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S1amCAN: Real-Time Visual Tracking Based on
Siamese Center-Aware Network

Wenzhang Zhou, Longyin Wen, Libo Zhang

Abstract—1In this article, we present a novel Siamese
center-aware network (SiamCAN) for visual tracking, which
consists of the Siamese feature extraction subnetwork, followed
by the classification, regression, and localization branches in
parallel. The classification branch is used to distinguish the
target from background, and the regression branch is introduced
to regress the bounding box of the target. To reduce the
impact of manually designed anchor boxes to adapt to differ-
ent target motion patterns, we design the localization branch
to localize the target center directly to assist the regression
branch generating accurate results. Meanwhile, we introduce the
global context module into the localization branch to capture
long-range dependencies for more robustness to large displace-
ments of the target. A multi-scale learnable attention module
is used to guide these three branches to exploit discriminative
features for better performance. Extensive experiments on 9
challenging benchmarks, namely VOT2016, VOT2018, VOT2019,
OTB100, LTB35, LaSOT, TC128, UAV123 and VisDrone-
SOT2019 demonstrate that SiamCAN achieves leading accu-
racy with high efficiency. Our source code is available at
https://isrc.iscas.ac.cn/gitlab/research/siamcan.

Index Terms— Visual tracking, Siamese center-aware network,
multi-scale learnable attention.

I. INTRODUCTION

ISUAL object tracking is a hot research direction
Vwith a wide range of applications, such as surveil-
lance, autonomous driving, and human-computer interaction.
Although significant progress has been made in recent years,
it is still a challenging task due to various factors, including
occlusion, abrupt motion, and illumination variation.
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Modern visual tracking algorithms can be roughly divided
into two categories: (1) the correlation filter based approaches
[1]-[4], and (2) the deep convolution network based
approaches [5]-[8]. The correlation filter (CF) based approach
trains a regressor for tracking using circular correlation via
Fast Fourier Transform (FFT). With the arrival of the deep con-
volution network, some researchers use offline learned deep
features [1], [9], [10] to improve the accuracy. Considering
efficiency, those trackers abandon model update in tracking
process, which greatly harms the accuracy and generally
performs worse than the CF based approaches.

Recently, the deep Siamese-RPN method [11] is presented,
which formulates the tracking task as the one-shot detection
task, i.e., using the bounding box in the first frame as the
only exemplar. By exploiting the domain specific information,
Siamese-RPN surpasses the performance of the CF based
methods. Some methods [6], [7], [12] attempt to improve
the method [11] by using layer-wise and depth-wise feature
aggregations, simultaneously predicting target bounding box
and class-agnostic binary segmentation, and using ellipse
fitting to estimate the bounding box rotation angle and size
for better performance. However, the aforementioned methods
rely on the pre-set anchor boxes to regress the bounding box
of target, which can not adapt to various motion patterns and
scales of targets, especially when the fast motion and occlusion
challenges occur.

To this end, we propose the Siamese Center-Aware Net-
work (SiamCAN) for visual tracking. Specifically, it consists
of the Siamese feature extraction subnetwork, followed by
three parallel branches, i.e., anchor-based classification and
regression branches, and anchor-free localization branch. Sim-
ilar to [11], the classification branch is used to distinguish the
target from background, while the regression branch is used
to regress the bounding box of target. To reduce the impact of
manually designed anchor boxes to adapt to different motion
patterns and scales of targets, we design the localization branch
to localize the target center directly. It helps the regression
and classification branches generate more accurate results.
Meanwhile, the global context module [13] is merged into the
localization branch to capture long-range dependency to deal
with large target displacement. Meanwhile, the multi-scale
learnable attention module is introduced to guide these three
branches to exploit more discriminative representation, result-
ing in better performance. The whole network is trained in an
end-to-end fashion offline with the large-scale image pairs by
the standard SGD algorithm with back-propagation [14] in the
training sets of MS COCO [15], ImageNet DET/VID [16], and
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YouTube-BoundingBoxes [17] datasets. For inference, visual
tracking is formulated as the local one-shot detection task by
using the bounding box of target in the first frame as the only
exemplar. Comprehensive experiments on nine benchmarks
including VOT2016 [18], VOT2018 [19], VOT2019 [20],
OTB100 [21], LaSOT [22], TC128 [23], LTB35 [24], UAV123
[25], and VisDrone-SOT2019 [26] show the effectiveness of
our SiamCAN method. For example, our method achieves
EAO score of 0.513, i.e., 8.9% relative improvement compared
to the second best tracker on VOT2016. Moreover, the abla-
tion study is conducted to verify the influence of important
components in our method.

The main contributions of this work are summarized as fol-
lows. 1) We propose a Siamese center-aware network (Siam-
CAN) for visual tracking, where the classification, regression,
and localization branches are jointly trained using the pro-
posed multi-scale learnable attention module. 2) The local-
ization branch is enhanced by global context to obtain more
robustness for large target displacement. 3) Extensive experi-
ments are conducted on 9 challenging benchmarks to demon-
strate the effectiveness of the proposed SiamCAN method
comprehensively.

II. RELATED WORKS

Extracting discriminative features is a critical step in visual
tracking. MOSSE [27] and CSK [28] attempt to exploit
discriminative correlation filters learned dynamically to adapt
to appearance variations of targets. KCF [29] learns a dual
correlation filter with HOG feature based on CSK [28].
SAMEF [30] is a scale adaptive method with powerful features
including color and HOG information for visual tracking. The
methods in [1], [2], [9] compute the convolutions between
the target template features and the search area to determine
the target size and location in the video sequences. However,
the aforementioned methods rely on hand-crafted features,
which may be less effective than deep learnt features for visual
tracking, especially in complex scenarios.

Compared to using hand-crafted features, several methods
attempt to extract features from a pretrained convolutional
neural network (CNN) to improve the tracking performance.
FCNT [31] conducts an in-depth study on the properties of
CNN features offline pre-trained on ImageNet and designs a
visual tracking method using the fully convolutional neural
network. MDNet [32] attempts to learn the generic target rep-
resentations using shared layers, and integrates a binary clas-
sification layer updated online for object tracking. MemDTC
[33] presents a dynamic memory network to learn feature
representation of targets and uses LSTM as a memory con-
troller to adapt the template. To address the two problems in
deep classification network based methods, i.e., capturing rich
appearance variations and handling extreme class imbalance
between positive and negative samples, VITAL [34] uses
the adversarial learning to identify the mask that maintains
the most robust features of targets over a long temporal
span. ATOM [8] proposes a tracking architecture, formed by
dedicated target estimation and classification components to
extract high-level knowledge of objects for better performance.
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Some other researchers attempt to use the Siamese network
for visual tracking. SINT [5] and SiamFC [35] formulate the
visual tracking problem as the pairwise similarity learning of
the target in consecutive frames using the Siamese network.
Dong er al.[36] use the triplet loss to train the Siamese network
to exploit discriminative features instead of the pairwise loss,
which can mine the potential relationship among exemplar,
i.e., positive and negative instances, and contains more ele-
ments for training. To take fully use of semantic information,
He et al.[37] construct a twofold Siamese networks, which is
composed of a semantic branch and an appearance branch, and
each of them is a similarity-learning Siamese network. In [38],
the semantic and objectness information is used to produce a
class-agnostic ridge regression network for object tracking.

Inspired by Region Proposal Network (RPN) in object
detection, SiamRPN [11] formulates visual tracking as a local
one-shot detection task in inference, which uses the Siamese
network for feature extraction and RPN for target classifica-
tion and regression. Fan and Ling [39] construct a cascaded
RPN from deep high-level to shallow low-level layers in a
Siamese network. Zhu et al.[40] design a distractor-aware
Siamese networks for accurate long-term tracking by using
an effective sampling strategy to control the distribution of
training data, and make the model focus on the semantic
distractors. SiamRPN ++ [6] is improved from SiamRPN
[11] by performing layer-wise and depth-wise aggregations,
which not only improves the accuracy but also reduces the
model size. Zhang and Peng [41] design a residual network for
visual tracking with controlled receptive field size and network
stride. Han er al.[42] introduce the anchor-free detection
network into visual tracking directly. Moreover, SiamMask
[7] combines the fully-convolutional Siamese tracker with a
binary segmentation head for accurate tracking. To track the
rotated target accurately, Chen et al.[12] improve SiamMask
[7]1 by using ellipse fitting to estimate the bounding box
rotation angle and size with the mask on the target. However,
the aforementioned algorithms fail to consider the variations
of target motion patterns, resulting in failures when the fast
motion, occlusion, and camera motion challenges occur.

Inspired by the anchor-free object detection methods [43],
[44], various object tracking methods [45]-[48] are developed
to directly predict the locations and sizes of targets in video
sequences. Chen et al. [45] directly localize the target objects
and regress the bounding boxes in a fully convolutional
network. Guo et al. [46] integrate a centerness branch in
parallel with the classification and regression branches in the
Siamese network to improve the accuracy. Li et al.[47] develop
the Siamese keypoint prediction network to generate cascade
heatmaps to cover both accuracy and robustness. Besides,
Zhang et al.[48] directly predict the position and size of target
in an anchor-free fashion rather than refining the reference
anchor boxes. In contrast to the aforementioned methods,
we introduce the localization branch with the global context
module to help the regression and classification branches to
generate accurate results.

On the other hand, increasing interest has been attracted
in long-term tracking [49]-[53]. Zhang et al. [49] propose
the new deep regression and verification network, where a
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Fig. 1.

The architecture of our SiamCAN method, which consists of the Siamese feature extraction subnetwork followed by the classification, regression, and

localization branches in parallel. The pairs of feature maps from different layers of the Siamese feature extraction subnetwork are fed into the three branches.
“3 x 3-s1-d2” denotes a convolution layer with 3 x 3 kernel, stride 1 and dilation rate 2.

dynamic switch scheme between local search and image-wide
re-detection is designed based on the outputs from both
regression and verification networks. Lee et al. [50] propose a
memory model based on the Siamese network, where Memory
stores in MMLT are divided into short and long-term stores in
tracking and re-detection processes respectively. Yan et al. [51]
perform a robust and real-time long-term tracking framework
based on the skimming and perusal modules, where the perusal
module is used to infer the optimal candidate proposal with
its confidence score and the skimming module is used to
choose the most possible regions from a large number of slid-
ing windows efficiently. SiamRCNN [52] combines Siamese
network with two-stage detector and tracklet-based dynamic
programming algorithm, which re-detects the same object in
the first-frame template to avoid target drifting. Different from
offline-trained Siamese networks, Dai et al. [53] propose the
meta-updater module to integrate geometric, discriminative,
and appearance cues in a sequential manner by a cascaded
LSTM module. Thus a binary output is learned to guide the
update of different tracker embedded with the meta-updater.

III. SIAMESE CENTER-AWARE NETWORK

As shown in Fig. 1, our Siamese center-aware network is a
feed-forward network, which is formed by a Siamese feature
extraction subnetwork, followed by three parallel branches,

, the classification branch, the regression branch, and the

localization branch. The classification branch is designed to
distinguish the foreground proposals from the background,
and the regression branch is used to regress the bounding
box of target based on the preset anchor boxes. Inspired
by [44], we integrate a localization branch to localize the
target center directly, which can help the regression branch
estimate the size of the target more accurately. Let k be
the number of pre-set anchors. Thus, we have 2k channels
for classification, 4k channels for regression and 2 channels
for localization, and denote the output feature maps of the
three branches as OIS, ., (’)wihx4k, and 0!, ,. Notably,
each point in wathk’ wahx4k, and wath contains
2k, 4k, and 2 channel vectors, representing the positive and
negative activations of each anchor at the corresponding loca-
tions of the original map for each branch. In the following
sections, we will describe each module in our SiamCAN
in detail.

Siamese feature extraction subnetwork. Inspired by [11],
we use the fully convolutional network without padding in the
Siamese feature extraction subnetwork. Specifically, there are
two components in the Siamese feature extraction subnetwork,
i.e., the template module encoding the target patch in the
historical frame, and the detection module encoding the image
patch including the target in the current frame. The two
components share parameters in CNN. Let o be the target
patch fed into the template module, and S be the image
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patch fed into the detection module. We denote the output
feature maps of the Siamese feature extraction subnetwork
at the i-th layer as ¢;(a) and ¢;(f). Then, we split each
of them into three branches, i.e., ¢C15 (o) and ngClS(ﬁ) for the
classification branch, ¢ (@) and ?; “€(B) for the regression
branch, and ¢>1°C(oc) and ¢>1°C(,[)’) for the localization branch,
by a convolution layer with kernel size 3 x 3 and stride 1,
but keeping the number of channels unchanged. Similar to the
previous work [6], we use the ResNet-50 network [54] as the
backbone. To reduce the computational complexity, we extract
the feature maps from the backbone with the channel 256
by one 1 x 1 convolutional layer, and then crop the center
7 x 7 regions from the 15 x 15 feature maps as the template
feature [55]. Due to the paddings of all layers in the backbone,
the 7 x 7 feature map can still represent the entire target region.

Classification branch. As shown in Fig. 1, the classification
branch takes the multi-scale features produced by the tem-
plate and detection modules of the Siamese feature extraction
subnetwork, e.g., t3, s3, t4, s4, t5, and s5, to compute the
correlation feature maps between the input template (¢>fls(a))
and detection (gbids(ﬁ)) feature maps, i.e.,

FES o (m) = @55 (a) * 55 (B), (1)

where x denotes depth-wise convolution operation. We use two
convolution layers with the kernel size 1 x 1 and stride size 1,
to produce the features with 2k channels, i.e., lf)x 2k (m),
m=1,---, L, where L is the total number of feature maps for
prediction. After that, we use the multi-scale attention module
to guide the branch to exploit discriminative features for
accurate results. Specifically, we first concatenate the feature
maps at different layers, i.e., ﬁvxhxzk(m), m=1,---,L,
and use two convolutional layers with the kernel size 3 x 3
and stride size 2, followed by an average pooling and fully
connected layers to produce the weights, i.e., yids. After that,
the feature maps with different scales are summed with the
weights 1S to generate the final predictions Ofgsx hx2ke b€

1 Is
wxh><2k - Z VCS Fu ><h><2k(m) (2

Each point in the output (’) “hxok 18 @ 2k channel vector,
indicating the positive and negatlve activations of each anchor
at the corresponding locations of the original map. Notably,
the weights yds = 1,---,L, are learned in the train-
ing phase, i.e., the gradients of the whole network can be
back-propagated to update y<S, m = 1,--., L. Please see

Fig. 1 for more details.

Regression branch. As described above, the regression branch
is designed to generate the accurate bounding box of target in
the current video frame. As shown in Fig. 1, we compute
the correlation feature maps between the input template and
detection feature maps. For example, for the feature map at
the m-th layer, the correlation feature map Flrjihx a(m) is
computed as

wah><4k(m) = ¢reg( )*¢reg(ﬁ)a (3)
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where ¢p,° (o) and ¢y,° (B) are the m-th feature map from the
template and detection modules. After that, two convolution
layers with the kernel size 1 x 1 and stride size 1, are applied
on Flrfihx4k(m) to produce the corresponding feature map
fwihx4k(m) m = 1,---, L, keeping the channel size 4k
unchanged, where L is the total number of feature maps used
for prediction. Similar to the classification branch, we use
the multi-scale attention module with the learnable weights
yme, m=1,---, L, to make the branch focus on exploiting

discriminative features to generate accurate results, i.e.,

L
reg _ reg = ieg
wahx4k - z Vm wxh><4k(m) (4)
m=1
where wa <k is the output of the regression branch. Each

point on wa nxar Contains a 4k channel vector, indicating the
normalized distance between the predicted anchor box and the
ground-truth bounding box.

Localization branch. As discussed above, the anchor-based
classification and regression branches are used to distinguish
the target from background. However, different targets have
different motion patterns, i.e., some targets move fast, while
some targets move slowly. In some challenging scenarios such
as fast motion and small object, it is difficult for the regression
branch to estimate the locations of targets accurately with the
pre-set anchors.

To make our tracker adapt to various motion patterns of
targets, we introduce a localization branch to directly localize
the target center to help the regression branch and classifi-
cation branch produce accurate results. Firstly, we obtain the
multi-scale features LI’l"c(oc) and ‘I’l"c(,[)’) from the Siamese
feature extraction subnetwork. Then the global features ¢>1°C (a)
and qﬁ}oc(ﬁ) of objects are extracted by three convolutional
layers. Finally, we compute the correlation feature map with
</>}°°(a) and ¢>}°C (B) to predict the center map of the tracking
object. The correlation feature map can be computed as

SI(a)] © H°(B), 5)

where S[-] denotes the resize operation to make the two
feature maps to be the same size, and © denotes element-wise
multiplication operation, see Fig. 1.

wxh><2(m) -

Global context. Since the traditional convolution layers only
capture pixel relations in a local neighborhood, we insert the
global context module [13] to integrate long-range dependency
between target and background regions by explicitly using
a query-independent attention map for all query positions.
As shown in Fig. 1, the global context consists of the Context
Modeling and Transform modules. The Context Modeling can
capture the pairwise relations between each pixel and all other
pixels via self-attention mechanism. The Transform can cap-
ture channel-wise dependencies using two 1 x 1 convolutional
layers. Thus the model can obtain the global context features
so that the tracker is more robust to large target displacement.

Inspired by [56], we design the atrous spatial pyramid
module to capture the context information at multiple scales,
which applies two parallel atrous convolution with different
rates, followed by a convolution layer with 1 x 1 kernel size
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and stride 1. In this way, we can generate the multi-scale
discriminative features F1°¢, ,(m), where m = 1,---,L.
Then, similar to the classification and regression branches,
we use the multi-scale attention module with the learnable
weights !¢ m =1,..., L to generate the final predictions.
That is,

w(>:<h><2 - Z yloc floihx2(m) (6)

Notably, each point on the prediction (’)10‘; 2 18 @ two channel
vector, representing the offset of the corresponding center
location in the original map.

Loss function. The loss function in our method is formed by
three terms corresponding to three branches, i.e., the classifi-
cation loss Lcjs, the regression loss Lyeg, and the localization
loss Lioc. The overall loss function is computed as:

L = LasLeis(u, u™) + /IregLreg (P, P*) + AtocLioc(c, ¢*), (7)

where Acls, Areg and Ajoc are the parameters used to bal-
ance the three loss terms. u and u* are the predicted and
ground-truth labels of the target bounding boxes, p and p* are
the predicted and ground-truth bounding boxes, and ¢ and c*
are the predicted and ground-truth labels of the target center.
We use the cross-entropy loss to supervise the classification
and localization branches, and L1 loss to supervise for the
regression branch.

Specifically, the classification loss Lcis(u, u*) is computed
as

1
Leis(u, u®) = 3 ZZZ (u;'k,j,k logui,j k
ik

+( = uf; ) log(l —uijr), (8)
ik is the ground-truth label of the k-th anchor at
@@, j) of the output wathk’ and u; j x is the predicted label
of the k-th anchor at (i, j) generated by the softmax operation
from OZ}SX nx2r OVEr 2 categories.

Meanwhile, we use the L1 loss function to compute the
regression 10ss Lieg(p, p*), Le.,

1
5 2o 2. 2wl
ik

> OMl0(pijk» Pf i) s

where N is the number of positive anchors, and the Iverson
bracket indicator function [u} ik > 0] outputs 1 when the
condition is true, i.e., the anchor is not negatlve u Lk > 0, and
0 otherwise. p; jx = (x,y, w, h) and P; k= = (x*, y*, w*, h*)
are the predicted and ground-truth boundlng boxes, where
(x,y) and (x*, y*) are the center coordinates and (w, ) and
(w*, h™) are the sizes. We use the normalized distances o to
compute the regression loss, i.e., 0(p, p*) = (x*—x)/x, (y*—
y)/y, In(w*/w), In(h*/ h)).

Moreover, we also use the cross-entropy loss for the local-
ization branch as follows.

Lioc(c,c¥) = __ZZ

where u

Lreg (@, p*) =
9

jlogei

+(1 —¢flog (1 —cij)), (10)
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where ¢ j
at (i, j) of the output Olu?ihx? and c;; is the predicted
label of the center of the target at (i, j) generated by the
softmax operation from Olocx nxo- Notably, we generate the
ground-truth center location of the target c* (where cl’ j €
[0, 1]) using the Gaussian kernel with the object size-adaptive
standard deviation [57].

is the ground-truth label of the center of the target

A. Training and Inference

Data augmentation. We use several data augmentation strate-
gies such as blur, rescale, rotation, flipping and gray scaling
to construct a robust model to adapt to variations of objects
using the video sequences in MS COCO [15], ImageNet
DET/VID [16], and YouTube-BoundingBoxes [17]. For the
positive image pairs, we randomly select two frames from
the same video sequences with the interval less than 100
frames, or different image patches including target object in
the MS COCO and ImageNet DET datasets. Meanwhile, for
the negative image pairs, we randomly select an image from
the datasets and another one without including the same target.
Notably, the ratio between the positive and negative pairs is
set to 4: 1.

Anchors design and matching. For each point, we pave 5
anchors with stride 8 on each pixel, where the anchor ratios
are set to [1/3,1/2,1/1,2/1,3/1] and the anchor scale is
set to 8. Meanwhile, during the training phase, we determine
the correspondence between the anchors and ground-truth
boxes based on the jaccard overlap. Specifically, if the overlap
between the anchor and ground-truth box is larger than 0.6,
the anchor is determined as positive. Meanwhile, if the overlap
between the anchor and all ground-truth boxes is less than 0.3,
the anchor is determined as negative.

Optimization. The whole network is trained in an end-
to-end manner using the SGD optimization algorithm with
0.9 momentum and 0.0001 weight decay on the training sets
of MS COCO [15], ImageNet DET/VID [16], and YouTube-
BoundingBoxes [17] datasets. Notably, we use three stages
to train the proposed method empirically. For the first two
stages in the training process, we disable the multi-scale
attention modules in the three branches, i.e., set equal weights
to different scales of features. First, the backbone ResNet-
50 network in the Siamese feature subnetwork is initialized
by the pre-trained model on the ILSVRC CLS-LOC dataset
[16]. We train the classification and regression branches in
the first 10 epochs with other parameters fixed, and then train
the Siamese feature subnetwork, and the classification and
regression branches in the next 10 epochs. Second, we finetune
the classification, regression and localization branches with
other parameters fixed in the first 10 epochs, and then train
the whole network in the next 10 epochs. Third, we enable
the multi-attention module and learn the weights of different
scales of features with other parameters fixed in the first 15
epochs. After that, the whole network is finetuned in the next
5 epochs. In each stage, we set the initial learning rate to
0.001, and gradually increase it to 0.005 in the first 5 epochs.
We decrease it to 0.0005 in the next 15 epochs.
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Inference. In the inference phase, our tracker takes the current
video frame and the template target patch as input, and outputs
the classification, regression, and localization results. Then,
we perform softmax operation on both the outputs of the
classification and localization results to obtain the positive
activations, i.e., u with the size w x h x k, and ¢ with
the size w x h x 1. After that, we expand the localization
result ¢ to make it to the same size of the classification
result u. In this way, the final prediction is computed by the
weight combination of four terms, i.e., the localization result
¢, the classification result u, the cosine window ¢ with the size
w x h (expanding to w x h x k), and the scale change penalty
p with the size w x h x k [11],

Ouwxhxk =2+ p - (w1 -u+ (1 —wp)-c)
+(1 —w)-¢, (A

Notably, the cosine window ¢ is used to suppress the boundary
outliers [29], and the scale change penalty p to suppress large
change in size and ratio [11]. The weights w; and w, are
used to balance the above terms, which are set to 0.7 and
0.6, empirically. After that, we can obtain the optimal center
location and scale of target based on the maximal score on
®uxhxk- Notably, the target size is updated by the linear
interpolation to guarantee the smoothness of size.

IV. EXPERIMENTS

Our SiamCAN method is implemented using the Pytorch
tracking platform PySOT.! We conduct the experiments
on nine datasets including VOT2016 [18], VOT2018 [19],
VOT2019 [20], LTB35 [24], LaSOT [22], TC128 [23],
UAV 123 [25], VisDrone-SOT2019 [26] and OTB100 [21]. All
experiments are conducted on a workstation with an Intel i7-
7800X CPU, 8G memory, and 2 NVIDIA RTX2080 GPUs.

Evaluation protocol. For the VOT2016 [18], VOT2018 [19]
and VOT2019 [20] datasets, we use the evaluation protocol
in the VOT Challenge [18], [19], i.e., the Expected Average
Overlap (EAO), Accuracy (A), and Robustness (R) are used
to evaluate the performance of trackers. The Accuracy score
indicates the average overlap of the successfully tracked
frames, and the Robustness score indicates the failure rate of
the tracking frames.? EAO takes both accuracy and robustness
into account, which is used as the primary metric for ranking
trackers.

Meanwhile, for the OTB100 [21], LaSOT [22], TC128 [23],
UAV123 [25], and VisDrone-SOT2019 [26] datasets, we use
the success and precision scores to evaluate the performance
of trackers based on the evaluation methodology in [21]. The
success score is defined as the area under the success plot, i.e.,
the percentage of successfully tracked frames® vs. bounding
box overlap threshold in the interval [0, 1]. The precision
score is computed as the percentage of frames whose predicted

1 https://github.com/STVIR/pysot

2We define the failure of tracking if the overlap between the tracking result
and ground-truth is reduced to 0.

3If the overlap between the predicted bounding box and ground-truth box
in a frame is larger than a threshold, we regard the frame as a successfully
tracked frame.
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TABLE I

COMPARISON RESULTS ON VOT2016 [18]. *x DENOTES THAT THE RESULT
1S OBTAINED USING THE PYSOT PLATFORM

Tracker A R EAO
SiamFC [35] 0.530 0.460 0.235
C-COT [9] 0.539 0.238 0.331
CSRDCEF [58] 0.510 0.240 0.338
SiamRPN [11] 0.560 1.080 0.344
FCAF [42] 0.581 1.020 0.356
C-RPN [39] 0.594 0.950 0.363
SiamRPN+ [41] 0.580 0.240 0.370
ECO [1] 0.550 0.200 0.375
ASRCEF [59] 0.563 0.187 0.391
DaSiamRPN [40] 0.610 0.220 0411
ROAM++ [60] 0.599 0.174 0.441
SiamMask™ [7] 0.643 0.219 0.455
SiamRPN++* [6] 0.642 0.196 0.464
SiamMask_E* [12] 0.677 0.224 0.466
PTS [61] 0.642 0.144 0.471
SiamCAN* [ 0.636 0.149 0.513

location is within a given distance threshold from the center
of ground-truth box based on the Euclidean distance on the
image plane. We set the distance threshold to 20 pixels in our
evaluation. In general, the success score is used as the primary
metric for ranking trackers.

For the long-term tracking LTB35 dataset [24], we use three
metrics including tracking precision (P), tracking recall (R)
and tracking F-score in evaluation. The tracking methods are
ranked by the maxirzlfl’u}{n F-score over different confidence

thresholds, i.e., F = PR

A. State-of-the-Art Comparison

We compare the proposed method to the state-of-the-art
trackers on nine challenging datasets. Note that the tracking
results of other trackers are directly taken from the published
articles or corresponding github repositories.

VOT2016. We conduct experiments on the VOT2016 dataset
[18], which contains 60 sequences in total. As presented
in Table I, we find that SiamCAN achieves the best EAO
score of 0.513 and the second best robustness score of 0.149.
The SiamMask_E [12] and SiamMask [7] methods obtain the
top two accuracy scores. This is because they estimate the
bounding box based on the mask generated by the segmen-
tation head, resulting in a relatively more accurate bounding
box, especially for the non-rigid targets. SiamMask_E [12]
even uses ellipse fitting to estimate the bounding box rotation
angle and size. Besides, by using a fully convolutional Siamese
network to segment the target, PTS [61] acquires the best
robustness score of 0.144 and the second best EAO score
of 0.471. Compared with SiamRPN ++4 [6], our SiamCAN
method produces slightly inferior accuracy score but better
robustness score, indicating that the localization branch can
significantly decrease the tracking failure.

VOT2018. The VOT2018 dataset is also formed by 60 chal-
lenging video sequences with fully annotations. We evaluate
the proposed SiamCAN method on VOT2018 [19], and report
the results in Table II. Ocean [48] obtains the best robustness
score of 0.117 and the EAO score of 0.489. This is attributed
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Visual results of our approach compared with state-of-the-art trackers. The first and second rows denote the VOT2018 dataset [19]. The third row

denotes the OTB100 dataset [21], and the fourth row denotes the UAV123 dataset [25].

TABLE I

COMPARISON RESULTS ON VOT2018 [19]. * DENOTES THAT THE RESULT
1S OBTAINED USING THE PYSOT PLATFORM

Tracker A R EAO
SiamFC [35] 0.503 0.585 0.188
DSiam [62] 0.215 0.646 0.196

SiamRPN [11] 0.490 0.460 0.244
ECO [1] 0.484 0.276 0.280
SA_Siam_R [37] 0.566 0.258 0.337
DeepSTRCF [2] 0.523 0.215 0.345
DRT [3] 0.519 0.201 0.356
RCO [19] 0.507 0.155 0.376
UPDT [63] 0.536 0.184 0.378
DaSiamRPN [40] 0.586 0.276 0.383
MFT [19] 0.505 0.140 0.385
LADCEF [4] 0.503 0.159 0.389
DomainSiam [38] 0.593 0.221 0.396

PTS [61] 0.612 0.220 0.397

ATOM [8] 0.590 0.204 0.401
SiamRCNN [52] 0.609 0.220 0.408
SiamRPN++* [6] 0.601 0.234 0415
SiamMask™ [7] 0.615 0.248 0.423

DiMP-50 [64] 0.597 0.153 0.440
SiamKPN [47] 0.606 0.192 0.440
SiamMask_E* [12] 0.655 0.253 0.446
SiamBAN [45] 0.597 0.178 0.452
Ocean [48] 0.592 0.117 0.489
SiamCAN* [ 0.605 0.183 0.462

to the powerful online updating mechanism, which can reduce
tracking failures effectively. Following Ocean [48], our Siam-
CAN method achieves the second best EAO score of 0.462

without any online updating module. In terms of accuracy
score, the similar trend can be observed that SiamMask_E [12]
and SiamMask [7] achieve the best result. Except the trackers
with segmentation module (e.g., SiamMask_E [12], SiamMask
[7] and PTS [61]), our SiamCAN method achieves compa-
rable accuracy and robustness scores. In addition, as shown
in Fig. 2, SiamCAN can obtain more precise target location
and bounding box when the target moves fast.

VOT2019. Since the VOT2018 dataset is not saturated [19],
VOT2019 [20] is refreshed by replacing 20% of the sequences
from the update pool of 1,000 sequences in the GOT-10k
dataset [65]. As presented in Table III, DiMP-50 [64] and
Ocean [48] achieve the top two EAO scores. Compared with
other offline-trained Siamese network based methods (i.e.,
SiamRPN ++ [6], SiamMask [12] and SiamBAN [45]), our
method achieves better EAO score of 0.330.

LTB35. In addition, we evaluate our SiamCAN tracker on
the LTB35 dataset [24], which is first presented in the
VOT2018-LT challenge [19]. It includes 35 sequences with
14,687 frames. Each sequence contains 12 long-term target
disappearing cases in average. We compare SiamCAN to
several state-of-the-art methods (such as SPLT [51], MBMD
[49], MMLT[50], LTSINT [66] and SiamVGG [67]) in the
VOT2018-LT challenge [19] and two recent methods in
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TABLE III
COMPARISON RESULTS ON VOT2019 [19]

Tracker A R EAO
MemDTC [33] 0.485 0.587 0.228
SiamMask [12] 0.594 0.461 0.287
SiamRPN++ [6] 0.599 0.482 0.285

ATOM [8] 0.603 0.411 0.292
DiMP-50 [64] 0.592 0.278 0.379
Ocean [48] 0.594 0.316 0.350
SiamBAN [45] 0.602 0.396 0.327
SiamCAN [ 0.597 0.371 0.330

LTB35 Precision vs Recall LTB35 F-measure vs Thresholds
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04 | | —— [0.671] SiamRCNN L
—— [0.641] SiamCAN
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—— [0.610] MBMD
0.2 —— [0.607] DaSiamRPN
[0.546] MMLT
0.1 —— [0.536] LTSINT
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Recall Thresholds(indexed)
Fig. 3. Evaluation results on the LTB35 dataset [24], including recall and

precision (left) and F-score (right).

long-term tracking task, LTMU [53] and SiamRCNN [52]
in Fig. 3. It can be seen that two long-term trackers LTMU
[53] and SiamRCNN [52] perform better than other methods.
Without any re-detection module, our method obtain the third
best F-score of 0.641, 1.2% higher than SiamRPN ++ [6].
Note that the results are even better than several long-term
trackers including SPLT [51], MBMD [49], and MMLT [50].
It indicates the effectiveness of the proposed localization
branch.

LaSOT. The LaSOT dataset [22] is composed of 280 videos
with average 2, 500 frames per sequence. As shown in Fig. 4,
our SiamCAN produces worse success score than the top
3 trackers including SiamRCNN [52], DiMP-50 [64] and
LTMU [53]. This is attributed to the re-detection and model
online updating mechanism in these trackers, which is effec-
tive to handle the long-term visual tracking. Note that the
online updating mechanism is complementary to our method.
We believe that it can be used in SiamCAN to further improve
the performance. Compared to SiamRPN ++ [6], our method
produces higher success (0.538 vs. 0.496) and precision scores
(0.535 vs. 0.491).

TC128. The TCI128 dataset [23] comprises 128 video
sequences that are specifically collected to evaluate
color-enhanced trackers. The videos are labeled with 11
attributes, similar to those in OTB [21]. We compare the
proposed method to DiMP-50 [64], SiamRPN ++ [6],
MEEM (LAB) [68], Struck (HSV) [69], KCF (LAB) [29],
ASLA (LAB) [70] in Fig. 5. As shown in Fig. 5, we find
that DIMP-50 [64] performs the best among all trackers, i.e.,
0.601 success score and 0.809 precision score. Without the
online updating mechanism, our method produces the second
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Fig. 4. Success and precision plots on the LaSOT dataset [22].
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Fig. 5. Success and precision plots on the TC-128 dataset [23].
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Fig. 6. Success and precision plots on the UAV 123 dataset [25].

best results in terms of both success and precision scores,
i.e., 0.580 success and 0.780 precision scores. Thus, we can
conclude that the online updating mechanism is also effective
to handle color variations.

UAV123. We also evaluate our SiamCAN method on the
UAV 123 dataset [25], which is collected from an aerial view-
point and includes 123 sequences in total with more than
110,000 frames. As shown in Fig. 6, our method performs
on par with the state-of-the-art trackers SiamRCNN [52] and
DiMP-50 [64]. SiamRCNN [52] acquires the highest success
score of 0.649 but worse precision socre of 0.834 than DiMP-
50 [64] and our method. DiMP-50 [64] produces the same
success score 0.648 as our method but a little bit worse
precision score (0.857 vs. 0.858). Compared to SiamRPN ++
[6], our method achieves higher success (0.648 vs. 0.642)
and precision scores (0.857 vs. 0.840). It is attributed to
the localization branch and the multi-scale attention module
introduced in our tracker.

VisDrone-SOT2019. VisDrone-SOT2019 [26] is a recent
drone-captured dataset, formed by 167 video sequences with
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TABLE IV

COMPARISONS WITH TOP 10 TRACKERS IN
VISDRONE-SOT2019 CHALLENGE [26]

Tracker Success score
ED-ATOM (8] 63.5
ATOMEFR [8] 61.7
SMILE [6], [8] 59.4
Siam-OM [8], [40] 59.3
DR-V-LT [6] 57.9
SiamRPN++ [6] 56.8
TIOM [8] 55.3
PTF [8] 54.4
DATOM_AC [8] 54.1
ACNT [8] 53.2
SiamCAN* \ 64.6
o Success plots of OPE on OTB100 Precision plots of OPE on OTB100
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Fig. 7. Success and precision plots on the OTB100 dataset [21].

188,998 frames in total. Specifically, the dataset includes
86 sequences with 69,941 frames in total for training, 11
sequences with 7, 046 frames for validation and 60 sequences
with 112,011 frames for testing in the challenge. Compared
to other application scenarios, drones bring new challenges to
tracking methods, such as abrupt camera motion, small target,
and view point changes. We compare our SiamCAN method
to the top 10 methods* in the VisDrone-SOT 2019 challenge.
As described in [26], ED-ATOM, ATOMFR, SMILE, Siam-
OM, TIOM, PTE, DATOM_AC and ACNT are improved
from ATOM [8], and the rest methods are the variants of
SiamRPN ++4 [6]. As presented in Table IV, our SiamCAN
method achieves the best results with 64.6 success score.
The second best performer ED-ATOM produces 1.1 lower
success score than SiamCAN, and DR-V-LT (i.e., the variant of
SiamRPN ++-) only produces 57.9 success score. The results
indicate that our method performs well on drone-captured
video sequences.

OTB100. OTB100 [21] consists of 100 video sequences with
11 visual attributes. We compare our SiamCAN method with
existing trackers, shown in Fig. 7. Our method achieves
the best performance in both success and precision scores.
Although SiamRCNN [52] acquires the second best success
rate of 0.701, its precision score is inferior than several
compared methods. VITAL [34] achieves the second best
precision score of 0.917 but much worse success score of
0.682. Compared to SiamRPN ++ [6], our method improves
0.009 in success score (i.e., 0.705 vs. 0.696) and 0.004 in
precision score (0.919 vs. 0.915).

4Please refer to [26] for the descriptions of the compared methods.
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Fig. 8. Success score of the proposed method in each attribute
on OTB100 [21].

In addition, we report the tracking performance of the
proposed method based on the 11 attributes in OTB100 [21]
in Fig. 8. Compared to the Siamese network based trackers,
i.e., SiamRPN ++ [6], SiamRPN [11], C-RPN [39] and
DaSiamRPN [40], and other state-of-the-art methods, i.e.,
DiMP-50 [64] and ATOM [8], our method performs the best
in most of the attributes, especially in fast motion, out-of-
view, low resolution and background clutters. Most of the
previous Siamese network based trackers rely on the pre-set
anchor boxes, making it difficult to adapt to different motion
patterns of targets, resulting in inaccurate tracking results in
challenging scenarios such as fast motion or low resolution
(i.e., indicating small scale target). The localization branch in
the proposed method is effective to coarsely localize the target
to help the regression branch to generate accurate results,
making our tracker to be less sensitive to the variations of
motion patterns and scales with the pre-set anchors.

B. Ablation Study

In Table V, we construct several variants to demonstrate the
effectiveness of different components in SiamCAN. Notably,
we use the same parameter settings and training data for a
fair comparison. Meanwhile, we also present the qualitative
results of the proposed SiamCAN method and its variants
on 6 video sequences (i.e., Carl_2, Carl_3, Car4, Carl8,
Person7_1 and Personl9_I) in Fig. 9, where the fast motion
challenge occurs frequently in those sequences. The x-axis
denotes the frame indexes of the video sequence, and y-axis
denotes the IoU overlap score between the predicted bounding
box and ground-truth box of the target. Besides, we analyze
the effectiveness of multi-stage optimization and the fusion
architecture design in our network.

Localization branch. To validate the effectiveness of the
localization branch, we integrate the localization branch into
the SiamRPN ++ method [6], named as “w/o context”,
in Table V. Compared with SiamRPN ++, the “w/o context”
method improves the EAO scores from 0.464 to 0.488 on
VOT2016 and 0.415 to 0.432 on VOT2018, respectively.
As the qualitative evaluation results show in Fig. 9, we find that
the “w/o context” method also improves the tracking accuracy.
We speculate that the localization branch directly focuses on
the localize the center of target, which is effective to help
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Fig. 9. Tracking results of six videos for different SiamCAN variants.
TABLE V TABLE VI
EFFECTIVENESS OF DIFFERENT COMPONENTS IN COMPARISON OF MULTI-STAGE OPTIMIZATION
SIAMCAN BASED ON EAO METHOD ON VOT2018 [19]
Component SiamCAN Optimization A R EAO
localization branch? v v v v one-stage 0.615 0.243 0.410
global context? v v two-stage 0.604 0.178 0.463
multi-scale attention? v v v three-stage 0.605 0.183 0.462
VOT2016 0464 0472 0488 0.494 0.504 0.513
VOT2018 0415 0421 0432 0446 0.447 0462

the classification and regression branches in SiamRPN ++
[6] to generate accurate results. The significant improvements
of tracking accuracy demonstrate the effectiveness of the
localization branch in the visual tracking task.

Global context module. To demonstrate the effectiveness of
the global context module, we construct the “w/o attention”
method by integrating the global context module into the “w/o
context” method in Table V. As presented in the 4-th and 5-th
columns in Table V, if we remove the global context module,
the EAO scores of the “w/o attention” method drop 0.006
(0.494 vs. 0.488) on VOT2016 and 0.014 (0.446 vs. 0.432) on
VOT2018, respectively. Meanwhile, as the qualitative evalua-
tion results shown in Fig. 9, the tracking accuracy of the “w/o
attention” method is improved slightly compared to the “w/o
context” method. The results indicate that the global context
module in the localization branch can capture long-range
dependency to improve the tracking accuracy noticeably.

Multi-scale attention. We compare the “w/o attention”
method to the proposed SiamCAN method to demonstrate the
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effectiveness of the multi-scale attention module. As shown
in Table V, we find that the EAO score is significantly affected
on the VOT2016 and VOT2018 datasets after removing the
multi-scale attention module, i.e., 0.494 vs. 0.513 EAO scores
on VOT2016 and 0.446 vs. 0.462 EAO scores on VOT2018.
Meanwhile, if we integrate the multi-scale attention module
into the SiamRPN ++ method [6] (i.e., the 3-rd column
in Table V), the tracking accuracy is improved, i.e., 0.472
vs. 0.464 EAO scores on VOT2016 and 0.421 vs. 0.415 EAO
scores on VOT2018 respectively. As the qualitative evalua-
tion in Fig. 9, our SiamCAN performs better that the “w/o
attention” method. The learnable multi-scale attention module
attempts to exploit the multi-scale discriminative features to
guide the three branches, i.e., the classification, regression,
and localization branches, to produce accurate results. We can
conclude that all of the three aforementioned modules are
critical to the tracking performance in the proposed SiamCAN
method.

Multi-stage optimization. To verify the effectiveness of
multi-stage optimization strategy, we conduct several experi-
ences on VOT2018 [19] in Table VI. Specifically, the training
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TABLE VII
COMPARISON BETWEEN OUR SIAMCAN VARIANT AND RELATED SIAMESE TRACKERS

Trackers Architecture OTB100 [21] UAVI23 [25]
Success Score Precision Score Success Score Precision Score
SiamBAN [45] Anchor-free 0.696 0.910 0.631 0.833
SiamCAR [46] Anchor-free 0.697 0.910 0.614 0.760
SiamRPN++ [6] Anchor-based 0.664 0.877 0.612 0.804
SiamRCNN [52] Anchor-based 0.701 0.891 0.649 0.834
SiamCAN [ Fusion [ 0.701 0.916 [ 0.640 0.843
TABLE VIII

COMPARISON OF THE COMPLEXITY OF TRACKERS

Trackers Online Update | FPS ~ GFLOPs  # Params
SiamKPN [47] 28 76.07 90.75M
ATOM [8] v 28 3.97 17.29M
DiMP-50 [64] v 29 10.35 43.10M
Ocean [48] v 52 23.66 26.46M
SiamMask_E [12] 52 20.09 21.48M
SiamRPN++ [6] 53 59.56 53.95M
SiamBAN [45] 54 59.55 53.93M
SiamMask [12] 54 20.08 21.48M
DaSiamRPN [40] 96 21.85 90.44M
SiamCAN 45 64.62 61.14M

phase of our method is formed by three stages, called “three-
stage” training strategy, i.e., (1) training the classification and
regression branches, (2) training all the three branches without
the multi-attention module, and (3) training the whole network.
The “one-stage” training indicates that we directly train the
whole network, and the “two-stage” training indicates that we
first train the classification and regression branches, and then
fine-turn the whole network. As shown in Table VI, the “two-
stage” and “three-stage” training strategy produce comparable
results, and there is a sharp performance drop using the “one-
stage” strategy. We speculate that the multi-stage strategy can
obtain more optimal parameters of the network than the “one-
stage” strategy in the training phase.

Fusion architecture design. As described in Section III, our
network fuses the anchor-based classification and regression
branches and anchor-free localization branch. To verify the
effectiveness of our architecture design, we compare the
results of our SiamCAN without using the multi-scale attention
module to the other anchor-based and anchor-free trackers on
the OTB100 [21] and UAV123 [25] datasets in Table VII.
As shown in Table VII, we find that the variant of our
SiamCAN produces better results than all of the anchor-based
(e.g., SiamRPN ++ [6] and SiamRCNN [52]) and anchor-free
(e.g., SiamBAN [45] and SiamCAR [46]) methods on the
OTB100 [21] and UAV 123 [25] datasets.

C. Complexity

We report the tracking speeds (FPS), computational com-
plexity (GFLOPs) and model complexity (the number of
parameters) of our SiamCAN and other algorithms (e.g.,
DaSiamRPN [40], DiMP-50 [64], Ocean [48], and SiamRPN
++ [6]) on the VOT2018 dataset [19] in Table VIII. Note
that all the trackers are run on the same machine for a fair
comparison.

In terms of tracking speeds, DaSiamRPN [40] runs fastest
with 96 FPS but produces inferior EAO score of 0.383. Ocean
[48] acquires the real-time speed of 52 FPS and the best
EAO score of 0.489. Comparing to SiamRPN ++ [6], our
SiamCAN produces more accurate results (i.e., 0.415 vs. 0.462
EAO scores) with a slightly lower running speed (i.e., 53 vs. 45
FPS). Meanwhile, we notice that three previous trackers using
the online updating scheme (i.e., ATOM [8], DiIMP-50 [64]
and Ocean [48]) have lower GFLOPs than most of the Siamese
network based methods. However, the online updating scheme
requires additional run-time overhead, resulting in relative
lower tracking speed. In summary, our SiamCAN achieves a
good trade-off between the accuracy and running speed.

V. CONCLUSION

In this article, we propose a novel Siamese center-aware
network for visual tracking, which integrates a new localiza-
tion branch to deal with various motion patterns in complex
scenarios. Specifically, it directly localizes the target center to
help the regression branch generate accurate results and reduce
tracking failures, especially when the fast motion, occlusion,
and low resolution challenges occur. Our tracker sets the new
state-of-the-art on three challenging tracking datasets, i.e.,
VOT2016, OTB100, and VisDrone-SOT2019, and performs
on par with the state-of-the-art on UAV 123, with the real-time
running speed 45 FPS.
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