updating scheme in our ACB can reduce the influence of redundant noisy
context with more channels of feature maps.

Besides, the mean of category-wise intersection-over-union (mIoU) [6] is
another metric to validate the influence of bottleneck modules on segmenta-
tion inpainting. Our ACB module (L ≥ 4) still outperforms other two blocks
by more than 2%. The segmentation results in Fig. 9 also show that our ACB
module generates more accurate segmentation performance. If the number of
bottlenecks are increased, some isolated errors in segmentation can be removed
(see the 3rd and 4th columns in Fig. 9).

Table 5. Comparison between differ-
ent bottlenecks.

Bottleneck PSNR↑ SSIM↑ FID↓ mIoU%↑
RES@8 26.48 0.91 12.54 61.93

†RES@8 26.23 0.91 13.26 60.11

AOT@8 26.51 0.91 11.61 63.68

†AOT@8 26.29 0.91 14.17 62.28

ACB@2 26.48 0.91 12.18 63.54

ACB@4 26.60 0.91 12.24 65.84

ACB@6 26.61 0.91 12.09 66.16

ACB@8 26.70 0.92 11.40 67.13

Table 6. Efficiency of image inpainting
networks.

Method Params (M) MACs (G) Speed (FPS)

SPG [32] 119.64 58.68 2.03

EC [25] 27.06 122.67 67.21

CTSDG [12] 52.15 17.67 36.99

RFR [19] 31.22 206.12 15.56

CSA [23] 132.11 55.23 1.37

RES@8 [13] 22.76 96.10 40.82

AOT@8 [46] 27.48 100.93 30.96

Ours (ACB@2) 22.76 96.10 40.88

Ours (ACB@8) 51.09 125.11 29.49

Efficiency Comparison. From Table 6, we compare the number of parameters,
computational complexity (MACs), and the running speed (FPS) of existing
methods. Two-stage based SPG [32] and CSA [23], composed of complex sub-
networks at each stage, run much more slowly than end-to-end methods. In con-
trast, EC [25] consists of two simple sub-networks for edge prediction and image
inpainting, resulting in fast running speed but inferior performance. RFR [19] is
an end-to-end model but predicts the inpainted results by the decoding heads
recurrently. In terms of bottlenecks in the encoder, our ACB@2 achieves similar
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performance as AOT@8 with faster speed. By using 8 blocks, our method is still
efficient with state-of-the-art performance among end-to-end methods.

Limitation Discussion. Although our model generates promising results in
most cases, it fails to recognize and recover unseen semantic knowledge, hence
produces strange artifacts in complex scenes with large masks. Note that this
weakness also affects other methods. It indicates that image inpainting model
requires not only generative but also recognition capability. For example, our
method can synthesize the human silhouette but lacks precise semantic details.

5 Conclusion

In this paper, we propose an end-to-end Multi-modality Guided Transformer for
image impainting, which enriches coupled spatial features from shared multi-
modal representations (i.e., RGB image, semantic segmentation and edge tex-
tures). The proposed Multi-Scale Spatial-aware Attention can integrate compact
discriminative features from multiple modalities via Auxiliary DeNormalization.
Meanwhile, we introduce the Adaptive Contextual Bottlenecks in the encoder
to enhance context reasoning for more semantically consistent inpainted results
for the missing region. To the best of our knowledge, our scientific value lies in
first analyzing the biased prior problem in image inpainting.

Acknowledgements and Declaration of Conflicting Interests. This work was
supported by the Key Research Program of Frontier Sciences, CAS, Grant No. ZDBS-
LY-JSC038. Libo Zhang was supported Youth Innovation Promotion Association, CAS
(2020111). Dr. Du and his employer received no financial support for the research,
authorship, and/or publication of this article.

References

1. Ardino, P., Liu, Y., Ricci, E., Lepri, B., Nadai, M.D.: Semantic-guided inpainting
network for complex urban scenes manipulation. In: ICPR, pp. 9280–9287 (2020)

2. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR abs/1607.06450
(2016)

3. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: Patchmatch: a ran-
domized correspondence algorithm for structural image editing. TOG 28, 24 (2009)

4. Cao, C., Fu, Y.: Learning a sketch tensor space for image inpainting of man-made
scenes. In: ICCV (2021)

5. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. CoRR abs/1706.05587 (2017)

6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder
with atrous separable convolution for semantic image segmentation. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp.
833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2 49

7. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding.
In: CVPR, pp. 3213–3223 (2016)

https://doi.org/10.1007/978-3-030-01234-2_49


Unbiased Multi-modality Guidance for Image Inpainting 683
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