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Abstract
Conversational responses are non-trivial for artificial conversational agents. Artificial responses should not only be

meaningful and plausible, but should also (1) have an emotional context and (2) should be non-deterministic (i.e., vary

given the same input). The two factors enumerated, respectively, above are involved and this is demonstrated such that

previous studies have tackled them individually. This paper is the first to tackle them together. Specifically, we present two

models both based upon conditional variational autoencoders. The first model learns disentangled latent representations to

generate conversational responses given a specific emotion. The other model explicitly learns different emotions using a

mixture of multivariate Gaussian distributions. Experiments show that our proposed models can generate more plausible

and diverse conversation responses in accordance with designated emotions compared to baseline approaches.
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1 Introduction

Understanding the emotional content of conversations and

empathizing accordingly is a challenge for artificial con-

versational agents. Having emotional intelligence, i.e., to

enable machine to understand affect and emotion [21], has

been a long-term goal for artificial intelligence. Moreover,

to express the diverse emotional contents of conversation is

another important factor to generate successful artificial

conversational agents. To build an interactive human like

chatbot, it is absolutely essential to equip the machine with

the ability of expressing and understanding emotions and

learning diversity of natural languages.

The success of deep neural networks in natural language

processing tasks [2, 3] promotes the exploration of the

paradigm of neural dialogue generation greatly. In existing

conversation-generating systems based on the neural net-

work techniques, an encoder-decoder framework [27] has

shown great potential in modeling open-domain conver-

sations [4, 5], However, a vanilla encoder-decoder model is

prone to generate dull and generic responses. To improve

the quality of responses in the conversation generation,

latest efforts include diversity promoting objective func-

tions [13], diverse decoding [15], topic-introducing

approaches [32] and latent variable modeling for diversity

[6].

These approaches make the responses suitable in diverse

contexts, while being more informative and interesting.

Although a variety of models have been proposed for

conversation generation from large-scale social data, it is

still challenging to generate non-deterministic responses in

a diverse emotional contexts. We are still far from our goal

of building autonomous neural agents that can consistently

carry out interesting human-like conversations. Human is

able to express emotions not only naturally and coherently,

but also can give non-deterministic responses at discourse

level. For instance, if a user says ‘‘My dog got lost yes-

terday,’’ the most appropriate response would be ‘‘It’s so
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sad. I am so sorry to hear about that.’’ or ‘‘I am sorry. You

must be heartbroken.’’ to express sadness. We can also say

‘‘Bad things always happen. I hope you will be happy

soon.’’ or ‘‘Don’t be sad. Your dog may come back one

day.’’ to express comfort. However, it is still difficult to

incorporate the emotion factor in existing neural network

models for conversation generation. This is because it is

difficult to produce grammatically correct sentences with

appropriate emotions. To account for emotion expression,

the Emotional Chatting Machine (ECM) model [35] is

proposed to generate appropriate responses not only in

content (relevant and grammatical) but also in emotion

(emotionally consistent). However, it usually fails to cap-

ture the diversity of emotional expression.

Our goal in this work is to generate responses for the

same input sentence that carry different emotional context.

We follow the NLPCC Emotion Classification Challenge

where the emotions are categorized to Anger, Disgust,

Happiness, Like, Sadness or Other. Adopted from the

CVAE formalism [26], we propose two models. The first

approach augments the unstructured variables z with a set

of structured variables e, each of which corresponds to a

salient and independent semantic feature (e.g., emotion

categories) of responses. The second model, inspired by

Gaussian Mixture model (GMM), structures the latent

z space by using a set of K Gaussian priors with different

means and standard deviations, which correspond to dif-

ferent types of emotion categories.

To this end, we design an artificial conversational

chatting machine termed as non-deterministic emotional

chatting machine (NECM), which generates non-deter-

ministic responses given the same input with different

emotional context that is empathetically consistent. The

main contributions of this work are summarized as follows:

• We develop two novel neural dialogue models, based

upon CVAE, that are able to respond colloquially under

diverse emotional contexts given the same input. To the

best of our knowledge, our work is the first to apply

CVAE to emotional dialogue generation.

• Emotive characteristics are captured and learnt by an

emotion-guided mechanism, which models the repre-

sentation facilitated by a latent space.

• We elaborate an emotion gate mechanism to alleviate

the problem of generating grammatically inaccurate

responses, while rendering the responses emotionally

correct.

2 Related work

2.1 Neural dialog models

Deep neural networks have achieved huge success in nat-

ural language processing tasks such as machine translation

[27] and text summarization [23]. Recently, much attention

has been drawn to the problem of generating diverse

responses. To generate coherent and diverse responses,

several works have focused on enhancing the input of

encoder-decoder models by introducing richer context

information. The speaker’s characteristics are captured

with an encoder-decoder model to generate more specific

responses by encoding background information and

speaking style into the distributed embeddings [14]. Topic

encoding model-based LDA [3] is proposed to augument

the model to produce more topic coherent responses [31].

Other works aim to improve the architecture of the enco-

der-decoder models. In order to improve the diversity in

the responses, a search-based loss is introduced to optimize

directly the decoder networks for beam search decoding

[30]. The mutual information between input and output is

proposed and maximized to optimize the standard encoder-

decoder model [13]. Reinforcement learning is used for

optimizing the MLE objective of an encoder-decoder

model in order to encourage responses that have long-term

payoff [16].

More recently, the Variational Autoencoder (VAE) [12]

becomes a popular framework for dialogue generation.

Viewing the dialog contexts as the conditional attributes, a

novel dialogue model based on conditional variational

autoencoders is proposed in [33] to generate diverse

responses. To directly capture the variability in possible

responses to a given input, the work of [6] introduces the

latent variable in a dialogue generation model to reduce the

lack of variations in the output dialogues. In question

generation, CVAE have been used for image question

generation in order to output multiple questions given an

image [10]. The latent variable and an additional observed

variable are introduced in question generation model based

on text to generate different types of questions [19, 32].

Additionally, a variant of CVAE for image captioning has

been used for producing diverse and accurate image

description [29].

2.2 Affective response generation

In human-machine interactions, the ability to perceive

human emotions and to generate appropriate response can

enrich communication. However, it is difficult to incorpo-

rate the emotional contexts in generating conversations.

Past work has incorporated emotions in retrieval-based or
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slot-based spoken dialogue systems [21, 22] by construct-

ing hand-crafted speech and text-based features. Recently,

several studies have focused on generating text from con-

trollable variables. Conditioned on certain attributes of the

language such as sentiment, speaker’s age, cultural back-

ground and gender, a neural generative model was pro-

posed to generate sentences by combining variational auto-

encoders and attribute discriminators [9]. Affect Language

Model (Affect-LM) was used for generate text based on the

context and affect categories [8]. In large-scale conversa-

tion generation, an emotional chatting machine was first

proposed to produce responses with different type of

emotions by leveraging an internal memory and external

memory [35]. Differed from Affect-LM, an affective dia-

logue system has been proposed to produce emotionally

rich responses by modeling affective word embedding [1].

Similar to the work of Affect-LM, AR-S2S, an end-to-end

affect-rich open-domain neural conversational model

incorporating external affect knowledge, extends the

Seq2Seq model and adopts VAD (Valence, Arousal and

Dominance) affective notations to embed each word with

affects [34]. More recently, pipeline-style methods are

proposed. E-SCBA, a syntactically constrained bidirec-

tional-asynchronous approach for emotional conversation

generation, introduces pre-generated emotion keywords

and topic keywords into the process of decoding [17]. A

reinforcement learning (RL)-based conversation content

generation model combines RL strategy with emotional

editing constraints to generate more meaningful and cus-

tomizable emotional responses [18]. The above end-to-end

or pipeline methods used novel mechanisms to capture

emotion attributes in responses, but they failed to take

diversity of languages into account. Our proposed method

is different, aiming at not only expressing and under-

standing emotions, but also learning diversity of natural

languages in an end-to-end manner.

3 NECM

In this section, we introduce Non-deterministic and Emo-

tional Chatting Machine (NECM), which aims to generate

colloquial responses that vary with the same input and

emotional context (i.e., Angry, Disgust, Happy, Like, Sad

or Other). We build our framework based on conditional

variational autoencoders (CVAE) that captured and learnt

the emotive characteristics by latent variables z. The

framework is also be able to produce meaningful and

plausible responses in diverse contexts.

Standard CVAE with a fixed Gaussian prior employs an

unstructured vector z in which the dimensions are entan-

gled (i.e., emotive semantic characteristic of language mix

each other in our case). To model and incorporate emotion

in an interpretable way in dialogue generation, we capture

different emotive semantics by using a hybrid latent space

or multiple latent spaces, respectively. Therefore, we

implement our approach in two different ways. In our first

model, we learn a latent space to capture different emotive

semantics by using an unstructured variable z which is

augmented with a set of structured variables e, each of

which corresponds to a salient and independent semantic

feature (e.g., emotion categories) of responses. The first

model is named as NECM-Z&E. The second model learns

multiple latent spaces and explicitly structures the latent

space around K components corresponding to different

types of emotions and chooses one of components to create

priors. We named it NECM-GMM. Figure 1 demonstrates

the overall structure of NECM. The details for our two

approaches are described in the following sections.

3.1 NECM-Z&E

NECM-Z&E model aims at learning disentangled repre-

sentations from the unstructured part z of the representation

by using the structured variable e (emotion category). The

unstructured part z of the representation is modeled as

continuous variables with standard Gaussian prior p(z),

while the structured variable e can contain discrete vari-

ables to encode different attributes of affection with

appropriate prior p(e). Given an input post X and an

expected emotion category e of the response, we want our

generative model to condition on the combined vector

(z, e) and generate responses Y that fulfill the correspond-

ing emotional attributes as specified in the structured

variable e. z and e are independent in our case. n and m are

the length of the input posts and the responses. We define

the conditional distribution

PðY ; ðz; eÞjXÞ ¼ PðY jðz; eÞ;XÞPðzjXÞPðejXÞ, where

PðejXÞ ¼ PðeÞ is a prior of the variable e corresponding to

attributes of affection, and we explicitly specify it given

observation X in our case. Therefore, our goal is to use

deep neural networks (parametrized by h) to approximate

P(z|X) and P(Y|(z, e), X). We refer to PhðzjXÞ as the

encoder and PhðY jðz; eÞ;XÞ as the response decoder. Then

the generative process of Y can be depicted as: (1) Sample

the latent variable z from the encoder PhðzjXÞ. (2) Generate
Y through the response decoder PhðY jðz; eÞ;XÞ.

At training time, we follow the variational autoencoder

framework [12] and introduce an approximation network

Q/ðzjX; YÞ to approximate the true posterior distribution

P(z|X, Y). Q is a diagonal Gaussian whose parameters

depend on X and Y in our case. We thus have the following

evidence lower bound (ELBO) [26]:
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Lðh;/;X; Y ; eÞ ¼ �KLðQ/ðzjX; YÞjjPhðzjXÞÞ

þ EQ/ðzjX;YÞ½logPhðY jðz; eÞ;XÞ�

� logPðYjXÞ

ð1Þ

and the KL divergence between the approximate posterior

and the prior will be optimized:

DKL½Q/ðzjX; YÞ;PhðzjXÞ� ¼ log
r
r/

� �

þ
r2/ þ jjl/ � ljj22

2r2
� 1

2

ð2Þ

Given an input sentence X and a response Y, we run two

separate encoders (i.e., Post Encoder and Response Enco-

der in Fig. 1), consisting of a bidirectional recurrent neural

network (BRNN) [24] with a gated recurrent unit (GRU)

[5], over their word embeddings xi and yi. We concatenate

the final states of each and obtain our representations hx
and hy of X and Y. Finally, we estimate the mean and

variance of the approximation network Q as:

l ¼ Wl½hx; hy� þ bl

logðRÞ ¼ diagðWR½hx; hy� þ bRÞ

(
ð3Þ

where ½hx; hy� denotes the concatenation of hx and hy, and

diag denotes inserting along the diagonal of a matrix.

W and b are parameters.

We then use the reparametrization trick [12] to obtain

samples of z from approximation network Q and initialize

the hidden state of the decoder GRU with the nonlinear

transformation of these concatenated representation

s0 ¼ tanhðW0½hx; z; e� þ b0Þ, where W0 and b0 are learning

parameters.

3.2 NECM-GMM

Standard CVAE with a fixed Gaussian prior can capture the

latent distribution over all the valid responses with differ-

ent attributes (e.g., affection). The dimensions in the latent

z space are entangled each other and these attributes are

hard separated from the unstructured vector z. Starting

from the idea of multiple Gaussian priors, we encourage

the latent z space to have a multi-modal structure composed

of K clusters, each corresponding to different types of

emotional attributes. That is, the distribution of z vectors

are represented by using a Gaussian Mixture model

(GMM). Then, we can model the prior P(z|X) as follows:

PðzjXÞ ¼
XK
i¼1

piNðzjli; r2i IÞ ð4Þ

where pi is defined as the weights and li represents the

mean vector of the i-th component. Following the work of

[29], for all components, we use the same standard devi-

ation r. In our current work, each component corresponds

to one emotion category in {Anger, Disgust, Happiness,

Like, Sadness and Other}.

NECM-GMM has the same formalism of variational

lower bound in Eq. (1) as NECM-Z&E. The difference is

that the former uses a set of K Gaussian priors (GMM

prior) and the latter uses a fixed Gaussian prior, as shown in

Fig. 1. In each step of training phase, according to the

expected emotion category ei of each response, we sample

z from the corresponding Gaussian component. The KL

divergence term in Eq. (2) need to be approximated as

follows:

Fig. 1 Overview of our NECM

model. The latent variable z is
selected from either NECM-

GMM or NECM-Z&E. For

NECM-GMM, there are six

clusters corresponding to six

emotion categories and only one

cluster is selected every time

according to the emotion

category
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DKL½Q/ðzjX; Y ; eiÞ;PhðzjX; eiÞ� ¼ log
ri
r/

� �

þ
r2/ þ jjl/ � lijj22

2r2i
� 1

2

ð5Þ

At testing phase, we first specify an emotion category and

then sample z from the corresponding component distri-

bution. We initialize the hidden state of the decoder GRU

with the nonlinear transformation of these concatenated

representation s0 ¼ tanhðW1½hx; z� þ b1Þ, where W1 and b1
are learning parameters.

As shown in Fig. 1, we can note that NECM-GMM

employs the same encoder, the approximation network and

response decoder as NECM-Z&E. However, different

with NECM-Z&E learning disentangled latent represen-

tations, NECM-GMM expects each part of the latent

representation to focus on one aspect of the samples. That

is, each of the latent variables zi (i.e., z1,z2,z3,z4,z5 and z6 in

Fig. 1) only concentrates on the generated responses with

certain emotion in our case.

3.3 Response decoder and emotion category
embedding

We employ an attention-based GRU response decoder to

predict the words in response Y sequentially. In affective

response generation task, an emotion category can provide

a high-level abstraction of an emotion expression. There-

fore, we embed the emotion category into low dimensional

and real-valued vector and take it as additional input of the

response decoder. That is, at decoding time step t, the GRU

decoder reads the previous word embedding yt�1, the

vector of an emotion category ve, and context vector ct�1 to

compute the new hidden state st.

st ¼ GRUðst�1; ½ct; yt�1; ve�Þ ð6Þ

The context vector ct for current time step t is computed

through the attention mechanism [20] as follows:

et;i ¼ vT tanhðWest�1 þ Ueh
e
i Þ

at;i ¼
expðet;iÞPn
i¼1 expðet;iÞ

ct ¼
Xn
i¼1

at;ih
e
i

8>>>>>>><
>>>>>>>:

ð7Þ

where We, Ue and vT are learning parameters. hei is the

hidden state of representation of the i-th word in the input

X.

In practice, it is beneficial to capture emotional attri-

butes of sentences in response generation by introducing

emotion category embedding in the decoder. However, this

scheme often hurts grammaticality of generated responses.

Therefore, we introduce an emotion gate mechanism to

balance the weights between grammatical coherence and

emotional attributes of a generated response. Then, it can

automatically decide how much emotion will be considered

at the next decoding step.

egate ¼ sigmoidðWg½st�1; ct� þ bgÞ ð8Þ

where Wg and bg are parameters. Then the emotion cate-

gory embedding vector ve is updated as ve ¼ egate � ve.
Finally, the probability of each target word yt is predicted

based on all the previously generated words (i.e., y\t) and

the input sentence X.

PðytjX; y\tÞ ¼ softmaxðV½st; ct� þ bÞ ð9Þ

where V and b are learnable parameters.

3.4 Emotion-guided mechanism

We assume that the emotional features are beneficial for

our model to learn meaningful latent z variable in our case.

We concatenate the semantic representation of input post X

and z and pass it through an multilayer perceptron (MLP)

to predict emotion category e ¼ MLPðz;XÞ. To encode

emotion-related information into the latent z space more

efficiently, we rewrite our loss function in Eq. 1 as follows:

Lðh;/;X; Y ; eÞ ¼ �KLðQ/ðzjX; YÞjjPhðzjXÞÞ

þ EQ/ðzjX;YÞ½logPhðY jðz; eÞ;XÞ�

þ EQ/ðzjX;YÞ½logPhðejz;XÞ�

ð10Þ

4 Experiments

4.1 Dataset

We evaluate the proposed method on the dataset provided

by the Emotional Conversation Generation Challenge.1

The dataset is constructed from postings and follow-up

comments from the Chinese social media platform Weibo

(www.weibo.com) . It contains more than 1 million utter-

ance-response pairs.

The dataset includes the original posts, the correspond-

ing responses, and labels of each post and response. These

labels are obtained by an emotion classifier that is based on

a bidirectional LSTM model. The classifier was trained on

the data from the NLPCC Emotion Classification Chal-

lenge.2 In this dataset, emotions are divided into the six

1 http://aihuang.org:8000/p/challenge.html.
2 http://tcci.ccf.org.cn/conference/2014/dldoc/evatask1.pdf.
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basic emotion categories (i.e., Anger, Disgust, Happiness,

Like, Sadness and Other).

4.2 Implementation details

We choose the top 30,000 most frequent tokens for the

source and target vocabulary. All other tokens outside the

vocabulary list are replaced by the UNK(unknown) symbol.

The dimension of word embedding is set to 200. All our

model variants use a single-layer bidirectional GRU

encoder and a single-layer GRU decoder. The size of the

GRU hidden unit is set to 256. We update the model

parameters using the Adam [11] algorithm with a mini-

batch size of 128. The dimension of the latent variable z is

set to 200, and the size of emotion category embedding is

set to 30. For decoding, we use beam search with a width of

10.

4.3 Approaches

We conducted experiments using the following dialogue

generation approaches.

seq2seq_emb: We adapt a general seq2seq model with

attention mechanism [2].

CVAE_emb: We use ‘‘vanilla’’ version of the CVAE

model with a fixed Gaussian prior following [33].

SentiGAN: we adapt SentiGan [28] for emotional dia-

logue generation, in which GAN and the reinforcement

learning strategy are used to support the generation of

emotional text.

E-SCBA: We implemented a syntactically constrained

bidirectional-asynchronous approach for emotional con-

versation generation [17].

ECM: We implemented the Emotional Chatting

Machine proposed in [35] for generating appropriate

responses not only in content but also in emotion.

NECM-Z&E: We implemented the first approach pre-

sented in Sect. 3.1. The model augments the unstructured

variables z with a set of structured variables e, each of

which corresponds to a salient and independent semantic

feature.

NECM-GMM: We proposed the second approach pre-

sented in Sect. 3.2. The model clusters the latent z space

around six components corresponding to six emotion cat-

egories and combines components to create priors for

dialogue generation.

4.4 Evaluation metrics

Existing metrics (e.g., BLEU, ROUGE and METEOR) are

not suitable for evaluating dialogue generation since these

metrics have not been correlated with human judgments

[19], and more importantly, the accuracy of the sentiment

cannot be evaluated by these metrics. Therefore, we adopt

the perplexity metric from the work in [35] to evaluate the

performance of the proposed models, reflecting that whe-

ther the generated responses are grammatically correct

grammatical and relevant at the content level. We also

adopted the emotive accuracy to evaluate the model at the

emotional context. The emotion accuracy is used to eval-

uate the agreement between the expected emotion category

(one of the inputs to the model) and the predicted emotion

category of a generated response. The emotive accuracy is

computed as the classification scores of the generated input

classified by a bidirectional LSTM-based emotion classifier

that is trained on the NLPCC emotion classification dataset.

In addition, we perform also human evaluation to

evaluate the quality of the generated responses at content

level and at emotive level, as in [35].

• Content Relevancy is evaluated as whether the response

is meaningful and appropriate to a post and could

exhibit ability that equivalent or distinguished from a

human. The metric proposed in [25] has been widely

accepted in conversation generating tasks.

• Emotion Consistency is evaluated as whether the

emotion expression of a generated response corre-

sponds to the given emotion category. The responses

generated by our models are randomized and presented

to five human raters, who are asked to score a response

in terms of Content (rating scale is 0, 1, 2)3 and

Emotion (rating scale is 0, 1).4

In our experiments, we also evaluate the generative abili-

ties of our different approaches, using a method similar to

the work of [1]. Specifically, syntactic diversity and af-

fective diversity was evaluated by five human raters in this

experiment. The former evaluates the discourse-level

diversity and the latter judges the responses under different

emotional contexts. The rating scale is 0, 1, 2 and 3 with

labels bad, satisfactory, good and very good, respectively.

4.5 Results and analysis

4.5.1 Perplexity and emotive accuracy

The results are presented in Table 1. Note that we expect

the perplexity to be as lower as possible and accuracy to be

as high as possible. As can be seen, NECM-GMM obtains

the best performance in both perplexity and emotive

accuracy. In our baselines, E-SCBA performs best. Its

3 0, 1 and 2 are content scores. 0 denotes content irrelevancy, 1

denotes moderately relevant content and 2 denotes content relevancy.
4 0 and 1 are emotion scores. 0 denotes that the emotion in response

generated by our models is inconsistent with the given emotion

category, and 1 denotes that the emotion in response is consistent with

the given emotion category.
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underlying reason may be to explicitly introduce emotion

keywords and topic keywords into the process of decoding.

Moreover, NECM-Z&E performs comparably with ECM

in emotion accuracy. It indicates our method can disen-

tangle the representation to separate emotion information

from the unstructured z space using the combined variables

(z, e). Notably, the emotive accuracies of seq2seq and

CVAE is extremely low. This is because the former gen-

erates the same response for different emotion categories

and the latter is difficult to produce responses with different

emotional attributes.

We also conduct ablation test to investigate the influ-

ence of different modules in our method, with the results

shown in Table 1. Specifically, we remove one of the three

modules (i.e., emotion category embedding, emotion gate

mechanism and emotion-guided mechanism) from NECM

in each set of experiment. These results show that when the

emotion gate mechanism has been removed, both NECM-

Z&E and NECM-GMM models produce lower accuracy

and higher perplexity. This indicates that the emotion gate

mechanism helps generating responses not only emotion-

ally correct, but also grammatically correct. This helps to

alleviate the problem that the model may generate gram-

matically inaccurate responses when using the emotion

category embedding model alone. After removing the

emotion-guided mechanism, the emotive accuracy decrea-

ses the most. This is because it can encode emotion-related

information into our latent variable for robust performance.

4.5.2 Content and emotion

Two hundred posts are randomly sampled from the test set

as input to all approaches. Each generated response will be

asked to be scored by five human raters. The numbers in

Table 2 are the average scores calculated by scores for all

responses. In generating phase, the emotion category label

is needed as the extra input. As shown in Table 2, NECM-

GMM outperforms the other approaches slightly in terms

of Emotion and Content. We also evaluate inter-annotator

consistency using Fleiss’ Kappa [7] and obtained the score

of 0.445 and 0.761 for Content and Emotion, interpreted as

‘‘Moderate agreement’’ and ‘‘Substantial agreement’’

among the judges, respectively.

4.5.3 Diversity

The results of diversity evaluation are presented in Table 3.

As can be seen, the performance of our NECM methods in

diversity is significantly better than other baselines. CVAE

obtained better performance than other baselines in syn-

tactic diversity. This is because CVAE also uses the latent

variables to capture the diversity by a fixed Gaussian prior.

Different from CVAE, our NECM-GMM method uses

GMM priors to achieve better diversified responses. The

Fleiss’ Kappa score for diversity is 0.463 for NECM-

GMM, indicating a ‘‘Moderate agreement’’ among the

judges.

Table 1 Objective automatic evaluation with perplexity and accuracy

Model Perplexity Accuracy

seq2seq 69.2 0.168

CVAE 60.3 0.196

SentiGan 60.1 0.761

E-SCBA 59.2 0.786

ECM 60.5 0.767

NECM-Z&E 56.2 0.772

w/o embed 58.8 0.763

w/o emo-gate 59.6 0.757

w/o emo-guided 58.1 0.755

NECM-GMM 55.4 0.792

w/o embed 56.5 0.778

w/o emo-gate 57.6 0.764

The best performing method for each column is highlighted in bold

Table 2 Manual evaluation of the generated responses in terms of

Content and Emotion

Model Content Emotion

seq2seq 1.262 0.146

CVAE 1.278 0.152

SentiGan 1.301 0.452

E-SCBA 1.31 0.461

ECM 1.309 0.447

NECM-Z&E 1.312 0.451

NECM-GMM 1.316 0.465

The best performing method for each column is highlighted in bold

Table 3 Diversity evaluation of the generated responses in terms of

Syntax diversity and Affective diversity

Model Syntactic diversity Affective diversity

seq2seq 0.66 0.25

CVAE 1.92 0.31

SentiGan 1.72 1.78

E-SCBA 1.59 1.76

ECM 1.61 1.77

DEMC-Z&E 2.24 2.21

DEMC-GMM 2.46 2.35

The best performing method for each column is highlighted in bold
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We can observe that NECM-GMM slightly outperforms

DEMC-Z&E on all evaluation metrics. The potential rea-

son may be that the former can better capture the emotive

semantics than DEMC-Z&E by learning multiple latent

spaces, instead of learning a hybrid latent space. In addi-

tion, to further illustrate the diversity of the generated

responses given a post, some examples generated from our

NECM are shown in Fig. 2. We note that NECM is capable

of producing non-deterministic and emotional responses

under the corresponding emotion category.

Fig. 2 Sample responses generated by the Baseline (ECM) and our NECM (original Chinese and English translation)
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5 Conclusion and future work

In this work, we propose a non-deterministic and emotional

chatting machine(NECM) to learn understanding and

expressing emotion and generating diversified responses in

dialogue generation. Two proposed models are based on

conditional variational autoencoders. We introduce emo-

tion gate mechanism and emotion-guided mechanism to

help the models generate multiple emotionally and gram-

matically correct responses based on the same input.

Experiments show that our approach can generate respon-

ses appropriate that is capable of not only capturing emo-

tions but also learning diversity of natural languages. The

potential future direction would be to explore the area that

allows the system to gauge the emotional content auto-

matically. Meanwhile, we would utilize adversarial learn-

ing to generate more human-like responses in terms of

emotion attributes and diversity expression of languages.
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