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Abstract. Image inpainting seeks a semantically consistent way to
recover the corrupted image in the light of its unmasked content. Previ-
ous approaches usually reuse the well-trained GAN as effective prior to
generate realistic patches for missing holes with GAN inversion. Never-
theless, the ignorance of hard constraint in these algorithms may yield
the gap between GAN inversion and image inpainting. Addressing this
problem, in this paper we devise a novel GAN inversion model for image
inpainting, dubbed InvertFill, mainly consisting of an encoder with a
pre-modulation module and a GAN generator with F&W+ latent space.
Within the encoder, the pre-modulation network leverages multi-scale
structures to encode more discriminative semantic into style vectors.
In order to bridge the gap between GAN inversion and image inpaint-
ing, F&W+ latent space is proposed to eliminate glaring color discrep-
ancy and semantic inconsistency. To reconstruct faithful and photore-
alistic images, a simple yet effective Soft-update Mean Latent module
is designed to capture more diverse in-domain patterns that synthesize
high-fidelity textures for large corruptions. Comprehensive experiments
on four challenging dataset, including Places2, CelebA-HQ, MetFaces,
and Scenery, demonstrate that our InvertFill outperforms the advanced
approaches qualitatively and quantitatively and supports the completion
of out-of-domain images well. The code is available at https://github.
com/yeates/InvertFill.
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1 Introduction

Image inpainting is an ill-posed problem that requires to recover the miss-
ing or corrupted content based on incomplete images with masks. It has been
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Fig. 1. Visual results of our contributions. Image (a) shows the high-fidelity inpainting
results for large corruptions, image (b) exhibits the improvement of our method for the
“gapping” issue over previous inversion-based inpainting method pSp [28], and image
(c) demonstrates the semantically consistent results by our model for the out-of-domain
masked image. Best viewed in color for all figures throughout the paper. (Color figure
online)

widely adopted for manipulating photographs, such as corrupted image repair-
ing, unwanted object removal, or object position modification [3,30,31].

The mainstream approaches [20,27] often employ an encoder-decoder archi-
tecture in UNet style [29] for image inpainting, and have demonstrated promis-
ing results in dealing with narrow holes or removing small objects. To apply
to more complicated cases, later works have been focused on improving the
performance with various discriminators [16,43,45], contextual attention mech-
anisms [16,45,47], and auxiliary information [8,21,26,46]. Nevertheless, limited
by their model capacity, it remains challenging for these UNet-like methods to
fill large corruptions with visually realistic patches.

Recently, generative adversarial network (GAN) models [11,13,14] have been
verified to successfully produce high-resolution photorealistic images. In these
models, GAN inversion [38,51] plays an important role. Specifically, when simply
fed with stochastic vectors of latent space, GAN is not applicable to any image-
to-image translation. To handle this problem, GAN inversion method uses a pre-
trained GAN as prior, and encodes the given images into stochastic vectors that
represent the target images, resulting to high-fidelity translation results. Inspired
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by this, several approaches [2,6,28] have made great efforts to introduced GAN
inversion for image inpainting. Despite excellent performance, existing methods
may suffer from following issues:

– Distortion for extreme image inpainting. Due to large corruptions, cur-
rent methods (e.g., [8,16,47]) may become degenerated because these models
are not able to effectively extract correlation from inadequate knowledge in
extremely degraded images. Such correlation information is crucial in elimi-
nating the ambiguity of large continuous holes, especially where far from the
boundary.

– Inconsistency caused by hard constraint. Unlike in regular condi-
tional translation (e.g., super-resolution [6], face editing [50] and label-to-
image [28]), image inpainting has a hard constraint that the unmasked regions
in the input and the output should be the same. Current inversion-based algo-
rithms [2,6,28], however, ignore this constraint, which results in color discrep-
ancy and semantic inconsistency as displayed in Fig. 1(b) and may require
additional post-processing such as image blending [2]. We call this problem
“gapping” in the following sections.

– Robustness for out-of-domain inputs. In order to reconstruct faithful
images, the key is to find an in-domain latent code that can align with the
domain of a well-trained GAN model [50]. Unfortunately, the encoder fails
to invert out-of-domain inputs to produce accurate results. For example, the
pSp [28] is hard to tackle the corrupted images with contents or masks from
unseen domains, which is harmful to the applicability of GAN inversion.

To solve the above issues, we introduce a novel InvertFill network for image
inpainting. It follows the encoder-based inversion fashion architecture [28] that
consists of an encoder and a GAN generator. We first develop a new latent
space F&W+ (as explained later) that encodes the original images into style
vector to enable the accessibility of the generator backbone to inputs, decreas-
ing color discrepancy and semantic inconsistency. Besides, to make full use of
the encoder, we present pre-modulation networks to amplify the reconstruction
signals of the style vector based on the predicted multi-scale structures, further
enhancing the discriminative semantic. Then, we propose a simple yet effec-
tive soft-update mean latent technique to sample a dynamic in-domain code for
the generator. Compared to using a fixed code, our method is able to facilitate
diverse downstream goals while reconstructing faithfully and photo-realistically,
even in the task of unseen domain. To verify the superiority of our method,
we conduct extensive experiments on four datasets, including CelebA-HQ [11],
Places2 [49], MetFaces [12], and Scenery [41]. The results demonstrate that our
method achieves favorable performance, especially for images with large cor-
ruptions. Furthermore, our approach can handle images and masks from unseen
domains by optimizing a lightweight encoder without retraining the GAN genera-
tor on a large-scale dataset. Figure 1 shows several visual results of our approach.

The contributions of our work are summarized as three-fold: (1) We introduce
a novel F&W+ latent space to resolve the problems of color discrepancy and
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semantic inconsistency and thus bridge the gap between image inpainting and
GAN inversion. (2) We propose (a) pre-modulation networks to encode more
discriminative semantic from compact multi-scale structures and (b) soft-update
mean latent to synthesize more semantically reasonable and visually realistic
patches by leveraging diverse patterns. (3) Extensive experiments on CelebA-
HQ [11], Places2 [49], MetFaces [12], and Scenery [41] show that the proposed
approach outperforms current state-of-the-arts, evidencing its effectiveness.

2 Related Work

Image Inpainting. Image inpainting could be treated as a conditional trans-
lation task with hard constraint. The seminal learning-based work by Pathak et
al. [27] integrates UNet [29] and GAN discriminator [5] for image inpainting,
and subsequently derives many variants that effectively deal with narrow holes
or remove small objects. More recently, several works have attempted to extend-
ing the idea in [27] to more complicated cases. Roughly speaking, these methods
can be categorized into three types. The first one is to explicitly dispose of
invalid signals at masked regions [20,23,43,44]. Among them, Liu et al. [20]
attach heuristic mask update step to standard convolution and Yu et al. [43]
formally replace the mask update process with a learnable convolution layer.
The second type is called valuable signals shifting that is inspired by the tradi-
tional exemplar-based approach [3], which presently tends to model contextual
attention to achieve [16,22,40,42,46]. In particular, RFR [16] applies multiple
iterations at the bottleneck while sharing the attention scores to guide a patch-
swap process. ProFill [47] iteratively performs inpainting based on the confidence
map calculated by spatial attention. CRFill [46] yields a contextual reconstruc-
tion objective function that learns query-reference feature similarity. The third
branch is to adopt auxiliary labels, which generate intermediate structures to
assist with more accurate semantic [8,17,21,26]. In specific, EC [26] introduces
canny edge to deliver finer inpainting structures. MEDFE [21] jointly learns to
represent structures and textures and utilizes spatial and channel equalization
to ensure consistency. CTSDG [8] couples texture and structure through parallel
pathways and then fuses them by bidirectional gated layers. In addition to the
above methods, there also exist other approaches. One notable example is Score-
SDE [32] which proposes a scoring model that saves the gradient computation
of energy-based models for efficient sampling.

Inpainting with GAN Inversion. StyleGAN [13] implicitly learns hierarchi-
cal latent styles w ∈ R

1×512 instead of the initial stochastic vector z, which
provides control over the style of outputs at coarse-to-fine levels of detail by
style-modulation modules [10]. StyleGAN2 [14] further proposes weight demod-
ulation, path length regularization, and generator redesign for improved image
quality. They are adept in the generation without any given images, but requires
specialized networks [24] or regularization [7,25] and paired training data. GAN
inversion [51] is a common practice that takes advantage of the intrinsic statis-
tics of well-trained large-scale GAN as prior for generic applications [1,50].
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Fig. 2. The main components of InvertFill, including a feature pyramid-based encoder
(image (a)), mapping network with pre-modulation network (image (c)) and a Style-
GAN2 generator with the proposed F&W+ latent space (image (b)).

Existing GAN inversion approaches could be roughly divided as optimized-
based [2,6,34,37] and encoder-based [28,39,50]. Among these methods, mGAN-
prior [6] utilizes multiple latent codes and adaptive channel importance for faith-
ful reconstruction and shows applications in different tasks including inpainting.
pSp [28] synthesizes images with the mapping network to extract style vectors
w+ ∈ R

18×512 of latent space W+ [1] separately for corresponding 18 style-
modulation layers of the StyleGAN. Nevertheless, these approaches ignore the
“gapping” issue, resulting in color inconsistency and semantic misalignment.

Difference with Previous Studies. In this paper we focus on encoder-based
GAN inversion to improve generation fidelity for image inpainting. The pro-
posed InvertFill is related to but significantly different from previous studies.
In specific, InvertFill is relevant to the methods in [28,39,50] where encoder-
based architecture is adopted. However, differing from them, we introduce a new
F&W+ latent space to explicitly handle the “gapping” issue which is ignored
in previous algorithms. Our method also shares similar spirit with the works
of [46,47] that adopt GAN for image inpainting. The difference is that these
approaches may suffer from ambiguity when filling the large corruptions, while
the proposed InvertFill exploits the priors of a large-scale generator and can
achieve image inpainting with high-fidelity semantic.

3 The Proposed Method

Given an original image I and its corrupted image Im = I � (1 − M), where M
is a binary mask and � denotes element-wise product. The value of pixels in
masked region M equal to 1 indicates invisible. We aim to produce a visually
realistic reconstructed image O with the input of corrupted images Im.
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3.1 F&W+ Latent Space

Our architecture mainly consists of three components: (i) A feature pyramid-
based [19] encoder E that extracts input images and provides hierarchical recon-
structed RGB images, (ii) the mapping networks with pre-modulation module,
and (iii) a StyleGAN2 generator that takes in the style vectors as well as the
input image Im to generate a image. The details of InvertFill are shown in Fig. 2.

Specifically, we attach three RGB heads to the encoder E for generat-
ing reconstructed RGB images Or

E = {O1
E ,O2

E ,O3
E} in correspondence to

three different scale. We follow the map2style [28] for the mapping network
and cut down the network number from 18 to 3, each of which corresponds
to the disentanglement level of image representation (i.e., coarse, middle and
fine [13,28]). Three map2style networks encode the output feature map of
the encoder into the intermediate code w′ ∈ R

3×512. Similarly, we replicate
map2style as map2structure to project reconstructed RGB images Or

E gradually
into structure vector Sr = {S1,S2,S3}.

Before executing the style modulation in the generator, we perform L pre-
modulation networks to project the semantic structure Sr into the style vector
w∗ in latent space F&W+, i.e., w∗ = E(Im),w∗ ∈ R

L×512. L = log2(s) · 2 − 2
denotes number of style-modulation layers of StyleGAN2 generator, and is
adjusted by the image resolution s on the generator side. As Fig. 2(c) demon-
strates, we adopt Instance Normalization (IN) [33] to regularize the w′ latent
code, then carry out denormalization according to multi-scale structure vector
Sr,

w∗
l = γ � IN (w′

r) + β, (1)

where l ∈ {1, 2, . . . , L} denotes the index of style vectors, r ∈ [1, 3] indicates
three vectors w′ correspond to level of coarse to fine, (γ, β) is a pair of the affine
transformation parameters learned by networks shown in Fig. 2(c). Different than
previous methods in only using intermediate latent code from a network, the
proposed pre-modulation module is a lightweight network and novel in applying
more discriminative multi-scale features to help latent code perceive uncorrupted
prior and better guide image generation.

The GAN is initially fed with a stochastic vector z ∈ Z, and previous
works [1,6,28,50] invert the source images into the intermediate latent space
W or W+, which is a less entangled representation than latent space Z. The
style vectors w ∈ W or w+ ∈ W+ are sent to the style-modulation layers of
pre-trained StyleGAN2 to synthesize target images. These approaches can be
formulated mathematically as follows,

OG = G(E(Im)), E(Im) ∼ W+, (2)

where E(·) and G(·) represent the encoder that maps source images into latent
space and the pre-trained GAN generator, respectively.

Nevertheless, the above formulation in Eq. (2) may encounter the “gapping”
issue in image translation tasks with hard constraint, e.g., image inpainting. The
hard constraint requires that parts of the source and recovered image remain the
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same. We formally defined the hard constraint in image inpainting as I � (1 −
M) ≡ O � (1 − M). Intuitively, we argue that the “gapping” issue is caused
by that the GAN model cannot directly access pixels of the input image but
the intermediate latent code. To avoid the semantic inconsistency and color
discrepancy caused by this problem, we utilize the corrupted image Im as one
of the inputs to assist with the GAN generator inspired by skip connection of
U-Net [29]. In detail, Im is fed into the RGB branch as shown in Fig. 2(b), the
feature map between RGB branch and the generator are connected by element-
wise addition. Hence, the previous formulation in Eq. (2) is updated as:

OG = G(E(Im), Im), E(Im) ∼ F&W+ (3)

.

3.2 Soft-update Mean Latent

Pixels closer to the mask boundary are more accessible to inpainting, but con-
versely the model is hard to predict specific content missing. We find that the
encoder learns a trick to averaging textures to reconstruct the region away from
unmasked region. It causes blurring or mosaic in some areas of the output image,
mainly located away from the mask borders, as shown in Fig. 7. Drawing inspi-
ration from L2 regularization and motivated by the intuition that fitting diverse
domains works better than fitting a preset static domain, a feasible solution is
to make style code w∗ be bounded by the mean latent code of pre-trained GAN.

The mean latent code is obtained from abundant random samples that
restrict the encoder outputs to the average style hence lossy the diversity of
output distribution of encoder. In addition, it introduces additional hyperpa-
rameters and a static mean latent code that requires loading when training the
model.

We adopt dynamic mean latent code instead of static one by stochastically
fluctuating the mean latent code while training. Further, we smooth the effect
of fluctuating variance for convergence inspired by a reinforcement learning [18].
For initialization, target mean latent code wt and online mean latent code wo

are sampled. wo is used in image generation instead of wt, which is fixed until
wo = wt and then resampled. Between two successive sampled mean latent
codes, wo is updated by wt ← τwo+(1−τ) per iteration during training, where
τ denotes updating factor and wt for soft updating target mean latent code. The
soft-update mean latent degraded to static mean latent [28] when the parameter
τ of soft-update mean latent approaching zero.

3.3 Optimization

Following prior work in inpainting [16,20], our architecture is supervised by
regular inpainting loss Lipt, which consists of the pixel-wise Euclidean norm of
valid and hole regions, the perceptual loss perc, the style loss style, and the total
variation loss tv:

Lipt = Lvalid + Lhole + Lperc + Lstyle + Ltv, (4)
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Fig. 3. Qualitative results on Places2 dataset.

Fig. 4. Qualitative results on CelebA-HQ dataset. Two columns of (b-d) show the orig-
inal model output and composition output, from left to right, respectively. The output
of the GAN-inversion-based method (pSp [28] and mGANprior [6]) is inconsistency at
the edge of the mask. Zoom-in to see the details.

where all above distance are calculated between I and OG. Lvalid and Lhole are
�1 norm on the known and masked region respectively. The perceptual loss Lperc

and the style loss Lstyle are based on a pre-trained VGG-16 network. More details
can be found in [16].

To directly optimize our encoder, the multi-scale reconstruction loss Lmsr is
utilized to penalize the deviation of Or

E at each scale:

Lmsr =
3∑

r=1

(Lr
perc + Lr

style + Lr
rec), (5)

where Lrec is represented as mean-squared loss between I and OE . The multi-
scale reconstruction loss Lmsr contains three different losses including perceptual
(Lr

perc) [4], style (Lr
style) [20] and mean-square (Lr

rec) losses. The role of Lmsr is
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Fig. 5. The visual effect of our method for processing input images from unseen domain.
The 1st row shows inpainting results of Metfaces, and the 2nd row shows outpainting
results of Scenery. Each instance of results is laid out as the masked image, the model
output, and the original image.

to supervise the generated image from decoder and make final generation close
to the original image.

The soft-update mean latent is utilized to prevent the encoder from falling
into the trick way. We adopt the following fidelity loss Lfid for improving the
quality and diversity of output images:

Lfid = ‖w∗ − w‖2, (w∗,w) ∈ R
L×512. (6)

The fidelity loss Lfid is designed as a mean squared loss of style vectors w∗

and mean latent code w̄. Its role is to improve the quality and diversity of the
output images.

Overall, the loss of our networks is defined as the weighted sum of the inpaint-
ing loss, the multi-scale reconstruction loss, and the fidelity loss.

L = Lipt + λmsrLmsr + λfidLfid, (7)

where λmsr and λfid are the balancing factors for the multi-scale reconstruction
loss and the fidelity loss, respectively.

4 Experiments

We perform extensive validating experiments aiming to answer the following
research questions:

– RQ1: How does our approach perform, compared with existing methods,
especially the fidelity when the input is large-scale masked images.

– RQ2: Can our approach resolve the “gapping” issue?
– RQ3: Can our approach handle input from unseen domain by reusing the

well-trained generator while only retraining a lightweight encoder?
– RQ4: How do different components (e.g., soft-update mean latent, pre-

modulation) affect our approach?
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Table 1. Quantitative comparison with the mainstream inpainting approaches on
Places2 and CelebA-HQ datasets. Hard, Extreme, All masks denote the mask with
coverage ratio of 50%–60%, 70%–90%, and 10%–90%, respectively. ↑ Higher is better,
and ↓ lower is better. Best and second best results are highlighted.

GC RFR MEDFE ProFill CTSDG CRFill Ours

Places2 hard SSIM↑ 0.624 0.645 0.598 0.664 0.651 0.629 0.641

FID↓ 22.05 27.77 44.38 21.49 35.77 22.46 12.44

LPIPS↓ 0.246 0.235 0.294 0.240 0.272 0.250 0.232

extreme SSIM↑ 0.363 0.382 0.323 0.409 0.393 0.360 0.366

FID↓ 51.35 71.19 111.85 46.44 95.50 51.26 21.08

LPIPS↓ 0.407 0.395 0.495 0.402 0.438 0.413 0.386

all SSIM↑ 0.734 0.750 0.714 0.764 0.755 0.738 0.761

FID↓ 14.19 16.26 26.15 13.81 21.36 14.44 9.29

LPIPS↓ 0.178 0.170 0.217 0.173 0.199 0.182 0.155

CelebA-HQ hard SSIM↑ 0.790 0.825 0.781 – 0.818 0.810 0.812

FID↓ 17.38 9.98 21.97 – 15.13 13.78 9.89

LPIPS↓ 0.170 0.128 0.192 – 0.151 0.139 0.121

extreme SSIM↑ 0.589 0.641 0.552 – 0.616 0.639 0.652

FID↓ 41.70 22.07 55.52 – 33.89 30.19 13.21

LPIPS↓ 0.297 0.241 0.359 – 0.281 0.275 0.214

all SSIM↑ 0.852 0.878 0.846 – 0.875 0.859 0.867

FID↓ 11.78 7.96 15.52 – 10.32 11.94 7.71

LPIPS↓ 0.128 0.092 0.142 – 0.110 0.114 0.089

4.1 Experimental Settings

Datasets. Experiments for RQ1, RQ2 and RQ4 are conducted on two datasets,
Places2 [49] and CelebA-HQ [11]. CelebA-HQ contains 30,000 high-resolution
celebrity faces, and we follow [42,43] to split this dataset for training and test-
ing. Places2 contains real-world photos, including more significant objects, such
as streets, cars, houses, which is better suited for verifying models on large-scale
masks than CelebA-HQ. Based on the official train/val/test split, we train the
model on train plus test about 200,000 images, evaluate the model on first 5,000
images of val. With regard to RQ3, we utilize two datasets Scenery [41] and
MetFaces [12]. Scenery dataset is a common benchmark for recent image out-
painting tasks and contains 6,040 landscape photographs. We follow [41] to use
about 5,000 images as training set and the remaining 1,000 images as test set.
MetFaces consists of 1,336 human faces extracted from works of art, and we
randomly select 1,000 images as training set and other images as test set. Our
model and all baselines adopt the same training and test strategies to ensure
experimental fairness.

Evaluation Metrics. We use three metrics following prior works to measure the
quality and fidelity of inpainting results. SSIM [35] modeling image distortion
by structure, luminance, and contrast, is a pixel-level objective metric similar
to PSNR, and their drawbacks cause inconsistent evaluation results with the
human eye. Despite that, they are classical metrics for image evaluation, one of
which SSIM we selected for quantitative comparison. FID [9] is a deep metric
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Fig. 6. Comparison with pSp [28] and pSp+Blend [36] that post-processing by image
blending. The 1st row shows the color discrepancy that image blending is sufficient
to resolve satisfactorily. The 2nd row shows that the semantic inconsistency is still
reserved, except for our method. (Color figure online)

and closer to human perception. It measures the distribution distance with a pre-
trained inception model, which better captures distortions. LPIPS [48] is another
learned perceptual metric and commonly used to score the intra-conditioning
diversity of models output. Following previous works [16,26,43], We calculate
these quantitative metrics on original images I and composition images I� (1 −
M) + OG � M.

Baselines. We carefully select baseline methods mainly from two perspectives:
UNet style methods and Inversion style methods to demonstrate our approach’s
characteristics and superiority. First, for the sake of validating the ability of
InvertFill in filling images under large-scale masks, we compare it with the pre-
vious approaches including EC [26], GC [42], RFR [16], MEDFE [21], ProFill [47],
CTSDG [8] and CRFill [46]. Second, we compare with the latest GAN inversion-
based inpainting methods mGANprior [6] and pSp [28].

4.2 Implementation Details

We utilize eight A100 GPUs for pre-training the GAN generator, and one TITAN
RTX GPU for optimizing the encoder and other experiments. Following [16],
we scale the image size of all datasets to 256 × 256 as the input. In the light
of the mask coverage, we classify the test masks into three difficulty levels:
Hard/Extreme/All, indicates the mask with coverage ratio of 50%–60%, 70%–
90%, 10%–90%, respectively. During testing, for a fair comparison, we use the
same image-mask pair for all approaches. More details of implementation are
shown in the supplementary.

4.3 Result Analysis

RQ1. We reproduce all the above baselines by utilizing their official imple-
mentations. Concerning Places2 dataset, we utilize the pre-trained weights offi-
cially released by the baselines. On CelebA-HQ dataset, EC [26], GC [43],
mGANprior [6] offer pre-trained weights, we thereby carefully retrain other base-
lines through the official source codes. Because ProFill only offers Web API on
Places2, we use placeholder ‘–’ in Table 1 for ProFill on CelebA-HQ.

From Table 1, our method achieves the best or comparable performance
among advanced inpainting approaches. In terms of the FID metric, our method
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Table 2. Comparison with pre-
vious GAN inversion-based and
diffusion-based approaches on
CelebA-HQ dataset.

FID↓ LPIPS↓ SSIM↑
Score-SDE [32] 24.76 0.337 0.428

mGANprior [6] 29.57 0.273 0.608

pSp [28] 25.61 0.248 0.594

pSp + Blend [36] 21.96 0.240 0.602

Ours 13.21 0.214 0.652

Table 3. Comparison with previous out-
painting approaches and inpainting base-
lines on Scenery dataset.

FID↓ LPIPS↓ SSIM↑
RFR [16] 138.31 0.455 0.376

pSp [28] 49.62 0.379 0.392

Boundless [15] 45.05 0.368 0.413

NS-outpaint [41] 38.95 0.342 0.410

Ours 20.90 0.294 0.439

Table 4. Comparison with previous inpainting methods on Metfaces. In this experi-
mental setting, the model/generator is only trained on CelebA-HQ.

Method Easy Extreme

SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓
RFR 0.93 18.89 0.069 0.52 58.24 0.315

CRFill 0.95 13.67 0.042 0.54 50.93 0.278

pSp 0.95 14.91 0.040 0.49 65.04 0.341

Ours 0.97 8.64 0.033 0.60 38.85 0.227

at most produces a notable margin of 54.60% and 40.14% on Places2 and CelebA-
HQ datasets, respectively. And our method also outperforms the second-best
approach 11.2% and 10.4% improvements on another perceptual metric LPIPS,
which validates the superiority of our design.

Figure 3 and 4 provide several visual inpainting results on Places2 and
CelebA-HQ datasets. Figure 3 reveals that the prior works still struggle to gener-
ate refined texture if the input image with large corruptions, while our approach
has been able to create semantically rich objects such as windows, towers, and
woods. In Fig. 4, mGANprior [6] progressively erases the color discrepancy rely
on optimized-based inversion but is unable to bypass semantic inconsistency. The
encoder-based inversion method pSp [28] could synthesize realistic pixels for cor-
rupted regions based on the well-trained model, though it still has not resolved
the “gapping” issue. The results indicate that our method produces consistent
output while generating high-fidelity texture compared to existing methods.

RQ2. The “gapping” causes color discrepancy and semantic inconsistency, and
we are counting on image post-processing to tackle this issue at the beginning of
this study. Specifically, we adopt image blending [36], which is effective in elim-
inating the color discrepancy but helpful in remedying semantic inconsistency.

To further demonstrate the superiority of our method, we construct the
pSp+Blend variant that introduces an image blending [36] method after gen-
erating output images. In Fig. 6, the first row shows the distinct gap at the
stitching boundary in pSp output, and pSp+Blend fixes this color discrep-
ancy problem. Even so, the second row shows pSp+Blend unable to assist with
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semantic inconsistency problem given the glasses are still incomplete. Compared
with the vanilla pSp and pSp+Blend, output images of our approach no longer
suffer from color discrepancy or semantic inconsistency.

We conduct a comparison experiment on CelebA-HQ dataset with the
Extreme level masks. As demonstrated in Table 2, our method performs bet-
ter than a recent diffusion-based approach Score-SDE [32] w.r.t to FID, LPIPS
and SSIM metrics. The results in Table 2 also show that our method performs
best among the existing inversion-based inpainting approaches after resolving
the “gapping” issue. Notably, our method does not require any image post-
processing.

Fig. 7. The importance of soft-update mean latent.

RQ3. Concerning validating that our approach can reuse the pre-trained GAN
generator as priors to tackle image from unseen domain, we conduct two
extended tests that introduced images or masks from unseen domains and only
required optimizing the lightweight encoder. The first is archaic photograph
inpainting, and we use MetFaces [12] for optimizing the encoder, and remain the
pre-trained weights of GAN generator of CelebA-HQ dataset. For the second one,
we perform our approach with outpainting masks [15] on Scenery dataset. Simi-
larly, the generator did not retrain on the Scenery dataset rather than remaining
the weights for Places2.

The 1st row of Fig. 5 shows the inpainting results of archaic photograph
inpainting. It demonstrates that our method enables the generator to synthe-
size semantically consistent style and patches, even in an unseen domain. From
the 2nd row of Fig. 5, the outpainting results on the Scenery dataset show our
approach still can synthesize realistic texture and significant objects, e.g.trees,
mountains. To ensure the masks are unseen for the GAN generator, we only use
the outpainting masks to train the encoder, not the GAN generator.

Furthermore, we quantitatively compare mainstream outpainting approaches
as well as adopt RFR [16] and pSp [28] as additional baselines. As shown in
Table 3, our model considerably outperforms the best outpainting baselines [15,
41] with respect to FID, LPIPS, and SSIM. Similarly, we conduct experiments
compared with inpainting baselines on Metfaces, as show in Table 4. In summary,
the results indicate that our proposed method is robust and extends to other
tasks with out-of-domain inputs.

Due to limited space, please kindly refer to the supplementary material for
more results.
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Table 5. Ablation study comparison on Places2 dataset under Extreme mask setting.

F&W+ SML PM W+ FID LPIPS SSIM PSNR

� 35.37 0.395 0.357 13.85

� � 24.73 0.389 0.358 13.99

� � � 21.08 0.386 0.366 14.62

� � � 42.85 0.392 0.361 14.25

Fig. 8. Illustration of two failure cases of the proposed method.

4.4 Ablation Study (RQ4)

The ablation experiments are carried out on the Places2 dataset under the
Extreme mask setting. In Table 5, we construct three variants to verify the contri-
bution of proposed modules, in which PM and SML denote pre-modulation and
soft-update mean latent. By learning from these modules, our method consider-
ably outperforms the most naive variant w.r.t FID, LPIPS, SSIM, and PSNR.

The soft-update mean latent is motivated by the intuition that fitting diverse
domains works better than fitting a preset static domain, especially when the
training dataset contains various scenarios such as street and landscape. As
shown in Fig. 7, when we use SML code that dynamically fluctuates during
training, the masked region far away from the mask border tends to be recon-
structed by explicitly learned semantics instead of repetitive patterns. Notably,
‘w/o SML’ represents using regular static mean latent code.

4.5 Failure Cases and Discussion

Figure 8 shows two failure cases. Even if the model can recognize the corrupted
objects (our method tends to recover the human face in the left case of Fig. 8), it
mistakenly locates them and produces severe artifacts. When lacking sufficient
prior knowledge, our method fails to reconstruct details. This demonstrates that
these situations are challenging for image inpainting and need further study.

5 Conclusion

In this paper, we propose an encoder-based GAN inversion method InvertFill
for image inpainting. The encoder projects corrupted images into a latent space
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F&W+ with pre-modulation for learning more discriminative representation.
The novel latent space F&W+ resolves the “gapping” issue when applied to GAN
inversion in image inpainting. In addition, the soft-update mean latent dynam-
ically samples diverse in-domain patterns, leading to more realistic textures.
Extensive quantitative and qualitative comparisons demonstrate the superiority
of our model over previous approaches and can cheaply support the semantically
consistent completion of images or masks from unseen domains.
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