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Abstract

Automatic security inspection using computer vision
technology is a challenging task in real-world scenarios
due to various factors, including intra-class variance, class
imbalance, and occlusion. Most of the previous methods
rarely solve the cases that the prohibited items are deliber-
ately hidden in messy objects due to the lack of large-scale
datasets, restricted their applications in real-world scenar-
ios. Towards real-world prohibited item detection, we col-
lect a large-scale dataset, named as PIDray, which covers
various cases in real-world scenarios for prohibited item
detection, especially for deliberately hidden items. With
an intensive amount of effort, our dataset contains 12 cat-
egories of prohibited items in 47, 677 X-ray images with
high-quality annotated segmentation masks and bounding
boxes. To the best of our knowledge, it is the largest prohib-
ited items detection dataset to date. Meanwhile, we design
the selective dense attention network (SDANet) to construct
a strong baseline, which consists of the dense attention
module and the dependency refinement module. The dense
attention module formed by the spatial and channel-wise
dense attentions, is designed to learn the discriminative fea-
tures to boost the performance. The dependency refinement
module is used to exploit the dependencies of multi-scale
features. Extensive experiments conducted on the collected
PIDray dataset demonstrate that the proposed method per-
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Figure 1. Comparisons between the natural image (left) and X-ray
image (right).

forms favorably against the state-of-the-art methods, espe-
cially for detecting the deliberately hidden items.

1. Introduction
Security inspection is a process of checking assets

against set criteria and the evaluation of security systems
and access controls to ensure safety, which is important to
uncover any potential risks in various scenarios, such as
public transportation and sensitive departments. In prac-
tice, the inspectors are required to monitor the scanned X-
ray images acquired by the security inspection machine to
uncover prohibited items, such as guns, ammunition, ex-
plosives, corrosive substances, toxic and radioactive sub-
stances. However, the inspectors struggle to localize pro-
hibited items hidden in messy objects accurately and effi-
ciently, which poses a great threat to safety.

In recent years, due to the substantial development of
deep learning and computer vision technologies[31, 24, 34,
14, 13, 16, 3], automatic security inspection of prohib-
ited items becomes possible. The security inspectors can
quickly identify the locations and categories of prohibited
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items relying on computer vision technology. Most of the
previous object detection algorithms in computer vision are
designed to detect objects in natural images, which are not
optimal for detection in X-ray images. In addition, X-rays
have strong penetrating power, different materials in the ob-
ject absorb X-rays to different degrees, resulting in different
colors. Meanwhile, the contours of the occluder and the oc-
cluded objects in the x-ray are mixed together. As shown in
Figure 1, compared with natural images, X-ray images have
a quite different appearance and edges of objects and back-
ground, which brings new challenges in appearance mod-
eling for X-ray detection. To advance the developments of
prohibited items detection in X-ray images, some recent at-
tempts devote to construct security inspection benchmarks
[25, 1, 2, 26, 36]. However, most of them fail to meet the
requirements in real-world applications for three reasons.
(1) Existing datasets only contain a small number and very
few categories of prohibited items (e.g., knife, gun and scis-
sors). For example, some common prohibited items such as
powerbank, lighter and sprayer are not included. (2) Some
real-world scenarios require high security level based on
accurate predictions of masks and categories of prohibited
items. The image-level or bounding box-level annotations
in previous datasets are not sufficient to train algorithms in
such scenarios. (3) Detecting prohibited items hidden in
messy objects is one of the most significant challenges in
security inspection. Nevertheless, few studies are developed
towards this goal due to the lack of comprehensive datasets
covering such cases.

To that end, we collect a large-scale prohibited item de-
tection dataset (PIDray) towards real-world applications.
Our PIDray dataset covers 12 common prohibited items in
X-ray images. Some example images with annotations are
shown in Figure 2, where each image contains at least one
prohibited item with both the bounding box and mask an-
notations. Notably, for better usage, the test set is divided
into three subsets, i.e., easy, hard and hidden. The hidden
subset focuses on the prohibited items deliberately hidden
in messy objects (e.g., change the item shape by wrapping
wires). To the best of our knowledge, it is the largest dataset
for the detection of prohibited items to date.

Meanwhile, we also present the selective dense attention
network (SDANet) to construct a strong baseline, which
consists of two modules, i.e., the dense attention module
and the dependency refinement module. The dense atten-
tion module uses both the spatial and channel-wise attention
mechanisms to exploit discriminative features, which is ef-
fective to locate the deliberately prohibited items hidden in
messy objects. The dependency refinement module is con-
structed to exploit the dependencies among multi-scale fea-
tures. Extensive experiments on the proposed dataset show
that our method performs favorably against the state-of-the-
art methods. Especially, our SDANet achieves 1.5% and
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Figure 2. Example images in the PIDray dataset with 12 categories
of prohibited items. Each image is provided with image-level and
instance-level annotation. For clarity, we show one category per
image.

1.3% AP improvements over Cascade Mask R-CNN [5] for
object detection and instance segmentation on the hidden
subset, respectively.

The main contributions of this work are summarized as
follows. (1) Towards the prohibited item detection in real-
world scenarios, we present a large-scale benchmark, i.e.,
PIDray, formed by 47, 677 images in total. To the best of
our knowledge, it is the largest X-ray prohibited item de-
tection dataset to date. Meanwhile, it is the first benchmark
aiming at cases where the prohibited items are deliberately
hidden in messy objects. (2) We propose the selective dense
attention network, formed by the dense attention module
and the dependency refinement module. The dense atten-
tion module is used to capture the discriminative features
in both spatial and channel-wise, and the dependency re-
finement module is constructed to exploit the dependencies
among multi-scale features. (3) Extensive experiments are
conducted on the proposed dataset to verify the effective-
ness of the proposed method compared to the state-of-the-
art methods.

2. Related Work
2.1. Prohibited Items Benchmarks

When the X-ray passes through an object, different ma-
terials absorb the X-ray to different degrees due to its strong
penetrating power. Therefore, different materials show dif-
ferent colors in X-ray images. This ability makes it diffi-
cult to detect overlapping data. In addition, the difficulties
caused by natural images still exist, including intra-class
differences, data imbalance, and occlusion.

To advance robust prohibited item detection methods,
previous works collect a few datasets. [25] propose a public
dataset called GDXray for nondestructive testing. GDXray
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Table 1. Comparison of the dataset statistics with existing X-ray benchmarks. “Total” and “Prohibited” indicate the number of total images
and the images containing prohibited items in the dataset, respectively. C, O, and I represent Classification, Object Detection, and Instance
Segmentation respectively. S, A, and R represent Subway, Airport, and Railway Station respectively.

Dataset Year Classes
Images Annotations

Type Scene Application AvailabilityTotal Prohibited Image Bbox Mask
GDXray [25] 2015 3 8, 150 8, 150 X X Real - C+O X

Dbf6 [1] 2017 6 11, 627 11, 627 X X Real - C+O ×
Dbf3 [2] 2018 3 7, 603 7, 603 X X Real - C+O ×

Liu et al. [21] 2019 6 32, 253 12, 683 X X Real S C+O ×
SIXray [26] 2019 6 1,059,231 8, 929 X X Real S C+O X

OPIXray [36] 2020 5 8, 885 8, 885 X X Synthetic A C+O X

Ours 2021 12 47, 677 47,677 X X X Real S+A+R C+O+I X

contains three types of prohibited items: gun, shuriken
and razor blade. Since there is almost no complex back-
ground and overlap, it is easy to recognize or detect objects
in this dataset. Compared with GDXray, Dbf6 [1], Dbf3
[2] and OPIXray [36] contain complicated background and
overlapping-data, but the number of images and the num-
ber of prohibited items are still insufficient. Recently, [21]
construct a dataset containing 32, 253 X-ray images, of
which 12, 683 images include prohibited items. This dataset
contains 6 types of items, but none of them are strictly
prohibited, such as mobile phones, umbrellas, computers,
and keys. [26] release a large-scale security inspection
benchmark named as SIXray, which contains 1, 059, 231 X-
ray images with image-level annotation. However, fewer
images contain prohibited items in the dataset (i.e., only
0.84%). In addition, the dataset contains 6 categories of
prohibited items, but only 5 categories are actually anno-
tated. Different from the aforementioned datasets, we pro-
pose a new large-scale security inspection benchmark that
contains over 47k images with prohibited items and 12 cat-
egories of prohibited items with pixel-level annotation. To-
wards real-world application, we focus on detecting delib-
erately hidden prohibited items.

2.2. Object Detection

Object detection is one of the fundamental tasks in the
computer vision community. Modern object detectors are
generally divided into two groups: two-stage and one-stage
detectors.

Two-stage Detectors. R-CNN [10] is one of the first
works to show that CNN can dramatically improve the
detection performance. However, each regional proposal
is processed separately in RCNN, which is very time-
consuming. Fast-RCNN[9] proposes the ROI pooling layer,
which can extract fixed-size features for each proposal from
the feature map of the full image. Faster R-CNN [31] intro-
duces the RPN network to replace selective search, which
inspires a lot of later work. For example, FPN [18] com-
bines low-resolution features with high-resolution features

through a top-down pathway and lateral connections. Mask
R-CNN [11] adds a mask branch on the basis of Faster-
RCNN[31] to improve the detection performance through
multi-task learning. Cascade R-CNN [4] applies the classic
cascade architecture to Faster R-CNN [31]. Libra R-CNN
[27] develops a simple and effective framework to eliminate
the imbalance in the detection training process.

One-stage Detectors. OverFeat [32] is one of the first
deep learning based one-stage detectors. After that, differ-
ent one-stage object detectors are proposed, including SSD
[24], DSSD [8], and YOLO series [28, 29, 30]. RetinaNet
[19] greatly improves the accuracy of one-stage detector,
making it possible for one-stage detector to surpass two-
stage detector. Recently, anchor-free approaches have at-
tracted wide attention of researchers by using key points to
represent the objects, including CornerNet [15], CenterNet
[6], and FCOS [34]. These methods eliminate the need for
anchors and provide a simplified detection framework.

2.3. Attention Mechanism

Recently, attention mechanism has been widely used in
a variety of tasks, such as neural machine translation, im-
age captioning, and visual question answering. The essence
of the attention mechanism is to imitate human visual atten-
tion, which can quickly filter out discriminative information
from a large number of information. In order to obtain more
discriminative information, various attention mechanisms
have been proposed. SENet [12] proposes the Squeeze-and-
Excitation module to model the interdependence between
channels. CBAM [37] models the inter-channel relation and
the inter-spatial relation of features. Non-Local network
[35] can capture the remote dependency of any two loca-
tions directly, which calculates the weighted sum of the fea-
tures of all positions in the input feature map as the response
of a certain position. As many previous works [18, 22] show
the importance of multi-scale feature fusion, we think it is
the key technology to solve the problem of prohibited item
detection. In X-ray images, many important details of ob-
jects are missing, such as texture and appearance informa-
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Figure 3. Examples of test sets with different difficulty levels in
the proposed PIDray dataset. From top to bottom, the degree of
difficulty gradually increases.

tion. Moreover, the contours of objects overlap, which also
brings great challenges to detection. Multi-scale feature fu-
sion considers the low-level layers with rich detail informa-
tion and the high-level layers with rich semantic informa-
tion, which can better detect the prohibited item. Therefore,
we propose a selective dense attention network. Specifi-
cally, we learn the relations between feature maps across
different stages at inter-channel and inter-pixel positions.

3. The PIDray Dataset

In this section, we provide details of the constructed
PIDray dataset, including the data collection, annotation,
and statistical information.

3.1. Data Collection

The PIDray dataset was collected in different scenarios
(such as airports, subway stations, and railway stations),
where we were allowed to place a security inspection ma-
chine. We recruited volunteers who did not mind displaying
their packages in the dataset (we promise to use it only for
scientific research and not for business). We use 3 security
inspection machines from different manufacturers to collect
X-ray data. Images generated by different machines have
certain differences in the size and color of the objects and
background. After sending the package to the security in-
spection machine, the machine will completely cut out the
package by detecting the blank part of the image. Generally
speaking, the image height is fixed while the image width
relies on the size of the package being scanned.

The complete collection process is as follows: when the
person is required for security inspection, we randomly put
the pre-prepared prohibited items in the package he or she is
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Figure 4. Class distribution of the PIDray dataset. The blue bar
represents the number of each class in the PIDray dataset.

Table 2. Statistics of the PIDray dataset.

Mode Train
Test

Easy Hard Hidden
Count 29, 457 9, 482 3, 733 5, 005

Total 47, 677

carrying. At the same time, the rough area of the object was
saved, so that the subsequent annotation work can be carried
out smoothly. There are a total of 12 categories of prohib-
ited items defined in the dataset, namely gun, knife, wrench,
pliers, scissors, hammer, handcuffs, baton, sprayer, power-
bank, lighter and bullet. To keep diversity, we prepare
2 ∼ 15 instances for every kind of prohibited item. We
spend more than three months collecting a total of 47, 677
images for the PIDray dataset. Finally, the distribution of
each category in the dataset is summarized in Figure 4. All
images are stored in PNG format.

3.2. Data Annotation

We recruited some volunteers to annotate the collected
data. In order to enable them to identify prohibited items
from X-ray images more quickly and accurately, some train-
ing courses have been organized. We first organized 5 vol-
unteers to filter out images from the dataset that contain no
prohibited items. At the same time, they also need to an-
notate the image-level labels, which can facilitate the later
annotation work. In terms of annotation, we organized over
10 volunteers to label our dataset using the labelme tool1 for
two months. Each image takes about 3 minutes to annotate,
and each volunteer spends about 10 hours to annotate the
image every day. During the annotation process, we label
both the bounding box and the segmentation mask of each

1http://labelme.csail.mit.edu/Release3.0/
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instance. After multiple rounds of double-check, the errors
are minimized as much as possible. Finally, we generate
high-quality annotations for each image.

3.3. Data Statistics

As far as we know, the PIDray dataset is the largest X-ray
prohibited item detection dataset to date. It contains 47,677
images and 12 classes of prohibited items. As presented
in Table 2, we split those images into 29,457(roughly 60%)
and 18,220(remaining 40%) images as training and test sets,
respectively. In addition, according to the difficulty degree
of prohibited item detection, we group the test set into three
subsets, i.e., easy, hard and hidden. Specifically, the easy
mode means that the image in the test set contains only one
prohibited item. The hard mode indicates that the image
in the test set contains more than one prohibited item. The
hidden mode indicates that the image in the test set contains
deliberately hidden prohibited items. As shown in Figure
3, we provide several examples in the test set with different
difficulty levels.

4. Selective Dense Attention Network

As discussed above, the previous works usually employ
feature pyramid [18] to exploit multi-scale feature maps in
the network, which focuses on fusing features only in ad-
jacent layers. After that, the succinct heads (e.g., a simple
convolutional layer) are applied on the pooled feature grid
to predict bounding boxes and masks of instances. How-
ever, the performance suffers from scale variation of objects
in complex scenes. Our goal is to learn the importance of
multi-scale feature maps based on top-down feature pyra-
mid structure [18]. In this section, we will introduce the ar-
chitecture and components of the proposed Selective Dense
Attention Network (SDANet) in detail.

4.1. Network Architecture

As shown in Figure 5(a), following the feature pyramid,
our network further makes full use of multi-scale feature
maps by the following two critical steps: 1) Fusing infor-
mation from different layers by two selective attention mod-
ules. 2) Enhancing the fused features by the dependency
refinement module.
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Note that the two steps are performed on the feature map
in each layer. After combining both the original and en-
hanced maps, the multi-scale representation is fed into the
Region Proposal Network (RPN) for final prediction.

Inspired by the work of [17], we propose two selec-
tive attention modules to extract channel-wise and spa-
tial attention of different feature maps in the pyramid re-
spectively, including the Selective Channel-wise Attention
module (SCA) and the Selective Spatial Attention module
(SSA). As shown in Figure 5(b), each feature map in the
pyramid is fed into SCA and SSA respectively. At the i-th
layer, the output enhanced feature is calculated by element-
wise summation of features after the two modules. To im-
plement the SCA and SSA modules, we first fuse features
in different layers through element-wise operations, i.e.,
X̂ =

∑n
i=1 Xi. Thus we achieve a global semantic rep-

resentation among different maps. Note that, we resize the
multi-stage features {X1, · · · , Xn} to the same scale as the
i-th layer feature before feeding them into the two modules.
Then, we obtain enhanced features by aggregating feature
maps with various attentions, which is described in detail as
follows.

4.2. Selective Channel-wise Attention

As shown in Figure 6, we employ the global average
pooling (GAP) layer to obtain global channel information
based on the base feature X̂ . After that, we use the fully
connected (FC) layer to squeeze global channel informa-
tion by reducing the channel dimension (e.g., from 256 to
128). Further, we obtain the channel-wise attention weights
{ωc

i }ni=1 of different feature maps adaptively by adding FC
layers and softmax operation for each layer. Finally, the en-
hanced feature map VC is obtained by the attention weight
on each layer, i.e., VC =

∑n
i=1 ω

c
i ·Xi.

4.3. Selective Spatial Attention

As shown in Figure 7, we use both the average pool-
ing and maximum pooling operations on the feature map
X̂ to generate two different spatial context descriptors, i.e.,
Avg(X̂), Max(X̂). Given the concatenated context descrip-
tors, we can obtain the spatial attention weights by adding
convolutional layers and softmax operation for each layer.
Finally, the feature map VS is obtained by the attention
weight on each layer, i.e., VS(x, y) =

∑n
i=1 ω

s
i (x, y) ·

Xi(x, y), where (x, y) indicates the index of pixel in fea-
ture map.

4.4. Dependency Refinement

After obtaining the aggregated features with both chan-
nel and spatial attention, we develop the Dependency Re-
finement (DR) module to generate more discriminative fea-
ture maps. Non-local representation [35] can capture long-
range dependencies effectively, which further improves the
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Figure 6. Illustration of selective channel-wise attention module
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accuracy. As shown in Figure 5(c), we first aggregate global
context features, and then establish relationships between
different channels. Finally, the global context feature is
merged into features of all positions by a fusion module.

5. Experiment
We conduct extensive experiments on the PIDray dataset

to compare the proposed method with several state-of-the-
art algorithms. Then, the ablation study is used to show
the effectiveness of the proposed modules in our method.
Finally, we verify the effectiveness of the proposed method
on general detection datasets.

5.1. Implementation Details

We employ the MMDetection toolkit2 to implement
our method, which is performed on a machine with two
NVIDIA Tesla V100 cards. Our method is implemented
in Pytorch. For a fair comparison, all the compared meth-
ods are trained on the training set and evaluated on the test
set of the PIDray dataset. The proposed SDANet is based
on Cascade Mask-RCNN [5], where the ResNet-101 net-
work is used as the backbone. According to our statistics,
the average resolution of the images in our dataset is ap-
proximately 500 × 500. Therefore, we resize the image to
500×500 for compared detectors for a fair comparison. The
entire network is trained with a stochastic gradient descent
(SGD) algorithm with a momentum of 0.9 and a weight de-
cay of 0.0001. The initial learning rate is set as 0.02 and

2https://github.com/open-mmlab/mmdetection
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Table 3. The evaluation results on the proposed PIDray dataset. COCO mmAP (%) is used to evaluate performance of all methods.

Method Backbone
Detection AP Segmentation AP

Easy Hard Hidden Overall Easy Hard Hidden Overall
FCOS ResNet-101-FPN 61.8 51.7 37.5 50.3 - - - -

RetinaNet ResNet-101-FPN 61.8 52.2 40.6 51.5 - - - -
Faster R-CNN ResNet-101-FPN 63.3 57.2 42.1 54.2 - - - -
Libra R-CNN ResNet-101-FPN 64.7 58.8 42.9 55.5 - - - -
Mask R-CNN ResNet-101-FPN 64.7 59.0 43.8 55.8 57.6 50.2 35.2 47.7

SSD512 VGG16 68.1 58.9 45.7 57.6 - - - -
Cascade R-CNN ResNet-101-FPN 69.3 62.8 48.0 60.0 - - - -

Cascade Mask R-CNN ResNet-101-FPN 70.9 64.0 48.0 61.0 59.2 51.5 36.1 48.9
SDANet(ours) ResNet-101-FPN 71.2 64.2 49.5 61.6 59.9 52.0 37.4 49.8

Cascade Mask R-CNN ResNet-101-BiFPN 68.0 61.1 46.9 58.7 58.0 49.8 35.3 47.7
Cascade Mask R-CNN ResNet-101-PAFPN 70.4 63.4 46.7 60.2 59.2 51.4 35.0 48.5
Cascade Mask R-CNN ResNet-101-FPN 70.9 64.0 48.0 61.0 59.2 51.5 36.1 48.9

SDANet(ours) ResNet-101-FPN 71.2 64.2 49.5 61.6 59.9 52.0 37.4 49.8

Table 4. Effectiveness of various designs. All models are trained on the PIDray training subset and tested on the PIDray hidden test set.
The accuracies are indicated by “detection AP/segmentation AP”.

SCA SSA DR AP AP50 AP75 APS AR1 AR10 AR100 ARS

48.0/36.1 62.7/58.9 54.0/40.4 57.0/43.5 56.0/42.9 57.6/44.0 57.6/44.0 57.6/44.0
X 48.3/36.5 63.5/59.3 54.3/41.2 57.2/43.9 56.2/43.4 57.9/44.4 57.9/44.4 57.9/44.4

X 48.3/36.2 63.2/59.6 54.6/40.1 57.4/43.8 56.6/43.3 58.1/44.3 58.1/44.3 58.1/44.3
X X 48.9/36.7 63.8/60.0 55.4/40.8 58.3/44.3 57.4/43.8 59.3/45.0 59.3/45.0 59.3/45.0
X X X 49.5/37.4 64.5/60.6 55.7/42.2 58.5/44.8 57.2/44.1 59.5/45.5 59.5/45.5 59.5/45.5

the batch size is set as 2. Unless otherwise specified, other
parameters involved in the experiment follow the settings of
MMdetection.

5.2. Evaluation Metrics

According to the evaluation metric of MS COCO[20],
we evaluate the performance of the compared methods on
our PIDray dataset using both the AP and AR metrics. The
scores are averaged over multiple Intersection over Union
(IoU). Notably, we use 10 IoU thresholds between 0.50 and
0.95. Specifically, the AP score is averaged across all 10
IoU thresholds and all 12 categories. In order to better as-
sess a model, we look at various data splits. AP50 and AP75

scores are calculated at IoU = 0.50 and IoU = 0.75 re-
spectively. Note that many prohibited items are small (area
< 322) in the PIDray dataset, which is evaluated by the
ARS metric. Besides, the AR score is the maximum recall
given a fixed number of detections (e.g., 1, 10, 100) per im-
age, averaged over 12 categories and 10 IoUs.

5.3. Overall Evaluation

As presented in Table 3, we firstly compare our method
with a few state-of-the-art object detectors. It can be seen
that our SDANet achieves the best performance in terms of
all the subsets in the PIDray dataset. For example, com-
pared with the biggest competitor Cascade Mask R-CNN
[5], our method achieves 1.5% and 1.3% AP gain for the
two sub-tasks on the hidden test set, which shows the effec-

tiveness of the proposed selective dense attention module.
As shown in Figure 8, our method achieves higher accuracy
than Cascade Mask R-CNN [5]. The visual results show
that SDANet can effectively detect prohibited items, espe-
cially those that have been deliberately hidden.

To verify the effectiveness of the proposed selective
dense attention scheme, we compare our method with the
previous multi-scale feature fusion strategies including FPN
[18], PAFPN [23], and BiFPN [33]. FPN [18] provides
a top-down pathway to fuse multi-scale features, while
PAFPN [23] adds an additional bottom-up pathway on top
of FPN. BiFPN [33] is weighted bi-directional feature pyra-
mid network, which allows easy and fast multi-scale feature
fusion. As presented in Table 3, our method outperforms
existing multi-scale feature fusion strategies. We speculate
that this is attributed to two reasons. First, two selective at-
tention modules can aggregate semantic information across
multi-layers densely. Second, the dependency refinement
module can further capture long-range dependencies among
different feature maps. The results indicate that our method
can detect deliberately hidden data effectively.

5.4. Ablation Study

Since this work focuses on detecting prohibited items
that are hidden deliberately, we conduct the ablation study
to analyze the influence of the proposed modules on the hid-
den test set of the PIDray dataset.

As presented in Table 4, we report how the performance
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Figure 8. Comparison between the proposed SDANet method and Cascade Mask R-CNN [5]. GT indicates Ground-truth, Cascade indicates
the results generated by Cascade Mask R-CNN, and Ours indicates the results generated by SDANet.

Table 5. Comparison of dependency refinement (DR) and other
attention mechanisms on the hidden test set.

Method Det AP Seg AP
ours w/o DR 48.9 36.7

+SE 49.1 36.7
+CBAM 47.0 35.8

+DR 49.5 37.4

Table 6. Evaluation results on the MS COCO and PASCAL VOC
detection datasets.

Method MS COCO PASCAL VOC
baseline 42.9 81.5
SDANet 43.5 82.5

of our SDANet is improved when we add the module one
by one in the baseline Cascade Mask R-CNN [5]. Firstly,
the selective channel-wise attention module improves the
baseline method by 0.3% detection AP and 0.4% segmen-
tation AP. Then, the performance continuously improves by
0.6% detection AP and 0.2% segmentation AP when incor-
porating the selective spatial attention modules. Finally, the
dependency refinement module contributes to a 0.6% and
0.7% improvement in terms of detection AP and segmenta-
tion AP, respectively.

We also compare the dependency refinement mod-
ule with the existing attention mechanisms(e.g. SE and
CBAM). Table 5 shows the results of all models. The re-
sults show that DR has obvious advantages in detecting de-
liberately hidden items.

5.5. Evaluation on General Detection Dataset

Finally, we also conduct some experiments on general
detection datasets to evaluate the effectiveness of SDANet
on the natural image. The experiment uses MS COCO[20]

and PASCAL VOC[7], which are well-known data sets in
the field of natural image detection. The experimental re-
sults are shown in Table 6. We follow the training and test-
ing pipelines in MMDetection. Compared with the baseline
method(Cascade Mask R-CNN), we have achieved 0.6 AP
and 1.0 AP gain on MS COCO and PASCAL VOC, respec-
tively. Experimental results demonstrate that our method is
not only suitable for the detection of prohibited items, but
also effective in general scenarios.

6. Conclusion

In this paper, we construct a challenging dataset(namely
PIDray) for prohibited item detection, especially dealing
with the cases that the prohibited items are hidden in other
objects. PIDray is the largest prohibited items detection
dataset so far to our knowledge. Moreover, all images are
annotated with bounding boxes and masks of instances. To
learn the importance of multi-scale feature maps, we pro-
pose the selective dense attention network. The experiment
on the PIDray dataset proves the superiority of our method.
We hope that the proposed dataset will help the community
to establish a unified platform for evaluating the prohibited
item detection methods towards real applications. For fu-
ture work, we plan to extend the current dataset to include
more images as well as richer annotations for comprehen-
sive evaluation.
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