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Abstract—Detecting incidentally captured text in the wild
remains an open problem due to challenging factors including
unconstrained scenarios and large scale variation. In this paper,
we establish a large-scale scene text detection dataset (LS-
Text), containing 36, 000 images and 270, 783 text instances with
various scales and complex scenarios, to promote the research
of text detection. We propose a Scale-residual Learning Network
(SLN) to deal with the scale variation problem in a progressive
optimization manner. Specifically, we integrate both learnable
feature concatenation and feature up-sampling operator. It can
effectively eliminate the residuals between the outputs of SLN
and ground-truth text instances by processing both the Feature
Fusion Residuals (FFR) and the Scale Transformation Residuals
(STR), simultaneously. By stacking multi-scale feature maps in
a deep-to-shallow manner, SLN continuously optimizes feature
representation by accumulating strong semantic information and
rich texture details in a scale-residual learning way. Extensive
experimental results on five challenging datasets demonstrate
the state-of-the-art performance of the proposed SLN model,
and the challenging aspects related to real-world scenarios of
the proposed LS-Text dataset. Both the source code of SLN
and the LS-Text dataset are available at https://github.com/
SLN-Text-Detection.

Index Terms—Text detection, Scale-residual learning, LS-Text
dataset.

I. INTRODUCTION

Text detection in the wild is one of the fundamental tasks in
computer vision. It plays an important role in various practical
applications [1], [2], [3], [4]. While many researchers view
that detecting point-and-shoot text objects has been solved
initially, detecting incidentally captured text in the wild remains
challenging. The incidental text could be captured when the
platform is in moving without considering the location of
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Fig. 1. Comparison between different multi-scale learning strategies.
(a)Separate multi-scale learning. (b) Hybrid multi-scale learning. (c) Our
scale-residual learning. The pyramid features are marked by the blue boxes,
and propagated from deep layers to shallow ones.

text and the complexity of scenarios. It is of large potential to
unmanned vehicles and intelligent robots but greater challenges
due to the large scale variation, unpredictable text locations,
and clutter scenarios.

In the literature, a considerable number of benchmarks focus
on point-and-shoot text (e.g., ICDAR 2011 [5], ICDAR 2013
[6], MSRA-TD500 [7], and COCO-Text [8]). A couple of
datasets have been released for incidental text (e.g., SVT [9],
[10] and ICDAR 2015 [11]). However, they have very small
number of images, which seriously limits the capability about
training and evaluating of sophisticated methods in real-world
scenarios.

In this paper, we propose a large-scale scene text detection
dataset, referred to LS-Text, to promote the development of
the text detection community. LS-Text incorporates both point-
and-shoot and incidental texts. It spans many challenges, e.g.,
scale diversity, multiple directions, dense distribution, and
unconstrained scenarios. It poses great challenges to state-
of-the-art text detection approaches.

To address the challenge of the scale diversity, researchers
often pray to the pyramid features. Existing methods can
be roughly divided into two categories: separate multi-scale
learning [12], [13], [14], [15] and hybrid multi-scale learning
[16], [17], [18], [19], [20], [21], [22]. The former uses
different convolutional feature layers to predict text objects
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Fig. 2. Examples of the established LS-Text dataset. It spans various challenges of point-and-shoot and incidental shooting modes (shorted by PM and IM) in
scene text detection. For instance, multiple scales (MS), multiple directions (MD), dense text distribution (DT), uneven illumination (UI), similar texture (ST),
blurring and deformation (BD), perspective interference (PI), complex pose and background (CPB). The red region of the upper right corner describes the
shooting mode and the challenges of text detection, (mode| challenges). Best viewed in color and zoom in.

in corresponding scales (see Fig. 1(a)). It limits the ability
of fusion and complementarity between feature layers with
different scales. The latter uses the feature layers of all scales
to predict text objects in each scale (see Fig. 1(b)). It learns
similar salient features and objects on each scale layer, and
weakens the scale-specific learning ability in each scale layer.
Neither of them provides a learnable way for complementary
scale matching.

Based on the above analysis, we propose a Scale-residual
Learning Network (SLN) to progressively learn and accumulate
features with corresponding scales from deep to shallow, just
as shown in Fig. 1(c). Specifically, SLN is developed by
posing learnable up-sampling and concatenation operators. It
can extract discriminative features for text objects in proper
scales by pursuing the minimization of scale-residuals between
the representations of two operators rather than matching multi-
scale text objects. In adjacent scales, by stacking the scale-
specific feature maps in a deep-to-shallow manner, SLN can
effectively transfer the optimized deep text semantic features
to the adjacent shallow layer and continue to optimize. The
contributions of this paper include:

• We establish a large-scale scene text detection benchmark,
LS-Text, which contains 36,000 images and 270, 783 text
instances and spans the challenges of point-and-shoot and
incidental scene texts.

• We propose a Scale-residual Learning Network (SLN) to
detect text in the natural scenes, where multiple scale-
specific feature maps with both the learnable feature up-
sampling and feature concatenation operators are stacked
in a deep-to-shallow manner based on CNN.

• We propose a novel scale-residual learning strategy
to eliminate both the Feature Fusion Residuals (FFR)
caused by the concatenation operation and the Scale
Transformation Residuals (STR) generated by the up-
sampling operation, simultaneously.

• Extensive experiments on five datasets show that SLN
achieves the best or competitive performance based on
both accuracy and efficiency. Various ablation studies are
provided to evaluate the effectiveness of each component
of the proposed method.

II. RELATED WORK

A. Text Detection Benchmarks

To evaluate text detection methods, many text detection
datasets have been proposed, e.g., ICDAR 2011 [5], ICDAR
2013 [6], MSRA-TD500 [7], and COCO-Text [8]. However,
the common shortcoming of these datasets is that images are
captured by point-and-shoot based cameras, which is limited
in viewing angles, scales and quality in real-world scenarios.

Benefiting from flourishing global hand-held camera ter-
minals (e.g., smart mobile phone and glasses), text detection
tasks have been pushed into unconstrained real-world scenarios.
Different from point-and-shoot based cameras, text detection
with moving camera has several advantages inherently, such
as easy to apply, high mobility, changeable views and scales,
and approaching the viewing of human vision. Meanwhile, it
brings new challenges to existing detection technologies: a)
High density, unconstrained cameras are flexible to capture
scenes at wider view than point-and-shoot camera, leading to
larger number of text instances. b) Scale diversity, text objects
are usually presented randomly in various aspect ratios and sizes
due to incidental view, which further increases the difficulty
of text detection. c) Blurring and occlusion, text objects are
motion blurring or partial occlusion due to unconstrained
motion shooting. d) Realtime issues, the text detector should
consider realtime issues and maintain comparable accuracy on
real-world scenario application.

To study the above challenges, a few unconstrained text
detection datasets are collected such as the Street View Text
dataset (SVT) and the ICDAR 2015 incidental text dataset
(ICDAR 2015) [11]. However, they only focus on a specific
scene with limited images. For example, SVT with 350 images
and ICDAR 2015 with 1, 500 images are collected in the
street view or shopping mall. The community needs a more
comprehensive and large-scale scene text detection in real-
world scenarios for further boosting research on the related
tasks. To this end, we establish a large scale challenging scene
text detection benchmark, named LS-Text. It consists of 36, 000
images and 270, 783 text instances with various scales. To
cover the challenges of point-and-shoot and incidental scene
text detection, our dataset is captured by smart mobile phones
or glasses in an unconstrained or focused manner in complex
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Fig. 3. The illustration of different text detection ways, i.e., regression-based way in (a), post-processing segmentation-based way in (b), and direct prediction
segmentation-based way in (c). The red boxes denote the ground-truth, and the green boxes denote the predictions. In (a), the blue boxes denote the hand-design
anchors. For multi-direction texts, the prediction head also outputs an angle θ to rotate the axis-aligned detected boxes. In (b), and (c), the red-blue masks
denote the heat segmentation map of text regions. Best view in color and zoom in.

real-world scenarios.

B. Text Detection Methods

Early text detection methods for images and video frames
are mainly based on conventional features and classifier, such
as edge [23], Fourier and Laplacian transform [24], [25], slid
stroke width transform feature and random forest [7], maximally
stable extremal regions [26], and binary transform and SVM
[27]. Recently, deep learning based methods refresh all the
previous state-of-the-art records in text detection benchmarks.
According to the different ways of box prediction, they can
be generally grouped into regression-based and segmentation-
based.

The regression-based text detection approaches are mainly
based on general object detectors [28], [29], [30], as shown in
Fig. 3(a). They can be divided into single-stage and two-stage
methods. The single-stage approaches are mainly based on
SSD [29] and DSSD [30], the recent works [14], [31], [32],
[33], [12], [34], [35] improve the design of default boxes,
matching strategies, and convolution filter, to adapt to the texts
with multiple sizes, orientations and various aspect ratios. To
further optimize the box regression, inspired by Faster RCNN
[28], many researchers use a two-stage box regression strategy.
Jiang et al. [31] employ three regions of interests pooling of
different sizes to match text objects with various aspects ratios,
and merge them for further bounding box regression. Ma et
al. [32] root in the Faster-RCNN framework, and use rotating
region proposals instead of the standard axis-aligned bounding
boxes to adapt to the texts with arbitrary orientations. Lyu et
al. [13] use the corner points and position-sensitive regions to
effectively locate arbitrary geometry and scale texts. Yang et
al. [19] design an inception-text module based on Faster-RCNN
[28] and introduce a deformable convolution filter to detect
multi-orientation texts.

The segmentation-based text detection algorithm divides
the pixels in the image into two categories, i.e., background
pixels, and text pixels. According to the different utilization
ways of segmentation region [36], [37], [38], this kind of
method can be divided two ways, i.e., the post-processing
segmentation way and the direct prediction segmentation way.
As shown in Fig. 3 (b), the post-processing segmentation way
[17], [18], [39] first generate the text heat map in the image,

then use the minimum quadrilateral box to represent the high
confidence text region. It is noted that this way is robust for
text directions. But it is difficult to deal with the situation
that the words are close to each other. The text objects that
are very close to each other will be regarded as a text object.
Therefore, the researchers introduce the box prediction strategy
into the segmentation-based way [16], [20], [21], [22], [15],
and further propose the direct prediction segmentation method
to discriminate the adjacent text objects, as shown in Fig. 3 (c).
Specifically, it outputs two kinds of prediction information at
the same time, i.e., the text segmentation map and the prediction
boxes. Each pixel in the text segmentation map corresponds
to a prediction quadrilateral bounding box. If the score of the
pixel is higher than a confidence threshold, the prediction box
corresponding to the pixel will be preserved. Finally, these
reserved boxes are sent to the NMS operation. It should be
noted that for multi-directional texts, as shown in Fig. 3 (c), the
algorithm needs to output both the axis-aligned bounding box
and the corresponding angle θ, and then rotate the axis-aligned
bounding box according to the angle to match the inclined text
objects.

Based on the direct prediction segmentation way, we propose
a new segmentation-based text detection method, Scale-residual
Learning Network (SLN), to detect scene texts. Our SLN
integrates multiple scale-specific feature maps with both
the learnable feature up-sampling and feature concatenation
operators by stacking in a deep-to-shallow manner based on
CNN. And a novel multi-scale learning way, scale-residual
learning, is designed to eliminate both the Feature Fusion
Residuals (FFR) caused by the concatenation operation and
the Scale Transformation Residuals (STR) generated by the
up-sampling operation, simultaneously.

C. Multi-Scale Processing Strategies
General objects, especially texts, are usually unconstrained

presentation in various aspect ratios and sizes due to incidental
scene and dynamic capture view. To deal with scale variation
problem, two kinds of multi-scale processing strategies have
been derived, i.e., separate and hybrid scale processing.

As shown in Fig. 1(a), the separate strategy uses different
scale feature layers to capture scale-specific objects respectively.
It has been widely applied to general object detection [40],
[30], [41] and text detection [13], [33], [15].
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Fig. 4. Visual comparisons of different scene text detection datasets. (a) ICDAR 2013, (b) MSRA-TD500, (c) ICDAR 2015, (d) COCO-Text, and (e) LS-Text.
The red or blue boxes are legible or illegible ground-truth text instances respectively. The detection results for illegible text instances are ignored in the final
evaluation.

As shown in Fig. 1(b), the hybrid strategy uses the feature
layers with different scales to detect multiple scale objects
simultaneously. It has been successfully applied to salient object
detection [42], edge detection [43] [44], semantic segmentation
[45], [46], text detection [17], [18].

Different from the previous approaches that only focus
on one type of multi-scale process ways, i.e., separate scale
processing and hybrid scale processing, we propose a novel
multi-scale processing way, i.e., scale-residual learning. It
incorporates the advantages of both the learnable feature fusion
and scale transformation operations, with the objective to
progressively learn and accumulate features with corresponding
scales from deep to shallow, as shown in Fig. 1(c).

III. LS-TEXT DATASET

We establish a large-scale scene text detection dataset, named
LS-Text, to further promote the research of text detection in the
community. As shown in Fig. 2, the established LS-Text can
be divided into two categories based on shooting modes. Point-
and-shoot images captured by the point-and-shoot shooting
mode (PM), in which most of the text objects appear near in
middle position, in the upper line of Fig. 2. Incidental images
captured by the incidental shooting mode (IM), the location
of the text objects in it is random, in the down line of Fig. 2.
Due to the unrestricted scenarios and the diversity of shooting
modes, our LS-Text spans various challenges in text detection,
e.g., multiple scales, multiple directions, dense text distribution,
uneven illumination, similar texture, blurring and deformable,
perspective interference, complex pose and background.

A. Data Collection
We collect a large-scale scene text detection dataset with

both incidental and point-and-shoot text scenes, to push the
detection task to a new florescence. To this end, we invited 10
domain experts to define the standards of dataset collection.
Specifically, our dataset contains 36, 000 images, which are
selected from the Internet photo and video libraries, i.e., flickr1,
Google2, and YouTube3. For the downloaded images, we made

1https://www.flickr.com/
2https://www.google.com/
3https://www.youtube.com/

three rounds of screening to remove the ordinary and simple
images. For the downloaded videos, we first choose the video
clips with text, then parse the selected video clips and reserve
one frame every 20 frames. Besides, we also perform the same
program as the images screening. Finally, the dataset is divided
into training set with 24, 000 images, and testing set with
12, 000 images.

B. Data Annotation

For annotation, we invited 300 people to label the dataset for
one month. With three rounds of double-check, the errors in
annotation are reduced and revised as many as possible. Specif-
ically, we have annotated 270, 783 text instances, including
180, 850 text instances in 24, 000 images of the training dataset
and 89, 933 text instances in 12, 000 images of the testing
dataset. Each text is labeled in the same quadrilateral way as
in the ICDAR 2015 incidental text dataset [11]. Therefore, we
use the same criteria as the ICDAR 2015 incidental text dataset
[11], i.e., Recall (R), Precision (P), and F-score (F).

C. Dataset Comparison

The qualitative and statistic comparison between the pro-
posed LS-Text and other benchmarks are visualized in Fig. 4
and summarized in Table I. #Image denotes the number
of images (training images/ testing images/ whole images).
#Text denotes the number of text instances (training texts/
testing texts/ whole texts). The box-level of text label includes:
character-level, word-level, line-level. There are two modes of
shoot text object: point-and-shoot mode (PM) and incidental
mode (IM). The text density indicates the average number of
legible text instances (annotated by red boxes in Fig. 4) in each
image. The direction of text consists of horizontal direction
box (as shown in Fig. 4 (a) and 4 (d)) and multiple direction
box (as shown in Fig. 4 (b), 4 (c), and 4 (e)). We highlight
the difference between our LS-Text dataset and other datasets
as follows.
• LS-Text vs. ICDAR 2013. ICDAR 2013 only uses a

limited number of images (229 training images and
233 testing images) to capture the point-and-shoot and

Authorized licensed use limited to: Institute of Software. Downloaded on October 09,2020 at 01:42:30 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3029167, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

TABLE I
STATISTIC COMPARISON BETWEEN OUR LS-TEXT AND OTHER BENCHMARKS.

Dataset #Image #Text Label Shoot Density Direction
train test all train test all character word line PM IM

ICDAR 2013 229 233 462 848 1,095 1,943
√ √

-
√

- 3.7 Horizontal
MSRA-TD500 300 200 500 1,068 651 1,719 - -

√ √
- 3.6 Multiple

ICDAR 2015 1,000 500 1,500 11,886 5,230 17,116 -
√

- -
√

4.5 Multiple
COCO-Text 43,686 20,000 63,686 118,309 27,550 145,859 -

√
-

√
- 1.6 Horizontal

LS-Text (ours) 24,000 12,000 36,000 180,850 89,933 270,783 -
√

-
√ √

6.9 Multiple

horizontal texts in road signs or billboards (see Fig. 4 (a)).
The number of images and text instances in our LS-Text
is 77.9 times (i.e., 36, 000 vs. 462) and 139.3 times (i.e.,
270, 783 vs. 1, 943) that in ICDAR 2013, respectively. The
text density of our training set is 1.8 times (i.e., 6.9 vs.
3.7) that of ICDAR 2013. In summary, LS-Text covers the
text and image styles of ICDAR 2013 in many aspects.

• LS-Text vs. MSRA-TD500. The ground-truth of MSRA-
TD500 is line-level annotation, and a bounding box
contains one or more text instances (see Fig. 4 (b)). It
contains 300 training images and 200 test images with
high resolution. Our LS-Text focuses on finding text
instances at the word-level (see Fig. 4 (e)), which is
conducive to text recognition. Moreover, the number of
images and annotation boxes in our LS-Text is 72 times
(i.e., 36, 000 vs. 500) and 157.5 times (i.e., 270, 783 vs.
1, 719) that in MSRA-TD500, respectively. The annotation
box density of our training set is 1.9 (i.e., 6.9 vs. 3.6)
times that of MSRA-TD500. LS-Text is more convenient
for text recognition and more challenging for detection
than MSRA-TD500.

• LS-Text vs. ICDAR 2015. The ICDAR 2015 is presented
in the Challenge 4 of the 2015 Robust Reading Compe-
tition. It consists of a training set with 1000 images, a
testing set with 500 images. The number of images and
text instances in our LS-Text is 24 times (i.e., 36, 000 vs.
1, 500) and 15.8 times (i.e., 270, 783 vs. 17, 116) that in
ICDAR 2015, respectively. The text density of our training
set is 1.5 times (i.e., 6.9 vs. 4.5) that of ICDAR 2015.
Moreover, The ICDAR 2015 mainly focuses on detecting
incidental text in shopping malls and street scenes (see Fig.
4 (c)), and our dataset includes both incidental text and
point-and-shoot text in various real-world scenarios, e.g.,
shopping mall, supermarket, pedestrian street, agricultural
market, theme square. Extensive comparisons show that
the challenges of both texts and scenes in LS-Text can
completely cover that of ICDAR 2015, and push incidental
scene text detection to a higher level.

• LS-Text vs. COCO-Text. The COCO-Text comes from
the MS COCO dataset, which consists of 43, 686 training
images, and 20, 000 testing images. It mainly focuses on
point-and-shoot scene texts, and our LS-Text includes
both two point-and-shoot and incidental texts in real-
world scenarios. The number of text instances and the
text density of our dataset is 1.9 times (i.e., 270, 783 vs.
145, 859) and 4.2 times (i.e., 6.9 vs. 1.6) that of COCO-
Text, respectively. More importantly, the text instances in

COCO-Text are mainly labeled with rectangular boxes
(see Fig. 4 (d)), while the established LS-Text uses more
compact quadrilateral boxes. LS-Text with richer text
instances and more precise annotation boxes is more
challenging and valuable than COCO-Text.

Based on comparisons between LS-Text and other datasets,
we find that the proposed LS-text dataset is the first large-scale
scene text detection dataset with point-and-shoot and incidental
text objects at the same time.

IV. SCALE-RESIDUAL LEARNING NETWORK

A. Motivation

The separate multi-scale learning way (see Fig. 1(a)) focuses
on responding to the text objects matched by its scale, while
the hybrid multi-scale learning way (see Fig. 1(b)) focuses on
responding to text objects of all scales in each scale feature
layer. To compare and analyze the advantages and disadvantages
of different multi-scale learning strategies, we implement them
based on the same detection framework with the VGG16
backbone network, as shown in Fig. 8, and evaluate them
via two ways, i.e., solution space and visual result. We carry
out experiments on two different scales datasets, i.e., the small-
scale ICDAR 2015 (1, 000 images for training and 500 images
for testing) and the large-scale LS-Text (24, 000 images for
training and 12, 000 images for testing).

In Fig. 5, we use the concept of solution space to show the
learning ability of different scales. Specifically, we first make a
statistic histogram on the scale of all texts in the testing subset.
The red line is the fitting curve of the vertex of the scale
histogram to represent the optimal solution space. Then, the
detection results on all scales are represented as a curve. The
closer the curve approaches the optimal solution, the better the
detection results are. Finally, we visualize and analyze the multi-
scale learning process of both separate learning and hybrid
learning, Fig. 5(a) and 5(b). In Fig. 5(a), separate multi-scale
learning produces scale-specific solution spaces on different
scale layers. Because each of its scale layers only responds
to the text objects matched by its scale (Fig. 1(a)), it learns
the scale-specific salient features and the text objects (see the
first row in Fig. 6). Obviously, the separate way limits the
ability of fusion and complementarity between feature layers
with different scales. In Fig. 5(b), hybrid multi-scale learning
generates a similar solution space on each scale feature layer.
Since each of its scale layers matches text objects of all scales
(in Fig. 1(b)), it learns similar salient features and objects
on each scale layer from deep to shallow (see the second
row in Fig. 6). Nevertheless, the hybrid way weakens the
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(a) Separate learning (b) Hybrid learning

(c) Scale-residual learning (d) Performance comparison

Fig. 5. Comparisons between the solution spaces of the detection result and
the ground-truth. The area under each curve represents the solution space
of the testing results on the ICDAR 2015 dataset. (a), (b) and (c) illustrate
the comparisons between the solution spaces of the ground-truth and the
detection results for separate learning, hybrid learning, and scale-residual
learning, respectively. And (d) denotes the comparisons of detection results
among three learning ways. The proposed scale-residual learning way in purple
dashed box is obviously better than that of other ways. Best viewed in color
and zoom in.

scale-specific learning ability in each scale layer. To overcome
the aforementioned problems, we propose a progressive scale-
residual learning strategy to reasonably model the association
and complementation among multi-scale representations. More
detailed comparison and analysis of three multi-scale learning
ways are given below.

By comparing and analyzing the solution spaces of the
detection results and the ground-truth, as shown in Fig. 5, we
have two discoveries. Separate learning has strong scale-specific
learning ability on different scales (see Fig. 5(a)), while hybrid
learning has good scale fusion ability on each scale (see Fig.
5(b)). Fortunately, as shown in Fig. 5(c), we provide a new
multi-scale learning strategy which can approach the optimal
solution gradually via learning scale residuals. As shown in
two purple dashed boxes of Fig. 5(d), the performance of the
separate learning in small-scale text detection is better than that
of the hybrid learning, but in medium-scale, the opposite is true.
More importantly, the scale-residual learning strategy reaches
the best performance on both small-scale and medium-scale
text objects.

By observing and comparing the visual results between
different multi-scale learning ways on each scale output, as
shown in Fig. 6, we find that neither of them can detect the
adjacent texts very well. In the deep feature layers with low
resolution, multiple adjacent words will be treated as a large
text because they are too close and they have similar texture.
In the shallow feature layers with high resolution, a word can
be detected as several objects because of the large spacing
between characters. As shown in the third row in Fig. 6, our
scale-residual learning strategy can improve and optimize the
salient features and boxes of text objects progressively. In
contrast, others have no such characteristic.

Based on the above analysis, we notice that multi-scale

Fig. 6. Visual comparisons of different scale processing strategies. From
the first (scale4) to the fourth column (scale1), we show the side-outputs
from deep to shallow layers. Our proposed scale-residual learning method
can improve the salient feature maps and boxes of text objects gradually. In
contrast, other methods have no such characteristic. Best viewed in color.

learning involves two important operations: feature fusion and
scale transformation. The feature fusion can make full use of
deep semantic features and shallow texture or edge features.
The scale transformation provides conditions for the fusion
of arbitrary scale features. Effective design and compatibility
of two important operations will be the key to deal with the
matching problem of multi-scale text objects. The following
sections are dedicated to a detailed description of the proposed
scale-residual learning strategy and scale-residual learning
network.

B. Scale-residual Learning Strategy

With the deep supervision both on the input and output of
feature maps in different scale, Fig. 7 (a), the scale-residual
of the ground-truth Yi is computed. Formally, denoting the
input of the i-th scale feature map as ri+1 and the additional
mapping as f(si), the deep supervision is expressed as{

ri+1 → Yi,
ri+1 + f(si)→ Yi,

(1)

where ri+1 and ri+1 + f(si) are the input and output of the
i-th scale feature maps, both of them will be optimized to
the same goal Yi. Since ri+1 + f(si) = ri, the second item
of Eq. (1) can be represented by ri → Yi. f(si) is served
as scale-residual estimation of si. We provide the shortcut
connections between the ground-truth and outputs on each
scale, which implies a functional module for the “flow” of
errors among different scales, and thus make it easier to fit
complex prediction with higher adaptivity. To the extreme, if
the input ri+1 is optimal, it will be easier to force f(si) to
zero than to fit it to ground-truth.

The goal of the scale-residual learning way is to eliminate the
scale-residuals within its scale. The scale-residuals come from
two aspects, i.e., Feature Fusion Residuals (FFR) generated
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Fig. 7. Illustration of the simplified diagram (a) and the implementation (b)
of the i-th scale feature maps. Yi is the i-th scale ground-truth. Ŷ c

i and Ŷ u
i

denote the representation of features in i-th scale layer after the concatenation
operator and the up-sampling operator respectively. si denotes the low-level
features with rich texture details, ri+1 and ri denote the high-level features
with strong semantic information.

by the concatenation operation, and Scale Transformation
Residuals (STR) produced by the up-sampling operation.
• Feature fusion residuals. Since the two groups of

features received by the concatenation operation have
different representations (i.e., high-level semantic informa-
tion inherited from ri+1 and low-level texture information
come from si), directly concatenating the two groups
of features will bring the network into fusion residuals.
Similar to the lateral or skip connection of FPN [40] and
DSS [42], we add one 1× 1 convolution and one 3× 3
convolution layers after the concatenation operation, to
make it a learnable operator (see the purple dashed box in
Fig. 7 (b)). Then, the feature layers with strong semantics
and the feature layers with rich details are adequately fused
by the supervision Yi with the same scale, to eliminate
the residuals caused by the concatenation operation.

• Scale transformation residuals. Since most of the words
appear in groups to express unambiguous information,
directly usiing the up-sampling operation will introduce
the residuals of text-like features between adjacent text
objects, which will lead to adjacent text objects being
detected as a object. The previous works [16], [20],
[21], [22], [15] consider little about the residuals caused
by scale transformation. Similar to the solution of the
concatenation operation, we add one 3 × 3 convolution
layer after the up-sampling operation, to make it a
learnable operator, as shown in the green dashed box
of Fig. 7 (b). Then, we force the inherited deep semantic
features ri+1 to present the i-th scale text features as
much as possible after the up-sampling operator through
the supervision Yi, thus eliminating the residual caused
by the up-sampling operation.

By cascading three scale-specific feature maps in the deep-to-
shallow manner of VGG16 network, the scale-residual learning
way is extended to common backbone networks. Eq. (1) is
reformulated as

ro = r4 +

3∑
i=1

fi(si), (2)

where ro is the final output of SLN, and ri ∈ [0, Yi], i = 1, ..., 4,
are the inputs of multi-scale feature maps. Yi is the i-th scale
ground-truth. r4 is supervised by the 4-th scale ground-truth

Y4 and it is regarded as an initial approximated output. After
the Sigmoid operation, the scale-residual is always positive,
i.e., fi(si) ≥ 0, i = 1, 2, 3, where si from the pooling layers
of VGG16 network. We have Y1 ≥ ro ≥ r1... ≥ r4, which
indicates that the scale-residual monotonically decreases in
the deep-to-shallow of the stacking feature maps. It is vividly
reflected in the gradual optimization of the solution space from
deep layers to shallow ones, as shown in Fig. 5(c).

C. Network implementation

Our SLN fuses the advantages of both the scale-specific
adaptability and complementary based scale-residual learning,
the construction process of which is summarized as follows.

The architecture of SLN is shown in Fig. 8. We set the
training dataset to D = {(Xn, Yn), n = 1, ..., N}, where Xn =
{xj , j = 1, ..., |Xn|} denotes the n-th input image and Yn =
{yj , j = 1, ..., |Xn|} denotes the corresponding ground-truth.
yj = (cj , Gj) includes the confidence cj ∈ {0, 1} and the
geometry information Gj for pixel xj (if cj = 1). We drop the
subscript n for notational simplicity since we consider each
sample independently. For simplicity, the collection of all the
standard U-shape network layer parameters are denoted as W.
We use a backbone of VGG16 [47] as example, and 4 side
outputs (s1, s2, s3, and r4) correspond to pool2, pool3, pool4
and pool5 of VGG16 network [47].

To eliminate the feature fusion residual in each scale feature
map, each output of {Ŷ ci }3i=1 and Ŷ4 of the SLN network is
associated with a classifier for score map and a regressor for
geometry. The corresponding weights of them can be denoted
by wc = (w1

c , ...,w
4
c) and wr = (w1

r , ...,w
4
r). Thus, the

objective function of SLN can be written as

L(W,wc,wr) = λc

4∑
i=1

lc(W,wi
c) +

4∑
i=1

lr(W,wi
r), (3)

where lc(W,wi
c) and lr(W,wi

r) denote the i-th scale loss
function of a classifier and a regressor, and λc is a hyper-
parameter to balance two losses.

To eliminate the scale transformation residual in each scale
feature map, the output of each up-sampling operator {Ŷ ui }3i=1

of the SLN network is also associated with a classifier for
score map and a regressor for geometry. The corresponding
weights of them can be denoted as ẇc = (ẇ1

c , ẇ
2
c , ẇ

3
c) and

ẇr = (ẇ1
r , ẇ

2
r , ẇ

3
r). Thus, the final objective function of the

proposed SLN is defined as

L̃(W,wc,wr, ẇc, ẇr) = L(W,wc,wr) + L(W, ẇc, ẇr), (4)

where L(W, ẇc, ẇr) has three scale representations including
Ŷ u1 , Ŷ u2 , and Ŷ u3 .

In the SLN model, for tackling the imbalance problem
of positive and negative samples, we adopt the Dice loss to
calculate the errors between the ground-truth and the prediction
score map. The Dice loss is different from the cross-entropy loss
[16], and it is proved to perform well in region segmentation
tasks [48] [49] [13]. The lc(W,wi

c) is abbreviated by lc for
notational simplicity, defined by

lc = 1−
2 ∗
∑|Xn|
i=1 (cic

∗
i )∑|Xn|

i=1 (ci) +
∑|Xn|
i=1 (c∗i )

, (5)
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Fig. 8. The architecture of our Scale-residual Learning Network (SLN) that is built on the VGG16 network by stacking multi-scale feature maps in a
deep-to-shallow manner. The down-sampling ground-truth Y1, Y2, Y3, and Y4 are 1

4
, 1
8

, 1
16

, and 1
32

the size of the ground-truth, respectively.

where the sums run over the all |Xn| pixels of the score map.
ci is the confidence value of pixel i in the ground-truth map.
c∗i is the confidence value of pixel i in the predicted score
map.

Considering the loss for the geometry map should be scale-
invariant and angle-sensitive, the IoU loss [50] is adopted
to evaluate the difference between the predicted bounding
box with axis alignment and the ground-truth of axis-aligned
bounding box, the cosine function [16] is used to calculate the
distance between the predicted angle and the ground-truth. lr
can be defined as follows.

lr = IoU(R,R∗) + λθ(1− cos(θ, θ∗)), (6)

where R is the ground-truth of axis-aligned bounding box of
the text object, and θ is the ground-truth of rotation angle of
the text box, and G = {R, θ}. R∗ and θ∗ denote the prediction
of text box and angle respectively.

D. Label generation

The loss function of our SLN is composed of three atomic
losses, i.e., the segmentation loss (see Eq. 5), the axis-aligned
bounding box loss (see the first half of the Eq. 6) and the text
angle loss (see the second half of the Eq. 6). The ground-
truth required by the proposed SLN is shown in Fig. 9
(a). Our SLN needs to learn three items [16], i.e., the text
core area (see the red region of Fig. 9 (a)), the axis-aligned
bounding box generated by combining the point position and
the corresponding four distances (see the blue point and line
arrow of Fig. 9 (a)), and the corresponding angle of text
quadrangle (see the two orange lines of Fig. 9 (a)).

The text core region, i.e., the positive region of the text
quadrangle on the feature map is designed to be roughly a
shrunk region of the original text region, as shown in the
red region of Fig. 9 (a). The generation process is given as
follow. For a text quadrangle Q = {pi|i ∈ 1, 2, 3, 4}, where
pi = {xi, yi} are vertices on the text quadrangle in clockwise

order. To shrink Q, we first calculate a reference edge ei for
each vertex pi as

ei = min(d(pi, p(i mod 4)+1), d(pi, p((i+2) mod 4)+1)), (7)

where d(pi, pj) denotes the L2 distance between pi and pj .
We first shrink the two longer edges of a text quadrangle, and
then the two shorter ones. For each pair of two opposing edges,
we determine the “longer” pair by comparing the mean of
their lengths. For each edge e(pi, p(i mod 4)+1), we shrink it
by moving its two endpoints inward along the edge by 0.3ei
and 0.3e(i mod 4)+1 respectively. The region outside the text
quadrangle is a negative samples. The region between the text
quadrangle and the shrunk quadrangle will be ignored when
calculating the segmentation loss, as shown in the blue region
of Fig. 9 (a). It is will not be regarded as positive samples or
negative samples.

The axis-aligned bounding box of the text quadrangle, is
generated by combining a point position and the corresponding
four distances (see the blue point and line with arrow in Fig. 9
(a)). The distance is obtained by calculating the vertical distance
from the blue point to the four sides, i.e., e(p1, p2), e(p2, p3),
e(p3, p4), and e(p4, p1).

The angle of the axis-aligned bounding box, is computed
according to the central axis of the text quadrangle and the
horizontal line of the text image, see the two orange lines and
the angle θ between them of Fig. 9 (a).

E. Prediction

As shown in Fig. 9 (b), the prediction outputs of our
SLN consist of three parts: the text segmentation region,
the axis-aligned bounding box, and the angle. The latter
two are associated with each point in the region. The final
text quadrangle is obtained via three steps. First, we use a
score threshold filter to delete the candidate pairs of the axis-
aligned bounding box and the angle, both associated with
low confidence pixels in the text segmentation region, i.e.,
csi < λµ. csi denotes the confidence score of pixel pi in the
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Fig. 9. The illustrations of the ground-truth generation (a), the visual prediction (b), and the axis-aligned bounding box rotation (c). In (a), the text quadrangle
denotes the ground-truth annotation, the shrunk quadrangle is generated by shrinking the text quadrangle. In (b), the original image is overlaid by the heat map
and the prediction quadrangle. In (c), the prediction quadrangle is obtained by rotating the axis-aligned bounding box with the corresponding angle θ.

text segmentation map, and λµ is the confidence threshold.
Then, the retained candidate pairs will be transformed into
a text quadrangle by rotating the axis-aligned bounding box
based on angle θ, as shown in Fig. 9 (c). Finally, the Non-
Maximum Suppression (NMS) operation is applied to remove
the redundant candidate quadrangle boxes.

F. Discussion

U-Net [37] and FPN [40] are the common network structure
that has been applied in many computer vision tasks. The
detailed discussions about the difference between our SLN and
them are given in the following.

SLN vs. U-Net. The essential differences between SLN
and U-Net lie in four aspects. 1. Scale-progressive learning
strategy. In order to adapt scale variance, SLN utilizes deep
supervision with different resolution GT to match the scale of
the corresponding outputs, while U-Net uses only one single
supervision for all scales. Therefore, SLN provides an effective
way to model the association and complementation among scale-
progressive representations. 2. Scale-sensitive feature fusion.
U-Net ignores the effect of semantic correlation caused by the
up-sampling operation, so it is not sensitive to scale-residual
transformation. SLN adds convolution with supervision to ease
it which further reduces the scale-residual among the multi-
scale outputs. 3. Sample unbalance processing. SLN uses dice-
loss instead of cross-entropy loss to effectively handle the
positive and negative sample unbalance problem. 4. Adjacent
objects discrimination. SLN improves the segmentation-based
text detection method by introducing the direct prediction strat-
egy, and further proposes the direct prediction segmentation-
based text detector to discriminate the adjacent text objects.

SLN vs. FPN. The structure of our SLN and that of the FPN
is similar. However, we find that the scale division and learning
modes of FPN are not suitable for the text objects. For scale
division, the text with a large aspect ratio, which is divided
based on the area of the text, is large. It should be matched
to the deep-level feature layers. However, the short edge of
the text may have disappeared in the deep-level feature layers
due to the down-sampling operation. And the disappearance of
the short edge will lead to the disappearance of the whole text
object. It is impossible to learn an object deleted by the down-
sampling operation in the deep-level feature layers. Therefore,

our SLN adopts adaptive division mode. Specifically, we use
the down-sampling operation to gradually reduce the resolution
of the ground-truth, and the text ground-truth with different
scales will automatically match to the corresponding scale
feature layers. So the feature layers S1 with high resolution
can match all scale objects, and the feature layers S2 with
medium resolution can match large-scale and medium-scale text
objects, and the feature layers S3 and S4 with low resolution
can match large-scale text objects. For multi-scale learning
way, FPN adopts the separate learning strategy. Concretely, the
shallow-level feature layers learn the small scale objects, the
middle-level feature layers learn the medium scale objects, and
the deep-level feature layers learn the large scale objects. For
example, text objects with the same height and different length
may be independently supervised at different scale feature
layers, it is unreasonable. Therefore, we propose a continuously
supervised learning strategy. Specifically, S3 and S4 are used
to learn large-scale texts. S2 is used to learn medium-scale
texts and continue to optimize large-scale texts. S1 is used to
learn small-scale texts and continue to optimize large-scale
and medium-scale texts.

V. EXPERIMENTS

A. Experimental Settings
The experiments are conducted on a single Titan Xp GPU

and an Intel(R) Xeon(R) CPU E5-1603 v4 @ 2.80GHz. We
train the network using the Adam Optimizer method. We take
the exponential decay learning rate 0.94 after each 10, 000
iterations with the initial value 0.0001. In the loss function of
SLN (3), we set the balancing factor as λc = 0.01. In the loss
function of geometry map (6), we set the balancing factor as
λθ = 20. The batch size is set as 16. The NMS operation is
conducted with the threshold 0.2. The confidence threshold λµ
is set to 0.8. Data augmentation is important for improving the
performance of deep neural network model, especially when
the training instance is insufficient, as text detection. We crop
regions with random scales from the training images and resize
them to 512× 512 pixels with an invariant aspect ratio.

B. Metrics
To compare the performance of detection methods on the LS-

Text and ICDAR 2015 datasets, we use three popular metrics,

Authorized licensed use limited to: Institute of Software. Downloaded on October 09,2020 at 01:42:30 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2020.3029167, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

(a) (b) (c)

Fig. 10. Illustrated results of comparison before (b) and after (c) adding
the supervision for scale transform residuals. (a) Images with ground-truth.
The red ellipse indicates missed detection, the orange ellipse indicates that
the adjacent text objects are not separated, and the red arrow indicates false
detection.

i.e., Recall (R), Precision (P), and F-score (F) [11]. Since
the prediction box will be converted from quadrilateral to
rectangular when evaluating the COCO-Text and ICDAR 2013
video datasets, the evaluation metrics of COCO-Text is based
on [8], [13], and the evaluation metrics of ICDAR 2013 video
is based on [6].

C. Ablation Study
We conduct several experiments to demonstrate the effective-

ness of each component of our method. Specifically, we analyze
the influence of different multi-scale learning strategies, the
supervision of different scale-residual, and each scale output.
We select two incidental text datasets, i.e., the LS-Text dataset
with large-scale text instances and images and the ICDAR 2015
dataset with small-scale text instances and images, because
they can span all challenges.

1) Influence of Multi-scale Learning Strategies: To verify the
effectiveness of the proposed progressive multi-scale learning
strategy, scale-residual learning, we compare three models (i.e.,
separate, hybrid, scale-residual) with the VGG16 backbone,
as shown in Fig. 8. The comparative results are reported in
Table II.

For the large-scale LS-Text, F-score of SLN is 7.23% better
than that of the separate model (i.e., 52.85% vs. 45.62%),
2.76% better than that of the hybrid model (i.e., 52.85%
vs. 50.09%). For the small-scale ICDAR 2015, F-score of
SLN is 6.83% better than that of the separate model (i.e.,
83.04% vs. 76.21%), 3.97% better than that of the hybrid
model (i.e., 83.04% vs. 79.07%). The improvement of all-round
performance (recall, precision, and F-score) fully verifies the
superiority of the proposed SLN on different scale datasets.

TABLE II
COMPARATIVE RESULTS FOR DIFFERENT SCALE LEARNING STRATEGIES ON

ICDAR 2015 AND LS-TEXT.

Dataset Multi-scale R P F

ICDAR 2015
Separate 0.7357 0.7905 0.7621
Hybrid 0.7530 0.8324 0.7907

Scale-residual 0.8074 0.8547 0.8304

LS-Text
Separate 0.4538 0.4585 0.4562
Hybrid 0.4563 0.5551 0.5009

Scale-residual 0.4988 0.5620 0.5285

TABLE III
COMPARATIVE RESULTS OF SUPERVISION FOR DIFFERENT

SCALE-RESIDUALS (S-FFR AND S-STR) ON ICDAR 2015 AND LS-TEXT.

Dataset S-FFR S-STR R P F

ICDAR 2015
0.7814 0.8263 0.8033√
0.7910 0.8439 0.8166√ √
0.8074 0.8547 0.8304

LS-Text
0.4493 0.5285 0.4857√
0.4888 0.5450 0.5154√ √
0.4988 0.5620 0.5285

2) Influence of Supervision for Different Scale-residuals:
In order to verify the impact of different scale-residuals, i.e.,
feature fusion residual (FFR) and scale transformation residual
(STR), we compare them on the ICDAR 2015 and LS-Text
datasets. The comparative results are reported in Table III. Our
SLN with the supervision for both residuals achieves the best
performance, in terms of all criteria. By eliminating the scale
transformation residuals, SLN obtains an increase of 1.38%
F-score on ICDAR 2015 (i.e., 83.04% vs. 81.66%) and 1.31%
F-score on LS-Text (i.e., 52.51% vs. 51.54%). Moreover, in Fig.
10, we visualize the detection results of comparison before and
after adding the supervision for STR. We find that it helps to
distinguish adjacent words with the same scale and difficult text
objects (blurred or vertical). SLN with the supervision for STR
leads to the complementary of the same scale representations
towards the optimization.

3) Comparison of Each Scale Output: To present the text
scales learned at different scales, we evaluate several scale
output of the model trained on the ICDAR 2015. Table IV
reports the experimental results of different scale outputs on
the ICDAR 2015 testing dataset. Four group experiments of
different scale output (S1, S2, S3, S4) are summarized in Table
IV. Each group results consist of three kinds of output results
i.e., the output after the concatenation operation Ŷ ci , the output
after the up-sampling operation Ŷ ui , and the fused outputs of
both (Ŷ ci , Ŷ ui ).

From the performance of different outputs, both recall and
F-score of S1 with higher resolution are better than those of
S3 with lower resolution in terms of Ŷ ci , Ŷ ui , and (Ŷ ci , Ŷ ui )
respectively. To better illustrate the performance difference of
the text detector on different scales, we divide the detection
results of four different scales (i.e., S1, S2, S3, and S4 )
into three scale ranges (i.e., large-scale, medium-scale, and
small-scale) for quantitative statistics, as shown in Fig. 11.
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TABLE IV
EXPERIMENTAL RESULTS FOR DIFFERENT SCALE OUTPUTS.

Unit Output R P F FPS

S1
Ŷ u
1 0.8272 0.8761 0.8509 12.19
Ŷ c
1 0.8262 0.8773 0.8509 12.00

(Ŷ u
1 , Ŷ c

1 ) 0.8286 0.8763 0.8518 11.24

S2
Ŷ u
2 0.7949 0.8749 0.8330 12.41
Ŷ c
2 0.8002 0.8807 0.8385 12.40

(Ŷ u
2 , Ŷ c

2 ) 0.7987 0.8704 0.8330 11.63

S3
Ŷ u
3 0.5879 0.8653 0.7001 12.57
Ŷ c
3 0.5998 0.8799 0.7134 12.65

(Ŷ u
3 , Ŷ c

3 ) 0.6028 0.8605 0.7089 11.72

S4 Ŷ4 0.3168 0.8738 0.4650 12.89

Fig. 11. Illustration of text objects (number of different sizes) and performance
(F-score) detected at different scales.

The left coordinates system is used as a statistical comparison
of the number of text objects that are obtained by matching
the detection results of the algorithm and the ground-truth in
different scales. The right coordinates system is to measure the
detection performance of different scale layers. The blue line
represents the changing trend of the detection performance of
the algorithm, and the performance gradually gets better from
the S4 feature layer to the S1 feature layer.

The scale-residual learning ability in adjacent scale layers
is demonstrated in Table IV. Each output has high precision.
Recall is gradually improved from S4 to S1 (i.e., 31.68% →
60.28%→ 79.87%→ 82.86%), which boosts the F-score from
S4 to S1 (i.e., 46.50%→ 70.89%→ 83.30%→ 85.18%). The
scale-residual learning ability in the same scale layer is also
validated in Table IV, the difference between the F-score of
Ŷ u and that of Ŷ c became smaller and smaller from S3 to
S1 (i.e., 1.33% → 0.55% → 0.0%). It also shows that Ŷ c and
Ŷ u in each output are compatible. The successive constraints
(as shown in Fig. 8) lead to the complementary of multi-scale
representations towards the optimization. It can be proved by
the cumulative graphs (as shown in Fig. 11) of detection texts
with different scales.

D. Comparison with the State-of-the-art Methods

1) Performance on LS-Text: To validate the applicability of
SLN on the large-scale text detection dataset with point-and-

TABLE V
COMPARISON ON THE LS-TEXT DATASET.

Method Backbone R P F FPS

PSENet [51] ResNet50 0.5118 0.5519 0.5311 2.8
EAST [16] VGG16 0.4338 0.5069 0.4675 15.4
R2CNN [31] VGG16 0.4572 0.5498 0.4992 2.1
PixelLink [39] VGG16 0.4818 0.5372 0.5080 4.6
SLN (ours) VGG16 0.4988 0.5620 0.5285 13.9

TABLE VI
COMPARISON ON THE ICDAR 2015 DATASET. ∗ INDICATES MULTI-SCALE

TESTING.

Method Backbone R P F FPS

EAST(a) [16] PVANet 0.71 0.81 0.76 16.8
EAST(b)∗ [16] PVANet2x 0.78 0.83 0.81 -
TextSpotter [21] PVANet 0.83 0.84 0.83 -
FOTS [20] ResNet50 0.82 0.89 0.85 7.8
IncepText [19] ResNet50 0.81 0.91 0.85 -
TextSpotter [15] ResNet50 0.81 0.92 0.86 4.8
PSENet [51] ResNet50 0.85 0.87 0.86 1.6
SLN (ours) ResNet50 0.83 0.88 0.85 14.7

Zhang et al. [17] VGG16 0.43 0.71 0.54 -
Yao et al. [18] VGG16 0.59 0.72 0.65 1.6
DMPNet [34] VGG16 0.68 0.73 0.70 -
SegLink [12] VGG16 0.73 0.77 0.75 -
WordSup [52] VGG16 0.77 0.79 0.78 2
R2CNN [31] VGG16 0.80 0.87 0.83 -
Textboxes++∗[33] VGG16 0.79 0.88 0.83 2.3
PixelLink [39] VGG16 0.82 0.86 0.84 3.0
TextSnake [22] VGG16 0.80 0.85 0.83 1.1
RRD∗ [35] VGG16 0.80 0.88 0.84 -
Lyu et al.∗ [13] VGG16 0.80 0.90 0.84 3.6
SLN (ours) VGG16 0.83 0.88 0.85 11.2

shoot and incidental scene text, we compare SLN and several
state-of-the-arts (e.g., EAST [16], R2CNN [31], PixelLink
[39], and PSENet [51]) on LS-Text dataset in Table V. As
presented in Table V, SLN with a VGG16 network significantly
outperforms EAST by 6.1% F-score (i.e., 52.85% vs. 46.75%),
but has only 1.5 FPS of speed loss (i.e., 13.9 vs. 15.4). More
importantly, for the methods with VGG16 backbone, SLN
achieves the best performance (i.e., 49.88% Recall, 56.20%
Precision, and 52.85% F-score). The F-score of the proposed
SLN is sightly lower than that of PSENet, but SLN’s speed
is 4.9 times that of PSENet (i.e., 13.9 vs. 2.8). Notably, the
excellent algorithms do not perform well on the established
LS-Text, implying that the dataset is challenging.

2) Performance on ICDAR 2015: In following experiments
of Section V-D, we first use COCO-Text to train the network
with 10 epochs, and then real the training data is adopted to
fine-tune the model until convergence. Table VI reports the
performance of SLN and other state-of-the-arts on the ICDAR
2015 dataset. In terms of VGG16 backbone, SLN achieves the
best F-score 85% the fastest speed 11.2 FPS. In terms of other
backbones (i.e., ResNet50 and PVANet), the F-score of our
SLN is close to that of the state-of-the-art approachs [15] [51],
but the speed is 3.1 and 9.2 times faster than that of [15] (i.e.,
14.7 vs. 4.8) and [51] (i.e., 14.7 vs. 1.6) respectively. The speed
of SLN is also faster than that of all the other approaches except
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TABLE VII
COMPARATIVE RESULTS ON THE COCO-TEXT DATASET. ∗ INDICATES

MULTI-SCALE TESTING.

Method Backbone R P F FPS

Yao et al. [18] VGG16 0.271 0.4323 0.3331 -
WordSup [52] VGG16 0.309 0.452 0.368 1.9
SSTD [53] VGG16 0.31 0.46 0.37 -
Lyu et al. [13] VGG16 0.262 0.699 0.381 -
EAST [16] VGG16 0.324 0.5039 0.3945 -
Lyu et al.∗ [13] VGG16 0.324 0.619 0.425 -
SLN (ours) VGG16 0.4167 0.5288 0.4661 16.9

TABLE VIII
COMPARISON ON THE ICDAR 2013 VIDEO DATASET. “S&T” DENOTES

THAT THE APPROACH IS BASED ON BOTH SPATIAL AND TEMPORAL
INFORMATION.

Method S&T R P F FPS

Zhao et al. [57] X 0.4630 0.4702 0.4665 -
Wang et al. [58] X 0.5174 0.5834 0.5451 -
Wang et al. [56] X 0.5867 0.7190 0.6265 -

Epshtein et al. [54] 0.3253 0.3980 0.3594 -
Khare et al. [55] 0.4760 0.4140 0.4430 -
Yin et al. [26] 0.5473 0.4862 0.5156 -
EAST [16] 0.5322 0.6413 0.5644 -
SLN (ours) 0.6055 0.8073 0.6920 11.3

EAST(a). By using a light weight neural network, PVANET,
the speed of EAST(a) with PVANET reaches 16.8 FPS, but
its F-score is 9% lower than that of our method (i.e., 76% vs.
85%).

3) Performance on COCO-Text: The performance of SLN
and a comparison with the state-of-the-art approaches on
COCO-Text are listed in Table VII. SLN outperforms the
state-of-the-art approach [13] by 4.11% F-score (i.e., 46.61%
vs. 42.5%). Besides, SLN also surpasses Yao et al. [18],
WordSup [52], SSTD [53], and EAST [16] by 13.3%, 9.8%
9.6%, and 7.2% F-score, respectively. Meanwhile, our SLN is
quite efficient with the running speed of 16.9 FPS. Additionally,
the proposed method obtains the best recall and F-score in
the comparison experiments, therefore it can reveal that our
method holds the strong ability for capturing texts.

4) Performance on ICDAR 2013 video: To evaluate the
transferability of SLN, we run it on the ICDAR 2013 video text
dataset [6]. The video texts involve motion blur, extreme aspect
ratio, multiple orientations, and low resolution. Comparative
results are listed in Table VIII. From the detection results of
the spatial information based approaches, we can find that the
performances of SLN are higher than that of other approaches
in terms of recall, precision, and F-score. Specifically, SLN
surpasses Epshtein et al. [54], Khare et al. [55], Yin et al. [26],
and EAST [16] by 33.3%, 24.9% 17.6%, and 12.8% F-score,
respectively. Compared with all approaches, the F-score of
the proposed method is 6.55% higher than that of [56] (i.e.,
69.20% vs. 62.65%). Moreover, SLN can run at 11.3 FPS and
maintain the F-score with 69.20%.

5) Performance on ICDAR 2017 MLT: we run SLN on the
ICDAR 2017 Multi-lingual scene text (MLT) [59] to further
evaluate its transferability from single-English text objects to
multi-lingual text objects. MLT consists of 9 languages (i.e.,

TABLE IX
COMPARATIVE RESULTS ON THE ICDAR 2017 MLT DATASET.

Method Backbone R P F FPS

TH-DL [59] - 0.35 0.68 0.46 -
He et al. [60] - 0.58 0.77 0.66 -
FOTS [20] ResNet50 0.58 0.81 0.67 -
Border [61] ResNet50 0.61 0.74 0.67 -
LOMO [62] ResNet50 0.61 0.79 0.69 -
SPCNET [63] ResNet50 0.67 0.73 0.70 -

Lyu et al. [13] VGG16 0.56 0.84 0.67 -
SLN (ours) VGG16 0.61 0.76 0.68 6.4

Arabic, Latin, Chinese, Japanese, Korean, Bangla, Symbols,
Mixed, None). Note that None is not one of the other eight
script classes. Each text is labeled with a quadrangle box. As
present in Table IX, the performance of our SLN is already
larger than that of the majority of the existing text detectors.
Specifically, SLN surpasses TH-DL [59], He et al. [60], FOTS
[20], Border [61], Lyu et al. [13] by 22% F-score (46% vs.
68%), 2% F-score (66% vs. 68%), 1% F-score (67% vs. 68%),
1% F-score (67% vs. 68%), and 1% F-score (67% vs. 68%)
respectively. The proposed SLN is slightly lower than LOMO
[62] (68% vs. 69%) and SPCNET [63] (68% vs. 70%). In
terms of VGG16 backbone, the proposed method achieves the
best performance of 68% F-score compared with Lyu’s method
[13] (67% vs. 68%). It is noted that the proposed SLN is only
one method to release the FPS with 6.4.

Extensive experiments on the above five datasets demonstrate
that the proposed Scale-residual Learning Network (SLN) is
effective for text detection in real-world scene, and achieves
the best or competitive performance based on both accuracy
and efficiency. The proposed LS-Text dataset is challenging
as an evaluation benchmark of state-of-the-art text detection
methods.

VI. CONCLUSION

In this paper, we investigated the problem about multi-scale
text detection in the wild. We released a new large-scale
scene text detection dataset (i.e., LS-Text) with challenges
related to real-world scenarios, which was verified to be a
good touchstone of state-of-the-art methods. We proposed a
new segmentation-based text detector, Scale-residual Learning
Network (SLN), which can model both the feature fusion
residual and scale transformation residual of convolutional
feature. SLN demonstrated great potential to scale-related
computer vision tasks due to its adaptability to text scales,
strong ability for feature transmission, and its simple and
effective designed architecture.
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