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Graph Regularized Flow Attention Network for
Video Animal Counting From Drones

Pengfei Zhu , Tao Peng, Dawei Du , Hongtao Yu , Libo Zhang , and Qinghua Hu, Senior Member, IEEE

Abstract— In this paper, we propose a large-scale video based
animal counting dataset collected by drones (AnimalDrone)
for agriculture and wildlife protection. The dataset consists of
two subsets, i.e., PartA captured on site by drones and PartB
collected from the Internet, with rich annotations of more than
4 million objects in 53, 644 frames and corresponding attributes
in terms of density, altitude and view. Moreover, we develop
a new graph regularized flow attention network (GFAN) to
perform density map estimation in dense crowds of video clips
with arbitrary crowd density, perspective, and flight altitude.
Specifically, our GFAN method leverages optical flow to warp
the multi-scale feature maps in sequential frames to exploit
the temporal relations, and then combines the enhanced fea-
tures to predict the density maps. Moreover, we introduce
the multi-granularity loss function including pixel-wise density
loss and region-wise count loss to enforce the network to
concentrate on discriminative features for different scales of
objects. Meanwhile, the graph regularizer is imposed on the
density maps of multiple consecutive frames to maintain temporal
coherency. Extensive experiments are conducted to demonstrate
the effectiveness of the proposed method, compared with several
state-of-the-art counting algorithms. The AnimalDrone dataset is
available at https://github.com/VisDrone/AnimalDrone.

Index Terms— Animal counting, drone, graph regularized flow
attention network, multi-granularity loss.

I. INTRODUCTION

THE world of artificial intelligence (AI) is quickly on
the rise as it has already been used in many differ-

ent industries, from manufacturing to automotive industry.
It is also interesting to see that AI meets agriculture and
wildlife protection. For example, we can use drones equipped
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with cameras to detect diseases, identify crop readiness, and
monitor animals. The specific view by drones can avoid the
problem of mutual occlusion between individuals of high
density population in flat view observation. Therefore, drones
are very suitable for counting animals.

Despite much progress achieved in recent years, counting
animals captured by drones remains challenging due to several
factors such as motion blur, scale variation, sparse positive
samples and tiny objects. Development of drone-based animal
counting algorithms still lacks publicly available large-scale
benchmarks and datasets. Although there exist several animal
counting datasets for bats [1], penguins [2] and elephants [3],
they are still limited in data volume, animal species and
covered scenarios.

To advance state-of-the-art animal counting algorithms,
we collect a large-scale high-resolution drone-based animal
counting dataset named AnimalDrone (see Fig. 1), which
consists of two subsets, i.e., AnimalDrone-PartA and
AnimalDrone-PartB. Specifically, videos in AnimalDrone-
PartA (PartA for short) are shot on site by drones, while
AnimalDrone-PartB (PartB for short) is collected from
Internet. PartA contains 59 video sequences with 18, 940 fully
annotated frames and PartB is formed by 103 videos sequences
with 34, 704 annotated frames. In summary, AnimalDrone
contains 53, 644 frames with over 4 million object annotations
in diverse scenes. There are 10 kinds of animals in the
AnimalDrone dataset, e.g., sheep, horse, wolf and yak.

Moreover, we propose a Graph regularized Flow Attention
Network (GFAN) to solve the animal counting task on drones.
Compared with existing works [4], [5] using pre-computed
optical flows, we use the warping loss to enforce the opti-
cal flow network [6] trainable together with counting net-
work, resulting in discriminative features for counting. Then,
we develop the multi-granularity scheme to generate discrimi-
native features for different scales. Meanwhile, we employ the
graph regularizer to maintain the temporal continuity across
multiple frames in the video clip. In addition, we apply the
attention module [7] on the aggregated feature maps gradually
to enforce the network to exploit enhanced features for better
performance. The whole network is trained in an end-to-end
manner with the multi-task loss, formed by four terms, i.e.,
the MSE loss and multi-granularity loss for for multi-scale
density estimation, the warping loss and graph regularizer loss
for temporal consistency. Extensive experiments are carried
out on our AnimalDrone dataset and two publicly avaliable
video based datasets (i.e., FDST [8] and UCSD [9]). For
example, our GFAN method achieves 2.2 and 4.9 lower MAE
score on PartA and PartB compared with the second best
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Fig. 1. Illustration of data collection by drones.

counting method, respectively. The main contributions of this
paper are summarized as follows.

• We collect a large-scale drone-based video animal
counting dataset, i.e., AnimalDrone, which consists of
53, 644 frames with more than 4 million object anno-
tations. To our knowledge, AnimalDrone is the largest
drone-based video animal counting dataset to date.

• We propose the graph regularized flow attention network
to deal with animal counting, which applies warping loss
and multi-granularity loss to train the network and uses
the attention module on the aggregated feature maps to
enforce the network to focus on discriminative features
for different scales of objects.

• Comprehensive experiments are conducted on the Ani-
malDrone dataset comparing with several state-of-the-art
counting methods to demonstrate the effectiveness of our
GFAN in animal counting.

II. RELATED WORK

In this section, we briefly review several related counting
datasets and state-of-the-art counting algorithms.

A. Existing Counting Datasets

1) Image Based Datasets: To date, there are some
crowd counting datasets based on still images [10]–[13].
Zhang et al. [10] develop the Shanghaitech dataset, which
includes 1, 198 images and 330, 165 annotated people in
total. Hsieh et al. [12] present a drone-based vehicle counting
dataset, which approximately contains 90, 000 cars captured
in different parking lots. The UCF-QNRF dataset [11] is
released with 1, 535 images and 1.25 million head annota-
tions. Yan et al. [14] collect a crowd surveillance dataset
including 13, 945 images and 511, 386 marked people in
total with high resolutions. Recently, the GCC dataset [15]
consists of 15, 212 images with a resolution of 1080 × 1920,
containing 7, 625, 843 persons from synthetic crowd scenes.
NWPU-Crowd [13] is a large-scale high-resolution con-
gested crowd counting dataset, including 5, 109 images with
a total of 2, 133, 238 instances. JHU-CROWD++ [16] is
another large-scale challenging dataset with 4, 372 images and
1.5 million annotations, which is collected from various scenes
with different weather and light condition.

2) Video Based Datasets: Different from image based
datasets, researchers propose several video based counting
datasets [9], [17], [18]. The UCSD dataset [9] is the first
video counting dataset with a resolution of 238 × 158.

Similar to UCSD, the Mall dataset [17] is a whole
sequence with 2, 000 frames and a resolution of 320 × 240.
Zhang et al. [18] present the WorldExpo2010 dataset with
3, 980 annotated video frames, which is captured in 108
different scenarios. Fang et al. [8] establish a large-scale
video crowd counting dataset which contains 15K frames with
approximate 394K annotated heads from 13 different scenes.
Recently, another large-scale DroneCrowd dataset [19], [20] is
proposed for crowd counting on drones with over 33K frames.

3) Animal Based Datasets: Except for human objects,
there exist other animal based datasets [1]–[3], [21]–[24].
Wu et al. [1] collect a thermal infrared video dataset to count
all bats within the given bounding boxes, where two sequences
have the mean numbers of objects per frame 356 and 250
respectively. van Gemert et al. [21] focus on drone-centered
nature conservation tasks and propose a new dataset with
30 distinct animals in 18, 356 frames. Arteta et al. [2] propose
a large and challenging dataset of penguins in Antarctica,
including 500 thousand images with resolutions between 1MP
and 6MP in over 40 different sites. Rey et al. [22] ask
232 volunteers to draw 7, 474 polygons around animals they
detected in all the 654 images. Kellenberger et al. [23] collect a
total of 654 images and annotate 976 large animals by convex
hull polygons, over the Kuzikus wildlife reserve in eastern
Namibia. In [3], the aerial elephant dataset includes 2, 101
images with 15, 511 African bush elephants in their natural
habitats. Shao et al. [24] construct two subsets of pasture aerial
images, i.e., 656 images in subset 1 and 14 images in subset 2.

The majority of aforementioned datasets focus on counting
human heads, and other animal based datasets are still limited
in scales, species and covered scenarios. CIW [2] is the
largest animal dataset to date by containing more than 80k
frames. However, it only focuses on penguin counting. Beyond
that, most previous animal datasets only include hundreds
of frames. To the best of our knowledge, our AnimalDrone
dataset is the first large-scale drone-based animal video count-
ing dataset for agriculture and wildlife protection to date.
It consists of 162 video sequences in unconstrained scenes
with more than 4 million animals including sheep, horses,
wolves and yaks. The comparison with existing crowd count-
ing datasets is presented in Table I.

B. Crowd Counting Methods

Generally speaking, existing crowd counting methods fall
into three categories: detection-based [26]–[29], regression-
based [25], [30]–[33] and density-based [10], [18], [34]–[39].
In addition, we review several related video based counting
methods [8], [19], [40], [41].

1) Detection Based Methods: Crowd counting can be for-
mulated as pedestrian or vehicle detection in crowded scenes.
The general framework is to detect the location of objects
based on the hand-crafted or deep features [26]–[29]. However,
it is difficult for detection-based methods to detect small
objects in very crowded scenarios with high occlusion.

2) Regression Based Methods: Regression based methods
directly estimate the number of the crowd to avoid difficul-
ties in detection [25], [30]–[33]. Tan et al. [30] develop a
semi-supervised elastic net regression method by considering
sequential information between unlabelled samples and their
temporally neighboring samples. Chan and Vasconcelos [31]
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TABLE I

COMPARISON WITH EXISTING CROWD COUNTING DATASETS. “−” INDICATES DIFFERENT RESOLUTIONS IN THE DATASET

propose a new Bayesian regression method to estimate the size
of inhomogeneous people crowds. Chen et al. [32] develop
the cumulative attribute based regression model to perform
counting when only sparse and imbalanced data are available.
In [25], a Markov Random Field method is proposed to
estimate counts based on multiple information including low
confidence head detections, repetition of texture elements and
frequency-domain analysis. Wang et al. [33] propose an end-
to-end deep CNN regression model for counting people of
images in extremely dense crowds, where the training data is
enriched with expanded negative samples with zero counting.

3) Density Based Methods: Recent methods have changed
the focus onto regarding the crowding counting problem
as density map estimation by neural networks due to the
impressive performance of deep learning [10], [18], [34]–[37].
Zhang et al. [18] solve the cross-scene crowd counting prob-
lem using a switchable training scheme with two related
learning objectives of CNN model, estimating density map
and global count. In [10], the multi-column CNN network
is used to learn multi-scale features by each column CNN.
Boominathan et al. [34] employ a combination of deep and
shallow fully convolutional networks to estimate the density
map, which captures both the high-level semantic information
and the low-level features. Zhao et al. [35] determine the
crowd counts based on pairs of video frames using a two-phase
training scheme. Sam et al. [36] propose a novel switching
CNN model to handle the variations of crowd density, where
the switch classifier can select the optimal regressor for a
particular region. Li et al. [37] take advantage of dilated
kernels to deliver larger reception fields and extract deeper
features without losing resolutions. Shi et al. [38] introduce
attention from segmentation and global density to re-purpose
the point annotations used as supervision for density-based

counting. Liu et al. [39] develop a deep structured scale
integration network for crowd counting by using structured
feature representation learning and hierarchically structured
loss function optimization. Recently, Yang et al. [42] excavate
the perspective information and quantify the perspective space
into several separate scenes by the multi-column framework.

In terms of crowd counting in videos, spatio-temporal
information is essential to improve the counting accuracy.
Xiong et al. [40] design a convolutional LSTM model to
fully capture both spatial and temporal dependencies for crowd
counting. Zhang et al. [41] combine fully convolutional neural
networks and LSTM by residual learning to perform vehicle
counting. Fang et al. [8] present a locality-constrained spatial
transformer network by employing a manifold regularization
on the neighbourhood frames. Wen et al. [19] propose a
space-time multi-scale network for video based counting,
localization and tracking. Different from the previous methods,
our GFAN uses optical flow to warp the multi-scale feature
maps in sequential frames to exploit the temporal coherency,
and then combines the enhanced features to predict density
maps.

III. ANIMALDRONE DATASET

As discussed above, there are few existing datasets suitable
for the animal counting task in agriculture and wildlife protec-
tion. Therefore, we collect a new large-scale animal counting
dataset named AnimalDrone. In this section, we introduce our
dataset in detail.

A. Data Collection

The AnimalDrone dataset consists of two subsets, i.e.,
AnimalDrone-ParA and AnimalDrone-PartB. The videos of
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Fig. 2. The distribution of animal species of the AnimalDrone dataset. The
y-axis indicates the percentage of videos in the subset.

AnimalDrone-PartA are captured on site by drones in Qinghai
and Heilongjiang Provinces of China, with a vast grassland and
various types of animals. Specifically, the drone is controlled
by an operator to capture the animals in either bird-view or
side-view. Notably, we are given permission by the animal
owner before data collection and guarantee no harassment to
animals. We spend about one month on data acquisition and
collected 112 minutes videos. All the videos are captured by
DJI MAVIC PRO 2 drone with 4K resolution and the number
of frames per second is 24. In order to consider the impact of
object scales into account, we choose different flight altitudes
to collect the data, i.e., 30m, 50m, 80m. In this way, our dataset
can cover different scenes including mountains, grasslands,
streams, and wetlands, as well as different animal species such
as sheep, horses and yaks.

On the other hand, the videos of AnimalDrone-PartB are
collected from two popular video websites, i.e., YouTube1

and YouKu.2 We set the key words including drone videos,
animal groups herding, wildlife, and aerial photography ani-
mal group. Finally, we select more than 600 minutes videos
captured by drones, which contain 10 animal species including
horse, sheep, zebra, giraffe, wolf, cow, yaks, dog, antelope and
boar. The distribution of animal species is shown in Fig. 2.
Since the data is collected from the Internet, the duration and
resolution of videos in AnimalDrone-PartB are not uniform,
and the distribution of scenes and heights is also relatively
diverse.

B. Data Pruning and Annotations

1) Data Pruning: To remove redundant information in
the videos, we perform data pruning on our dataset. Due
to the difference between the characteristics of PartA and
PartB, we apply different pruning strategies for these two
subsets. In PartA, the animals move slowly during most of
the time because the drone is usually stationary. To maintain
the diversity, the videos are filtered based on the following
principles:

• We collect at least one video per height per scene to
ensure the variation of perspectives.

• We remove low-quality videos with camera motion and
jitter blur.

• We keep the videos where the number of animals changes
obviously.

1http://www.youtube.com
2http://www.youku.com

In this way, we select 59 videos out of the original 112 minutes
raw videos in PartA. In PartB, the videos from the Internet
contain a lot of irrelevant information with quick perspective
changes of drones. We simply select the videos that contain
animal communities as many as possible. Finally, we select
103 videos from the original 600 minutes videos in PartB.

2) Data Annotations: Similar to the head annotation in
the previous counting datasets [10], [18], the animals in our
dataset are annotated by dots instead of rectangular bounding
boxes. To this end, we modify the VATIC tool [43] by chang-
ing rectangular boxes into dots. The process of annotation
includes two steps. We first distribute images to different
expert annotators. Then, all the annotated frames are collected
from annotators and given to the other experts to find the
wrong annotated videos and notify the original annotators to
correct the errors until no errors are found. Some annotated
examples are shown in Fig. 3.

C. Data Statistics and Attributes

There are totally 162 videos, 53, 644 frames with
4, 049, 168 annotated objects in the AnimalDrone dataset.
AnimalDrone-PartA is split into two subsets, including the
training set (46 sequences) and the testing set (13 sequences).
It contains 18, 940 images with 2, 008, 570 annotated objects.
The maximum and average counts are 568 and 106.0, respec-
tively. AnimalDrone-PartB consists of 103 video clips includ-
ing 66 training videos and 37 testing videos. It contains
34, 704 frames with 2, 040, 598 annotated objects. The maxi-
mum and average counts are 647 and 58.8, respectively. The
statistics of the existing counting datasets and the proposed
AnimalDrone dataset are summarized in Table I. As shown
in Fig. 2, our dataset contains 10 animal species including
horse, sheep, zebra, giraffe, wolf, cow, yak, dog, antelope
and boar. To analyze the counting algorithms comprehensively,
we also define several attributes of the dataset as follows.

• Density: We define the average number of objects in
each frame as the density. Thus we divide the dataset
into two density levels including high-density (with
the number of objects in each frame larger than 100),
and low-density (with the number of objects in each
frame less than 100).

• Altitude: The object scales vary in different altitudes.
Therefore, we divide the videos based on the fly-
ing heights that the data is captured by the drone at
low-height, med-height and high-height. For
PartA, the height information is recorded during collec-
tion. Hence, we set low-height (30m), med-height
(50m) and high-height (80m). For PartB, we empir-
ically set the altitude attribute for all videos because the
accurate height information is unavailable.

• View: The data is captured in different views including
bird-view and side-view, which influences the
appearance of the objects. Specifically, bird-view and
side-view indicate the camera shooting on the top and
on the side of animals, respectively.

The distribution of our dataset is shown in Fig. 4. In summary,
the scale variations, tiny objects, view and altitude changes
make our proposed AnimalDrone dataset challenging.
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Fig. 3. Some annotated example frames of the AnimalDrone Dataset in various scenes such as glassland, stream, wetland, and mountain. Red circles
correspond to animal instances.

Fig. 4. The attribute statistics of the training and testing sets in the AnimalDrone dataset. The y-axis indicates the number of videos.

IV. GRAPH REGULARIZED FLOW ATTENTION NETWORK

Compared with previous image based crowd counting tasks,
there are several issues for video based animal counting.
First, different from persons and vehicles, animals could be
sparsely or densely distributed because of great scale variations
from different heights and views in complex scenes. Second,
the temporal coherency across adjacency frames should be
well exploited to deal with motion blur and video defocus.
To this end, we present the graph regularized flow attention
network (GFAN). In the following, we describe each module
in our GFAN model and the loss functions in detail.

A. Network Architecture

As shown in Fig. 5, our GFAN consists of three parts: the
shared feature encoder module, temporal consistence module,
and counting decoder module. The shared feature encoder
module uses the first four groups of convolution layers in the
VGG-16 network [44] as the backbone. We extract feature
maps of the t-th and (t + τ )-th frames in a video. Note that

the parameter τ determines the temporal distance between
two frames. The temporal consistence module employs the
optical flow network [6] to capture the motion information
between feature maps in two frames. Specifically, the feature
map is warped from the (t + τ )-th frame to the t-th frame
to enhance the feature representation. The counting decoder
module applies the deconvolutional layer on enhanced feature
maps at different scale gradually. That is, we add the feature
with lateral connections, and then apply one 1×1 convolution
layer to obtain the intermediate density map. After that, one
1 × 1 convolution layer is used to generate the final density
map. It is worth mentioning that we employ the channel
attention module [7] to combine multi-scale features, making
the network focus on the discriminative features for crowd
counting.

B. Overall Loss Function

As discussed above, to train our network, we use three loss
terms to consider scale variation and temporal consistency.
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Fig. 5. An overview of the architecture of graph regularized flow attention network (GFAN), which consists of three parts: the shared feature encoder module,
temporal consistence module, and counting decoder module.

First, given the aggregated multi-scale feature maps, the multi-
granularity loss function is proposed to measure density maps
at different levels. Second, to exploit temporal coherence in
two adjacent frames, the warping loss is used to calculate
the error between feature map obtained from optical flow
warping and original feature encoder module. Third, the graph
regularization loss is developed to further capture the under-
lying temporal relations within multiple frames of the clip.
In summary, the overall loss function is computed as

L = Lm + Lw + Lg, (1)

where Lm , Lw , and Lg are the multi-granularity loss, warping
loss, and graph regularization loss, respectively. Thus our
GFAN method can be trained in an end-to-end manner based
on large-scale video clips. The three loss terms are defined as
follows.

1) Multi-Granularity Loss: As shown in Fig. 3, animals
usually gather together, resulting in non-uniform density all
over the image. Different from the previous works [10], [36],
[37] focusing on counting in high density regions, we pay
more attention on the regions with low density to decrease
the count error of animals. To this end, we construct a new
multi-granularity loss function including pixel-wise density
loss and region-wise count loss. Specifically, the pixel-wise
loss measures the difference of density between the estimated
and ground-truth density maps; while the region-wise loss
measures the relative difference of the number of animals in
different regions. It is calculated as

Lm = 1

N

N∑
n=1

⎛
⎜⎜⎝

W∑
i=1

H∑
j=1

∥∥∥M(n)(i, j) − M̂(n)(i, j)
∥∥∥2

2

+λ
∑

r∈R

∥∥∥C (n)(r)−Ĉ (n)(r)
C (n)(r)+1

∥∥∥
2

2

⎞
⎟⎟⎠, (2)

where N is the batch size. W and H are the width and height
of the density map, respectively. M(n)(i, j) and M̂(n)(i, j)
are the ground-truth and estimated density map of location
(i, j) of the n-th training sample, respectively. C(n)(r) and
Ĉ(n)(r) are the ground-truth and estimated counts in region r of
the n-th training sample, respectively. Specifically, we divide
the image into k × k sub-regions, where the count of each

Fig. 6. Illustration of region-wise count loss. The density map is divided
into 2 × 2 sub-regions.

region is calculated as C(r) = ∑
(i, j )∈r M(i, j). C(n)(r) + 1

is used to avoid the 0 denominator in the region without any
object. λ is the factor to balance the two loss terms. As shown
in Fig. 6, both the predicted and ground-truth density map
are divided into 2 × 2 sub-regions. Region-wise count loss is
the sum of losses of all regions, which is suitable for sparse
distribution of objects. Notably, as shown in Fig. 5, we only
consider pixel-wise loss of the density maps at intermediate
scales, but both pixel-wise and region-wise loses of the final
fused density map.

2) Warping Loss: Low accuracy of optical flow directly
affects the validity of the aggregated features. The naive
strategy is to use the pre-trained PWCNet [6] to extract optical
flow between two frames. However, it is difficult to adapt to
specific datasets by the fixed optical flow network, resulting
in failures of capturing motion coherence.

To consider temporal coherence between two
frames, we first generate the bidirectional optical flow
{ ft→t+τ , ft+τ→t } according to the frame pair {It , It+τ }.
At the same time, we feed {It , It+τ } into shared feature
encoder network to obtain the corresponding feature maps
{St , St+τ }. Then, we warp St and St+τ to S′

t and S′
t+τ based

on optical flow { ft→t+τ , ft+τ→t }. The offset between S′
t ,

St and St+τ , S′
t+τ is due to inaccurate optical flow. Finally,

we apply the warping loss in Eq. (3) to train the optical flow
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network to adapt to our dataset, i.e.,

Lw =
∑
i, j

∥∥Si, j − warp(Si, j , fi, j )
∥∥2

, (3)

where warp(·, ·) is the warping function for feature maps.
Si, j and fi, j denote the pair of feature maps and optical flow
in frame i and j .

3) Graph Regularization Loss: Although optical flow can
extract motion information in two frames, underlying relations
among multiple frames in a video clip should be considered
into account for further improvement. To this end, we intro-
duce the graph regularization loss. According to the manifold
assumption [45], [46], the relations of the τ frames of the
video clip in the original feature space should be kept in the
projected density map space.

First of all, we define the temporal density graph as G =
{V, A}, where the node set V denotes the density maps of
τ frames in a clip and the adjacent matrix A represents
the similarity relations between frame pairs. Specifically,
we compute the matrix A using a RBF-kernel, i.e., ai j =
exp(−α

∥∥∥Ĝi − Ĝ j
∥∥∥2

F
), where Ĝi is the ground-truth density

map of the i -th frame and α is a pre-set positive constant. Thus
we can summarize the graph regularization losses of different
frame pairs in a clip, which is defined as

Lg =
τ∑

i=1

τ∑
j=1

ai j

∥∥∥Mi − M j
∥∥∥2

F
, (4)

where Mi denotes the density map of the i -th frame and τ is
the length of video clip. However, it is time-consuming to
calculate the graph regularization loss of each frame pair in
a clip. In practice, we choose different temporal difference γ
(1 � γ � τ/2) between frame i and frame j to reduce the
computational cost. Therefore, the graph regularization loss in
Eq. (4) can be rewritten as

Lg =
∑

i=γ, j=τ−γ+1

ai j

∥∥∥Mi − M j
∥∥∥2

F
. (5)

Notably, we calculate the three above loss functions if and
only if i = 1 and j = τ . In this way, the similarity relations of
the density maps in a clip are preserved to keep the long-term
temporal coherence.

C. Ground-Truth Map Generation

Similar to the strategy in [10], we generate ground-truth
density maps using geometry-adaptive kernels. Specifically,
we first blur the center of each object using a normal-
ized Gaussian kernel. Then, we generate the ground-truth
map considering the spatial distribution of all objects. The
geometry-adaptive kernel is defined as

M(x) =
N∑

i=1

δ(x − xi ) ∗ G(x, σi ), s.t. σi = βd̂i , (6)

where M(x) is the density map and N is the number of
objects. The delta function δ(x − xi ) indicates the object at
pixel xi . d̂i indicates the average distance of the object to
its nearest neighbours. To generate the density map, we can
convolve δ(x − xi ) with a Gaussian kernel with the standard

deviation σi = βd̂i (β = 0.3 in the experiment). Besides, since
we use three max pooling layers in the network, the spatial
resolution of estimated density map is reduced by 1/8 for each
frame. Therefore, we down-sample the ground-truth density
map by 1/8 in the training stage to calculate the loss.

V. EXPERIMENT

We evaluate our GFAN method and 11 state-of-the-art
methods on the AnimalDrone dataset, including MCNN [10],
MSCNN [47], CSRNet [37], Switch-CNN [36], C-MTL [48],
DA-Net [49], CFF [38], DSSIM [39], BL [50], STANet [19],
and FCN-rLSTM [41]. All codes of the evaluated methods
are publicly available. All counting methods are trained on
the training set and evaluated on the testing set. For
comprehensive evaluation, we also evaluate our method on
two publicly available video counting dataset with dense
annotations, i.e., FDST [8] and UCSD [9]. Finally, we conduct
an ablation study on the AnimalDrone dataset to show the
effectiveness of three loss functions in the proposed method.

A. Implementation Details

The GFAN method is implemented by Pytorch 1.0.0 [51].
All the experiments are conducted on a workstation with
2.10 GHz Intel E5-2609 CPU, 32GB RAM, and two NVIDIA
GeForce GTX 1080Ti GPU cards. The length of the video
clips is set as τ = 10 frames. Each frame is divided into
2 × 2 sub-regions to apply the multi-grantity loss empirically.
We use the Adam optimization method [52] to train the
network with 200 epochs. The initial learning rate is set as
1×10−6 and the weight decay as 5×10−4. We use horizontal
flipping strategy to augment the training data. Due to the limit
of computational resources, we first resize the frames in the
video as 1920 × 1080 and then randomly crop a patch with
a resolution of 960 × 540 for training. Similarly, during the
testing stage, we first resize the frames as 1920 × 1080 and
then divide each frame into 2×2 patches. Finally, the counting
results of all the 4 patches are summarized.

B. Evaluation Metrics

According to the work in [10], we use the mean absolute
error (MAE) to measure the accuracy of density map estima-
tion, and mean squared error (MSE) to measure the robustness
of density map estimation, respectively.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

MAE = 1

K

K∑
n=1

|Zn − Ẑn|,

MSE =
√√√√ 1

K

K∑
n=1

|Zn − Ẑn|2,
(7)

where K is the number of images, and n is the n-th image.
Zn and Ẑn are the ground-truth and estimated counts of the
n-th image, respectively. The estimated count is calculated as

Zn =
W∑

i=1

H∑
j=1

Mn(i, j), (8)

where Mn(i, j) is the density of the pixel (i, j) in the
n-th image.
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TABLE II

RESULTS ON THE ANIMALDRONE-PARTA DATASET IN TERMS OF ATTRIBUTES

TABLE III

RESULTS ON THE ANIMALDRONE-PARTB DATASET IN TERMS OF ATTRIBUTES

C. Evaluation on the AnimalDrone Dataset
1) Overall Evaluation: In Table II and Table III, we present

the counting results of compared methods on the AnimalDrone
dataset. It can be seen that our method outperforms existing
image based and video based methods. On the PartA subset,
our GFAN method achieves 6.9 MAE score and 8.8 MSE
score. The most competitor DSSIM [39] obtains 9.1 MAE
score and 11.8 MSE score. On the PartB subset, we also obtain
the best results of 15.0 MAE score and 28.3 MSE score.
The second best method is BL [50] that obtains 19.9 MAE
score and 38.5 MSE score. The results indicate that our
method can generate more accurate density maps in different

scenarios. It is worth mentioning that the results in PartB are
worse than that in PartA though the density of PartB (58.8)
is lower than PartA (106.0). This is maybe because PartB
has larger density and scene variety. Besides, CFF [38] and
CSRNet [37] also perform well on the AnimalDrone dataset.
We speculate that CFF [38] integrates the three tasks of
counting, segmentation, and classification to improve counting
performance. CSRNet [37] employs dilated convolution layers
to enlarge the receptive field, resulting in better discrimina-
tive representation for small objects. In addition, as shown
in Fig. 7, we randomly select two videos in PartA and PartB
to show the comparison between the prediction of our method
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Fig. 7. Smoothness of the crowd counting prediction of our GFAN in videos.

and ground-truth. It indicates that our prediction is relatively
smooth across sequential frames.

2) Attributes Based Evaluation: To analyze the results
comprehensively, we also report the performance in terms
of several attributes including the low-density and
high-density subsets based on the density attribute,
the low-height, med-height and high-height sub-
sets based on the altitude attribute and the bird-view and
side-view subsets based on the view attribute.

As presented in Table II and Table III, our method per-
forms much better than the other methods in terms of
high-density and high-height subsets. Note that
high-height usually corresponds to high-density by
capturing more objects in a boarder view. This result shows
that motion information can be leveraged by joint training
to improve the accuracy of density map estimation. Mean-
while, our method performs well in terms ofbird-view
and side-view compared with other methods. It indicates
that our model is more robust to different perspective views.
CFF [38] performs the best in low-density on PartA.
This is maybe because that the segmentation map can help
remove redundant noise in complex scenes. However, if the
density becomes higher, it is difficult to obtain an accurate
segmentation map, resulting in reduced performance (see the
results on PartB). It is worth mentioning that the performance
gap between different density of PartB is significantly greater
than that in PartA. It shows that PartB is more challenging
with great diversity in density due to multiple data source.

3) Per-Category Animal Counting: We also perform
per-category animal counting on two subsets of our dataset.

TABLE IV

COUNTING RESULTS OF GFAN IN TERMS OF ANIMAL
SPECIES ON THE ANIMALDRONE DATASET

Note that there are only three animal species in PartA while
all nine animal species in PartB. We train our GFAN on the
training set, and then calculate both MAE and MSE scores
on the corresponding testing set in terms of animal species.
As presented in Table IV, our method performs worse in
terms of sheep and cow than other animal species on PartB.
We speculate that the videos of sheep and cow have large
variation on PartB because of multiple sources. Besides, some
visual results are shown in the Fig. 8. It show our method can
count various animals well on the AnimalDrone dataset.

4) Failure Cases: Although our GFAN performs well on
the AnimalDrone dataset, counting performance occasionally
degrades or even fails when the drone moves too fast and the
animals move too slow. This is due to inaccurate optical flow
in complex scenes. Some failure examples are shown in Fig. 9.

D. Evaluation on the FDST and UCSD Datasets

In addition, we compare our method with 7 state-of-art
methods including three imaged-based methods (MCNN [10],
CSRNet [37] and BL [50]) and four video-based meth-
ods (ConvLSTM [40], STANet [19], FCN-rLSTM [41] and
LSTN [8]) on two other video based FDST [8] and UCSD [9]
datasets.

1) Overall Evaluation: The FDST dataset [8] collects
100 videos captured from 13 different scenes, and con-
tains 150, 000 frames with a total of 394, 081 annotated
heads. Besides, the UCSD dataset [9] contains 2, 000 frames
with 49, 885. Notably, these two datasets have frame-by-
frame annotations rather than only key-frame annotations in
the WorldExpo2010 dataset [18]. As presented in Table V,
our method achieves the second best 2.45 MAE score and
3.22 MSE score on the FDST datast [8], following the
best performer STANet [19] with 2.21 MAE score and
3.00 MSE score. On the UCSD dataset [9], our GFAN
method performs the best. By considering scale variation of the
objects, the image based MCNN [10] performs better than the
video based ConvLSTM [40], i.e., 3.77 vs. 4.48 MAE score.
In summary, our GFAN performs better than most video-based
methods and all the image-based methods.

2) Complexity Analysis: We analyze the trade-off between
error and speed of our method in Table VI. To this end,
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Fig. 8. Visual counting results in terms of animal species on the AnimalCount dataset.

Fig. 9. Some example results of failure cases on the AnimalDrone dataset.

TABLE V

RESULTS ON THE FDST AND UCSD DATASETS

we construct another GFAN variant by removing the opti-
cal flow module in the network, named as GFAN-w/o-flow.
Moreover, we compare other crowd counting methods
except ConvLSTM [40] and LSTN [8] without publicly
available codes. Note that the resolution of testing images

Fig. 10. Visual results of three video based methods on the FDST
dataset [8].

is 1920 × 1080. As presented in Table VI, three video based
methods (STANet [19], FCN-rLSTM [41], and our GFAN)
have higher FLOPs and slightly inferior running speed than
image based methods. This is because extracting temporal
information introduces extra computation. With the optical
flow module, our GFAN method achieves better performance
(2.45 vs. 3.06 MAE score) with one half speed (2.25 vs.
5.56 FPS). Compared with the best performer STANet [19]
on the FDST dataset [8], our method performs similarly, i.e.,
2.45 vs. 2.21 MAE score. In Fig. 10, we also show some
visual results of our method and two compared video based
methods including STANet [19] and FCN-rLSTM [41].

E. Ablation Study

To study the influence of the loss function in the proposed
network, we construct three variants of the proposed GFAN
method, i.e., GFAN-w/o-graph, GFAN-w/o-warp and GFAN-
w/o-cnt. For a fair comparison, it is worth mentioning that
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Fig. 11. Some example results of GFAN variants (i.e., GFAN, GFAN-w/o-graph, GFAN-w/o-warp, GFAN-w/o-cnt) and CSRNet [37] on the AnimalDrone
dataset. The ground-truth and estimated counts of the frame are presented at the top-right corner.

TABLE VI

TRADE-OFF BETWEEN PERFORMANCES AND RUNNING SPEEDS

OF COMPARED METHODS ON THE FDST DATASET [8]

all variants of GFAN are trained on the AnimalDrone train-
ing set and evaluated on the AnimalDrone testing set with
the same parameter settings and input size. Specifically, the
GFAN-w/o-graph method corresponds to the GFAN method
without the graph regularization loss. The GFAN-w/o-warp
method removes the warping loss from the GFAN-w/o-
graph method and fixes the parameters in the optical

flow network. The GFAN-w/o-cnt method denotes that we
remove the region-wise count loss from the GFAN-w/o-warp
method. As presented in Table II and Table III, our GFAN
outperforms its three variants on both PartA and PartB, which
demonstrates the effectiveness of our proposed modules.

1) Effectiveness of Graph Regularization Loss: As pre-
sented in Table II and Table III, the GFAN-w/o-graph method
achieves 7.1 MAE score and 9.2 MSE score in PartA and
16.1 MAE score and 30.3 MSE score in PartB, respec-
tively. That is, if we remove the graph regularization loss,
the overall MAE scores increase 0.2 and 1.1 in PartA and
PartB. We notice that the GFAN-w/o-graph method per-
forms inferior than the GFAN method in PartB especially
in high-density (i.e., 33.2 MAE score vs. 30.4 MAE
score). This is maybe because the graph regularization can
help maintain the temporal consistence in the density map
space.

2) Effectiveness of Warping Loss: To verify the effect of
warping Loss, we jointly train the optical flow network and
counting network through self-supervised manner. It can be
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seen than the GFAN-w/o-graph method performs better than
the GFAN-w/o-warp method. When the warping loss is used,
the MAE score decreases 0.4 and 1.5 in PartA and PartB
respectively. It indicates that the warping loss can generate
more accurate counting results by aggregating motion infor-
mation in consecutive frames.

3) Effectiveness of Multi-Granularity Loss: Besides,
we evaluate the influence of multi-granularity loss on the
counting accuracy. If we further remove the region-wise
count loss term in Eq. (1) from the GFAN-w/o-warp method,
the MAE score is increased from 7.5 to 8.3 in PartA and
from 17.6 to 18.7 in PartB, respectively. In terms of the
low-density subset, the GFAN-w/o-warp method achieves
better performance (i.e., 8.2 MAE score and 11.0 MSE score
in PartA, and 5.7 MAE score and 7.3 MSE score in PartB)
than the GFAN-w/o-cnt method (i.e., 9.4 MAE score and
11.3 MSE score in PartA, and 6.1 MAE score and 8.3 MSE
score in PartB). The decline in counting accuracy of low
density frames shows the region-wise count loss facilitates
improving the counting performance.

VI. CONCLUSION

In this paper, we propose the largest video based
crowd counting dataset to date. The AnimalDrone dataset
includes 162 sequences with 53, 644 frames and more than
4 million annotations in unconstrained wild scenes. More-
over, we develop the Graph regularized Flow Attention Net-
work (GFAN) as a strong baseline to deal with scale variations
and temporal coherence in different complex scenarios. The
proposed GFAN method outperforms state-of-the-art crowd
counting methods on the AnimalDrone dataset in terms of
several attributes. We hope this benchmark and the GFAN
method can boost the research in animal crowd counting for
agriculture and wildlife protection, especially on the drone
platform.
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