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Weakly supervised object detection (WSOD), aiming to detect objects with only image-level annotations,

has become one of the research hotspots over the past few years. Recently, much effort has been devoted

to WSOD for the simple yet effective architecture and remarkable improvements have been achieved. Ex-

isting approaches using multiple-instance learning usually pay more attention to the proposals individually,

ignoring relation information between proposals. Besides, to obtain pseudo-ground-truth boxes for WSOD,

MIL-based methods tend to select the region with the highest confidence score and regard those with small

overlap as background category, which leads to mislabeled instances. As a result, these methods suffer from

mislabeling instances and lacking relations between proposals, degrading the performance of WSOD. To

tackle these issues, this article introduces a multi-peak graph-based model for WSOD. Specifically, we use

the instance graph to model the relations between proposals, which reinforces multiple-instance learning

process. In addition, a multi-peak discovery strategy is designed to avert mislabeling instances. The proposed

model is trained by stochastic gradients decent optimizer using back-propagation in an end-to-end manner.

Extensive quantitative and qualitative evaluations on two publicly challenging benchmarks, PASCAL VOC

2007 and PASCAL VOC 2012, demonstrate the superiority and effectiveness of the proposed approach.
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1 INTRODUCTION

Object detection is an important and fundamental task in the fields of computer vision. With the
development of convolutional neural networks (CNNs), the performance of object detection
has been forwarded rapidly. Compared to the era of conventional hand-crafted methods, deep
learning techniques, especially those based on CNNs, promote cutting-edge methods significantly
for object detection [25, 48, 58, 59]. However, these methods usually work under the supervision
of bounding boxes, which require large-scale manually annotated datasets [61]. The high cost of
labor-intensive and time-consuming accurate bounding box annotations has hindered the wide
applications of object detection technologies in real scenarios.

To circumvent the forementioned limitation, weakly supervised object detection (WSOD)

technology, which only needs image-level annotations to train a model, has been proposed and
investigated in works [2, 13, 27, 38, 46, 51, 64, 72, 90, 91]. Although many object detection meth-
ods achieve promising results, there is still a huge performance gap between WSOD and fully
supervised methods due to lacking bounding box annotations.

It has been demonstrated that contextual information, or relations between object instances,
could be beneficial to object recognition [8, 15, 21, 22, 36, 37, 59, 67, 75, 76]. Much effort has been
devoted to the research area before the prevalence of deep learning. With the predominance of
deep learning technologies, WSOD methods enter the rapid development period, but there is no
significant process regarding incorporating object relations in WSOD task. Previous approaches
consider object instance individually, ignoring relations between each other. One possible reason
could be that relations between object instances are hard to learn. Moreover, the location, scale, and
number of object instances are various across different scenarios. It is common to deploy a single
neural network with a regular architecture [28, 30] for WSOD. Incorporating relations between
proposals is still underexplored. Thus, we argue that incorporating the distributed discriminative
information in correlated regions could be beneficial for object instance detection.

Notably, the paradigm of combining multiple-instance learning (MIL) with CNNs is the
current mainstream. This paradigm usually tends to select the proposals with the highest confi-
dence score from bags for object estimation, ignoring the distribution of discriminative features,
regardless of the number of object instances appearing in an image. From the Figure 1, the images
with the visualized activation map indicate that the complementary discriminative features
scatter in multiple regions both in the cases of single instance and multiple instances. Here are
two typical cases that describe this problem very well. In the first case, for the images without
multiple object instances from the same bag, the target object’s discriminative regions usually
involve multiple proposals. The methods, which only use the highest confidence score proposal
and surrounding candidate proposals, tend to mislabel discriminative regions with small overlaps
as the background category. In the second case, for multiple object instances with the same class
label, the previous methods tend to take proposals with lower-class scores as background, which
leads to limited performance. The images containing more than one object instances for the
same class are ubiquitous and natural in the challenging PASCAL VOC datasets. For instance,
VOC2007 trainval set is formed by 7,913 image-level object labels and 15,662 annotated object
instances, indicating at least 7,749 instances not selected during training. In this case, the selected
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Fig. 1. Visualization of the distributed response in different samples in PASCAL VOC 2007.

object instances with relatively limited scales and appearance variations, may be insufficient
for training a discriminative classifier. Moreover, the missing instances may be mislabeled
as background category during training, degrading the CNN-based classifier’s discriminative
capability.

On the whole, at least two key problems are underexplored for this line of research:
Question 1: how to model the relations between instances to enhance the performance of

multiple-instance learning process;
Question 2: how to discover the multiple valid response peaks for front categories in an image

and label object instances correctly.
To address the two questions mentioned above, an end-to-end multi-peak graph-based instance

discovery framework is proposed to reinforce the performance for WSOD. Our approach is inspired
by the success of graph neural networks [24, 62, 84]. Graph neural networks can affect every
single element (e.g., an atom in the target chemistry molecular in predicting the properties of
molecules and materials) by aggregating information (or features) from correlated elements (e.g.,
neighboring atoms in the molecular structure). Moreover, the aggregation strategy is automatically
learned, driven by the predefined learning target. Dependencies between correlated elements can
be mined by graph neural networks, without making additional assumptions on data distributions.
Thus, we adopt the graph neural network to model the relations between object instances. WOSD’s
rationality is supported by two essential assumptions: (1) the top-scoring proposal along with
neighbouring highly overlapped proposals are likely to have the same class label; (2) the instance
with discriminative part(s) should have response peak(s) on the feature map. A multi-peak-based
discovery strategy is proposed to satisfy the above two assumptions. All possible object instances
present in an image can be automatically discovered effectively. Specifically, the multi-peak-based
discovery strategy mines the response peaks based on multiple-instance learning and employs the
IoU metric to model the spatial relationships between response peaks and surrounding proposals.
By integrating multi-peak-based instance discovery strategy into the iterative training process, the
proposed model can gradually locate object instance with image-level label. Local optima situation
can be prevented by the proposed method, because more object instances from the same bag are
used for training.

In principle, our approach is significantly different from the previous method [46]. Lin et al.
propose object instance mining (OIM) using spatial similarity and appearance similarity.
Though their method focuses on the relations between top-scoring object instance and surround-
ing candidates, there is still only one top-scoring object instance from each bag. In contrast, our
proposed method can discover multiple discriminative response peaks within the same bag of
instances.

To summarize, the key contributions can be highlighted into threefold:

• An instance graph based on overlap and center relations is designed to reinforce the per-
formance of multiple-instance learning.
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• A novel multi-peak-based instance discovery (MPID) strategy is proposed. It can effec-
tively reduce the number of mislabeled instances.

• Extensive quantitative and qualitative evaluations demonstrate that our proposed method
performs favorably against state-of-the-art methods.

The rest of this article is organized as follows. Section 2 describes the related works. The details
of our proposed multi-peak object instance discovery strategy and object instance graph are elab-
orated in Section 3. Experimental results and discussions are given in Section 4. Section 5 gives
the conclusion and future work.

2 RELATED WORK

This article is related to several research strands, including object proposals, deep networks for
object detection, weakly supervised object detection, multiple-instance learning and graph neural
networks.

2.1 Multiple-instance Learning

Unlike common recognition task, MIL considers training instances as bags and assigns a bag of
instances to a single label. Some studies [14, 50] follow supervised learning pipeline. Others incor-
porate weakly supervised learning and provide a promising way to explore abundant image-level
annotated data. Recently, many approaches have been proposed and remarkable improvement has
been achieved. These methods can be split into three categories, including MIL with instance space
methods, MIL with neural network methods, and MIL with attention mechanism.

For MIL with instance space methods, to incorporate feature extracted from bags of instances,
these methods use aggregation functions to assign labels on bag level. Zhou et al. [92] explicitly
construct a graph with bag labels and design graph kernel to perform binary classification. Kotzias
et al. [43] propose an objective function to infer bag labels and instance-level labels based on sim-
ilarity. MIRank proposed in Reference [3] reinforces nonlinear capability of loss function by novel
kernel functions and shows efficacy in ranking to drug’s bio-availability task. Peng et al. [56] pro-
pose a novel algorithm, aiming to predict instance-level label in MIL by designing a loss function
defined at the instance level.

For MIL with neural network methods, many of them solve weakly supervised problem with
MIL and define the problem learning form bags of instances, where the probability of the label is
predicted by neural networks. Zhou et al. [93] present the BP-MIP algorithm, introducing neural
network into multiple-instance learning, which uses the back propagation algorithm to optimize
the loss function. Bilen et al. [4] deploy CNNs-based model pre-trained on large-scale datasets
to facilitate regional selection and classification. Wu et al. [86] consider a dual multi-instance set,
including proposals and text annotations involved in each image, and develop a deep neural model
with the weakly supervised setting for MIL task. Different from Wu et al., Pinheiro et al. [57]
introduce a weakly supervised framework for semantic segmentation, and design a MIL-based
pooling function to classify image from pixel-level scores to avoid the necessity of using the high-
cost segmentation datasets.

For MIL with attention mechanism, the insight is to apply attention mechanism to consider the
weights between different instances. Ilse et al. [34] deploy a deep neural network to learn Bernoulli
distribution for MIL problem. The model first encodes multiple instances in low-dimensional
embedding, and explores gated attended weight embedding to predict instance-level labels.
Pappas et al. [54] develop a model with MIL to predict aspect rating and deploy importance
weight mechanism to balance between different sentences, which leads to different contributions
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to the final aspect ratings. Kong et al. [42] integrate attention mechanism to MIL and design
various attention neural networks to explore audio tagging task. Angelidis et al. [1] introduce
a new dataset for evaluation and propose a method utilizing MIL network based on attention
mechanism for segment classification.

To tackle the lack of localization data problem in object detection task, we follow MIL with
weakly supervised pipeline to explore abundant image label data.

2.2 Object Proposals

Object proposal methods generate candidate bounding boxes from images depending on detailed
information. There are plenty of methods for object proposal task. References [7, 31, 32] make de-
tailed comparisons and discussions about object proposal methods. Current related methods can be
split into super-pixel grouping method, sliding-window-based method and neural-network-based
method, respectively. Super-pixel grouping methods, e.g., selective search [77] uses hierarchical
grouping algorithm to provide class-agnostic and high-quality candidate boxes. However, sliding-
window-based methods, e.g., Edgebox [94] utilizes a sliding window approach with coarse to fine
search based on edge group method. Object proposal methods are a fundamental part of object
detection as it provides a coarse level selection of bounding boxes. Neural-network-based meth-
ods, e.g., Region Proposal Network (RPN) [59] takes an image with arbitrary size as input and
outputs object proposals of different scales, and assigns an objective score to each proposal. The
RPN network and detection network share embedding features, leading to an efficient end-to-end
paradigm. Wang et al. [83] design an alternative strategy, namely, Guided Anchoring, to optimize
the anchoring procedure by semantic features that can jointly predict locations and centers of
regions of interest.

For effectiveness and implementation convenience, we follow Reference [77] to generate re-
gional object proposals.

2.3 Deep Networks for Object Detection

Recently, proposed methods [25, 26, 59] have shown promising results with accurate results and
real-time speed. The mainstream methods vary from multiple stages to single stage pipelines. In
single stage pipeline, e.g., YOLO [58], deploys a one-stage neural network and defines object de-
tection as a regression problem to predict bounding boxes along with class probabilities, leading to
super fast and real-time performance. However, in multiple stage pipelines, e.g., R-CNN [26] for-
mulates training as a multi-stage task. R-CNN first trains a convolutional layer on object proposals.
Then SVM is deployed to make predictions. Finally, bounding-box regressors are trained to predict
the locations and the classes of proposal. Fast-RCNN [25] uses spatial pyramid pooling networks
to get fixed-scale features from regions of interest (RoI) and trains the neural network using a
multi-task loss in an end-to-end fashion. Faster-RCNN [59] further merges RPN and Fast R-CNN
into a single network by sharing computation, which leads to near real-time frame rate object
detection. He et al. [29] present a flexible framework named Mask R-CNN, which introduces an
additional stream to predict object masks simultaneously. The framework is able to be trained for
both object detection and instance segmentation task. Liu et al. [47] propose a method named SSD
for single-shot object detection task. The model aggregates multi-scale feature maps and predicts
box adjustments for bounding boxes, which brings improvements in detection speed. Deconvolu-
tional single-shot detector [20] integrates additional deconvolutional layer to further improve SSD
method with more context information. The model replaces VGGNet with ResNet-101 and adds an
additional deconvolutional layer to help integrate information from earlier feature maps. Zhang
et al. [89] propose a novel single-shot-based detector, called RefineDet. The model uses anchor
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refinement module to select positive anchor features and uses object detection module to make
predictions. He et al. [33] propose an object relation module to model relations between different
objects, different from He et al., we take graph convolutional neural network to consider relations
between proposals and use proposal-proposal level features to further boost weakly supervised
object detection performance.

2.4 Graph Neural Network

Graphs naturally appear to model data relations in a wide range of domains, such as social media,
bio-informatics, and computer vision. Graph networks can be split into five categories, including
graph convolution neural network, graph attention network, graph auto-encoder network, graph
generative network and graph spatial-temporal network.

Graph convolutional neural networks extend the operation of convolution from regular data
to graph data. A number of works explore graph neural network to model the arbitrary relations
between structured data. Some of them achieve promising results. Kipf et al. [41] present a semi-
supervised learning to set with a variant of convolutional neural network. Bresson et al. [11] design
graph convolutional neural networks for high-dimensional data. They explore the generalization
of convolutional filters devoted to graph networks and investigate graph coarsening to model
relations between data.

Graph Attention Network (GAT) [79] assumes that contributions from neighboring nodes
are not equal and adopts attention mechanism to explicitly align between different nodes. Beyond
single head attention, GAT also employs multiple head attention mechanism to improve model
performance. Different from GAT, Gated Attention Network [88] takes different accounts for mul-
tiple heads attention.

Graph Auto-Encoders are usually unsupervised learning methods that reconstruct data rela-
tions from inner representation. The auto-encoders try to encode data in low dimensional space
and disentangle representation through the data transformation process. Kipf et al. [40] use a
graph auto-encoder based on variational auto-encoder to learn in embedding space. The model
consists of a graph convolutional encoder and a simple inner product decoder. Berg et al. [78] con-
sider movie ratings of recommender systems as nodes and adjacency matrix on graphs. The model
shows competitive performance on collaborative filtering benchmarks. Pan et al. [52] propose a
novel adversarial graph embedding framework that consists of an encoder to capture topological
structure and a decoder to reconstruct graph structure.

Unlike common graph network, graph generative networks draw attention to generative tasks
such as discovering structures and constructing knowledge graphs. The first generative graph
model [5] considers the graph generation problem as learning distribution of random walks over
the input graph. This method can be applied to a wide range of domains. GraphRNN [87] pro-
poses a deep auto-regressive model to address graph distribution modeling problem. GraphRNN
considers the problem as sequence modeling task and deploys recurrent neural network to gener-
ate adjacency vector step by step. Instead of step by step generation, MolGAN [6] predicts graph
structure in one step and combines reinforcement learning objective to further improve generation
performance.

Graph spatial-temporal networks build dynamic graph and capture spatial and temporal infor-
mation to model the inner data pattern. DCRNN [45] uses encoder-decoder framework with mul-
tiple layers of diffusion convolutional recurrent layer, each layer first explores graph convolution
network to collect spatial information and then uses recurrent network to further capture temporal
information. Structural-RNN [35] combines high-level spatio-temporal graphs with sequence-to-
sequence model. Structural-RNN uses graph network to encode, and feeds latent variables to both
edge RNN and node RNN networks to generate features.
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A lot of graph neural-network-based models utilize a supervised setting for graph relations
modeling. To this end, we explore graph neural network methods for WSOD task.

2.5 Weakly Supervised Object Detection

The development of weakly supervised method alleviates the need for large scale human annotated
data. For object detection, image-level data is much easier to obtain than bounding box level data.
WSOD provides a promising way to explore large volumes of image-level annotations. There are
bunches of studies on WSOD problem, many of them define the problem as a weakly supervised
MIL task.

Many of early researches try to solve WSOD problem with discriminative models, such as SVM,
CRF or Bayesian methods. Chum et al. [9] introduce an exemplar model that learns and gen-
erates regions of interest for each class instance with only image-level annotations. The model
first samples regional object proposals and then uses SVM-based regional classifier to predict
classes. Deselaers et al. [12] present a method to learn generic priors from meta-training data,
and utilize conditional random field for WSOD task. The proposed method localizes object in-
stances and predicts class labels at the same time. Pandey et al. [53] address WSOD problem by
applying deformable part-based models (DPM) with latent SVM training to weakly super-
vised task. The model first trains DPM detectors and uses SVM to search the latent space for
potential object locations. Shi et al. [66] design a novel method derived from Bayesian model
and train an object classifier jointly with weakly-supervised object localization model. Song
et al. [70] first find a discriminative set of regional boxes that co-occur in the labeled image
dataset, and then mine positive boxes with SVM-based detector on all selective proposals. Wang
et al. [82] propose the latent category learning method, which is based on probabilistic la-

tent semantic analysis (pLSA) and category’s discriminative model. The model first extracts
candidate regions and then deploys pLSA model to do category learning. Huang et al. [60] use
neural network pre-trained on large-scale data as general prior knowledge to extract high-level
regional proposal features and train multiple-instance SVM model to classify on the regional
proposals.

With the revolution of deep neural network, many works combine WSOD task with deep net-
work, which leads to an end-to-end training. Cinbis et al. [10] propose a multifold MIL approach to
train the detector and infer the object locations. The proposed method explores high dimensional
CNN-based representations and window refinement strategy to train the model. Shi et al. [65]
propose a method that uses appearance and semantic similarity to transfer source knowledge to
target domain. Tang et al. [73] design a framework for the weakly supervised multiple-instance
learning, regarding images as bags and patches as instances. The model first uses CNN backbone
to generate convolutional features and deploys spatial pyramid pooling layer to produce fixed-size
proposal features. Patches are fed to classification network and then the discovery network gen-
erates classification scores and bounding boxes. Kantorov et al. [39] aim to localize objects using
context-aware-guided neural network, which follows weakly supervised setting. The model high-
lights the predicted object instance, distinguished from its surrounding regions. Tang et al. [71]
design an iterative method to cluster object proposals by pseudo-instances and learn to detect tar-
get instances gradually with online setting. Lin et al. [46] introduce an end-to-end object instance
mining method with spatial and appearance graphs to discover potential instances. The presented
method is based on an assumption that the instances of similar appearance should belong to the
same class and build graph to model relations between the same cluster’s instances. Wan et al. [80]
introduce a continuation multiple-instance learning (C-MIL) method to choose pseudo-object in-
stances from subsets for guiding object detector training.
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3 THE PROPOSED METHOD

3.1 Feature Extraction

Given a dataset I with C classes, including M images, we denote the dataset as I =
{(I 1,y1), . . . , (IM ,yM )} where Im represents the images and ym = [y1, . . . ,yC ] ∈ {0, 1}C (m =
1, . . . ,M ) are multi-hot annotations, indicating the presence or absence of each class in a given
image. The proposal generation methods predict objective scores of candidate proposals and select
out the proposals that correspond to salient regions. All candidate proposals are extracted using
the selective search [77] method in our experimental setting. Formally, P = {pi }Ni=1 of an image I is
a selection of candidate proposals by sliding window boxes with different sizes and aspect ratios.
To enhance the robustness of the proposed model, we follow the paradigm of transfer learning.
The image is fed into the backbone network (a truncated VGG16 network) to extract features. RoI
pooling operation takes extracted features and selected proposals as input, and outputs fixed-size
feature for each proposal. Notably, many CNN-based pre-trained networks could be chosen as
alternates, such as ResNet-101 and Inception.

3.2 Object Instance Graph

In this section, we aim to deal with Question 1. Specifically, we employ graph neural network to
model the relations between proposals of the same bag and facilitate multiple-instance learning
process.

It is well acknowledged that shallow layers of CNN-based networks focus on the detailed infor-
mation, such as edges or small parts while deep layers pay more attention to generating semantic
information. Thus, we perform the global average pooling (GAP) on features extracted from
the backbone to obtain the global context information and fuse the global context information
into features of each proposal by the concatenation operation in a skip-connection fashion. The
fusion operation provides additional clues for object detection. Thus, we use V = {vi ∈ Rd }Ni=1 to
denote the set of features from proposals and |V | = N .

In this article, we design an object instance graph method to model interrelationships between
different object instances and apply graph convolutional network to learn the data representation
for object instances. Formally, let G (V,E) be a graph built on object instances, whereV denotes
the set of nodes vi ∈ V and |V | = N . E denotes the set of edges ei j = (vi ,vj ) ∈ E. A ∈ RN×N de-
notes the adjacency matrix of G. The idea behind the graph built on regional proposals is to model
interactions between correlated object instances with high overlaps or near distances. In our case,
each proposal presents a node and the edges in E present relations between correlated proposals.
The reason for applying graph neural network is that nodes within the graph can perform the mes-
sage passing with neighboring nodes in the local regions. In this way, each proposal aggregates
context information from correlated proposals of the same bag, boosting the multiple-instance
learning and detection performance eventually.

For building the graph G (V,E), a straightforward and intuitive way to construct edges is to
connect all nodes with each other. The disadvantages are obvious, as too much message passing
will lead to unbearable computational costs. Moreover, unrelated proposals result in redundant or
noisy information in message aggregation. For our work, a novel approach is used to model rela-
tions between proposals by exploring spatial and appearance relevance. Specifically, we introduce
two types of edges to mine the correlated proposals, i.e., the overlap edges and the center edges,
respectively. The appearance relevance is used to make quantitative analysis in similarity between
correlated proposals.

Overlap Edges. To establish overlap edges, we first sort regional proposals based on Equa-
tion (1) for each proposal pj . And then we select no regional proposals as nearest neighbors for
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each node. Here, IoU (pi ,pj ) denotes the overlap relevance between proposals pi and pj , which is
formulated as follows:

IoU (pi ,pj ) =
I (pi ,pj )

U (pi ,pj )
, (1)

where I (pi ,pj ) and U (pi ,pj ) represent the intersection and union of the two proposals, respec-
tively. In terms of the proposalpi , the top k overlap proposals will be selected as its neighborhoods,
as they are likely to add complementary features. Exploring the additional contextual information
will help network to refine the detection process and enhance performance [15]. Hence, we exploit
graph convolutional network to mine all complementary information.

Center Edges. The distinct but center nearby proposals could also be complementary to each
other, and the message passing between correlated proposals will facilitate the multiple-instance
learning. This kind of neighborhoods is also beneficial to collecting contextual information from
nearby object instances. To handle such kinds of relations, we introduce center edges, which could
be computed with the following distance formula:

d (pi ,pj ) =
|ci − c j |
U (pi ,pj )

. (2)

Similar to overlap edge, we first sort regional proposals based on Equation (2) and then select
nd regional proposals as neighbors for each node. In Equation (2), ci (or c j ) represents the center
coordinate of pi (or pj ). As a complement of overlap edges, the center edges enable the feature
aggregation from distinct but related instances.

Appearance Relevance. After determining relationships between proposals, instead of
treating every node equally for feature aggregation, we introduce appearance relevance to
compute values of relations between object instances and build an asymmetric adjacency matrix.
Specifically, the cosine function is leveraged to estimate Si j = cosine (xi ,x j ), where Si j denotes
the similarity between node vi and node vj , xi and x j denote the feature vectors of proposals. To
emphasize the central role of node vi , we assign different weights to edges connected to vi . For
edge ei j = (vi ,vi ) ∈ E, we apply the weightwi j of 1 while for other edge ei j = (vi ,vj ) ∈ E, where

i � j the weight wi j is 1
N

, where N is the degree of node vi . Finally, the adjacency matrix Ai, j is
computed by the element-wise multiplication of Si j and wi j .

After constructing the adjacency matrix, we build a K-layer graph convolution network. The
proposed graph-based model is formulated as follows:

V k = AV (k−1)W k , (3)

whereA represents the adjacency matrix, andW (k ) ∈ Rd×d is the learnable parameters inkth layer.

V (k ) ∈ Rn×d is the output of graph convolution operation in the kth layer; the graph convolution
layer consists of one linear layer followed by one ReLU layer.

3.3 Multiple-instance Learning

The purpose of the multiple-instances learning stream is to generate proposal confidence scores
for each class {ci }Ci=1 from the outputs V k of object instance graph network. Following Reference

[4], the graph-based proposal features are split into two branches to output two matrices x
c , xd ∈

RC×N by two fully connected layers, where C denotes the number of classes. Then, we apply
softmax operations along two different dimensions to the matrices

{σ (xc )}i j =
exc

i j

∑C
k=1 e

xc
k j

, {σ (xd )}i j =
exd

i j

∑N
k=1 e

xd
ik

. (4)
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The first stream contributes to the classification score of each proposal, while the second stream
computes contribution of proposals to multiple-instance learning. The element-wise Hadamard
product is used to compute the final score of each proposal:

x
r = σ (xc )σ (xd ) ∈ RC×N . (5)

Finally, the classification scores {ϕc }Cc=1 for each category are obtained by summing x
r along pro-

posal dimension. We employ multi-class cross entropy loss to train the instance classifier, defined
as

LMI L = −
C∑

c=1

yc logϕc + (1 − yc )log(1 − ϕc ), (6)

where yc ∈ [0, 1] indicates if the image contains any instance of class c in the image.

3.4 Multi-Peak-based Instance Discovery

To deal with Question 2, we propose a MPID strategy. Here, we give the definition of peak as the
most discriminative region of feature map, which is important to characterize the target. Specifi-
cally, we employ the following the two criteria to mine the response peaks for front categories:
Criteria 1: The peak in the image should have a high response for the specific front category.

Criteria 2: There should be small overlaps between different peaks.

Different from the previous methods, top k scoring proposals are selected for each front category.
We apply the threshold λs to the selected top k proposals to satisfy the criteria 1,

topk_score > top0_score − λs , (7)

ALGORITHM 1: Multi-peak-based Object Instance Discovery

Input: Image I , regions proposals P = {p1, . . . ,pN }, image label Y = {y1,y2, . . . ,yc }
Output:

1: Feed image I along with its proposals into the network and output feature vectors F =
{ f1, . . . , fN }

2: Compute topk_score , the top K scoring proposals for each class
3: for c in C , C denotes the number of training data category do

4: for i = 1 to K do

5: if topk_score[i, c] > topk_score[0, c] − λs then

6: Select the box pc0 for top 0 proposal
7: Select the box pci

for top i proposal
8: Compute IoU (pc0 ,pci

)
9: if overlap < λo then

10: Set pci
to be a valid peak for c class

11: end if

12: end if

13: end for

14: end for

15: for j = 1 to N do

16: Compute the overlaps between pj and ppeaks

17: Sort (descent) the overlaps
18: Set the label of pj based on the max overlap
19: end for
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and the proposals with overlap larger than the threshold λo should be filtered out, because a pro-
posal that has a large overlap with the chosen peaks is not likely to be a new peak. The criteria 2
can be formulated as follows:

overlaps (peaki ,peakj ) < λo . (8)

We present the statement about the loss function for MPID refinement streams here. Suppose an

image with label Y and predicted label Yj = [y0, j ,y1, j , . . . ,yC, j ]
T ∈ R(C+1)×1 for the jth proposal,

where yc, j = 1 or 0 denotes the proposal belonging to class c or not, and background class is in-
dicated by the index of c = 0. xc, j with class label c , are the proposals used for training. For each
MPID refinement stream, we use confidence score ωj as loss weight for jth proposal, which cal-
culated from max correlated class scores. We apply negative log-likelihood loss to optimize the
instance classifier, defined as

Lk
MP I D = −

1

|P |

|P |∑

j=1

C+1∑

c=1

ωjyc, j logxc, j . (9)

3.5 End-to-End Training

The loss for proposed method consists of two parts, i.e., losses for MIL and MPID. The overall loss
can be formulated as follows:

LT otal = LMI L +

K∑

k=1

Lk
MP I D , (10)

where LMI L denotes the multi-class cross entropy loss for the MIL stream, and Lk
MP I D

denotes
the negative log-likelihood loss for the kth MPID refinement stream.

4 EXPERIMENTS

4.1 Datasets

Following References [2, 13, 27, 38, 46, 51, 64, 72, 90, 91], we evaluate the proposed method on
two public challenging datasets: the PASCAL VOC 2007 [17] and PASCAL VOC 2012 [18] datasets.
The PASCAL VOC 2007 dataset defines 20 categories, including 9,963 images and 24,640 annotated
objects. The PASCAL VOC 2012 dataset is formed by 22,531 images with publicly available anno-
tations, divided into 20 classes. Two datasets share the same annotation categories, e.g., aeroplane,
bicycle. For fair comparison, we follow the configuration used in Reference [71] to preprocess
data. Specifically, datasets are divided into train, val, and test parts. The trainval set consists of
5,011 images for VOC 2007 dataset and 11,540 images for VOC 2012 dataset. As we explore weakly
supervised methods, only image-level annotations are involved in our experimental setting.

4.2 Evaluation Metrics

We follow common evaluation criteria [16] to evaluate detection performance. For trainval set, we
use correct localization (CorLoc) metric to evaluate detection performance. And for test set, we
utilize average precision (AP) [16] and mean average precision (mAP) to measure localization
accuracy. The former metric provides a measure of how well the detector adapts to all instances,
while the latter metric indicates whether the detection is a good match.

4.3 Implementation Details

The proposed method is implemented in PyTorch [55] deep learning library. All experiments are
carried out on a server with a 3.26 GHz Intel processor, 32 GB memory and one Nvidia Tesla V100
GPU. Following the previous works, the VGG16 [68] model pre-trained on ImageNet classification
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Table 1. Comparison with the State-of-the-art Methods in Terms of Detection

Performance AP(%) on the PASCAL VOC 2007 Test Set

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep soft train tv mAP

WSDDN [4] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.2

OICR [72] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

WCCN [13] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

PCL [71] 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5

TS2C [85] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

WeakRPN [74] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3

C-WSL∗ [23] 62.9 64.8 39.8 28.1 16.4 69.5 68.2 47.0 27.9 55.8 43.7 31.2 43.8 65.0 10.9 26.1 52.7 55.3 60.2 66.6 46.8

MELM [81] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

OICR+W-RPN [69] - - - - - - - - - - - - - - - - - - - - 46.9

SDCN [44] 59.8 67.1 32.0 34.7 22.8 67.1 63.8 67.9 22.5 48.9 47.8 60.5 51.7 65.2 11.8 20.6 42.1 54.7 60.8 64.3 48.3

WS-JDS [63] 52.0 64.5 45.5 26.7 27.9 60.5 47.8 59.7 13.0 50.4 46.4 56.3 49.6 60.7 25.4 28.2 50.0 51.4 66.5 29.7 45.6

Boosted-OICR [19] 68.6 62.4 55.5 27.2 21.4 71.1 71.6 56.7 24.7 60.3 47.4 56.1 46.4 69.2 2.7 22.9 41.5 47.7 71.1 69.8 49.7

OIM [46] 62.2 67.2 48.0 29.6 23.5 68.7 69.3 64.3 22.8 59.6 39.6 30.7 42.7 69.8 3.1 23.3 57.9 55.4 63.4 63.5 48.2

OIM+IR [46] 55.6 67.0 45.8 27.9 21.1 69.0 68.3 70.5 21.3 60.2 40.3 54.5 56.5 70.1 12.5 25.0 52.9 55.2 65.0 63.7 50.1

Ours 66.4 71.1 48.4 29.6 20.5 70.6 67.6 67.1 23.6 66.1 45.1 56.0 47.6 70.2 1.3 23.5 48.4 51.6 64.1 70.0 50.4

C-WSL∗+FRCNN [23] 62.9 68.3 52.9 25.8 16.5 71.1 69.5 48.2 26.0 58.6 44.5 28.2 49.6 66.4 10.2 26.4 55.3 59.9 61.6 62.2 48.2

SDCN+FRCNN [44] 61.1 70.6 40.2 32.8 23.9 63.4 68.9 68.2 18.3 60.2 53.5 63.6 53.6 66.1 14.6 21.8 50.5 56.7 62.4 67.9 51.0

WS-JDS+FRCNN [63] 64.8 70.7 51.5 25.1 29.0 74.1 69.7 69.6 12.7 69.5 43.9 54.9 39.3 71.3 32.6 29.8 57.0 61.0 66.6 57.4 52.5

Pred Net(FRCNN) [2] 66.7 69.5 52.8 31.4 24.7 74.5 74.1 67.3 14.6 53.0 46.1 52.9 69.9 70.8 18.5 28.4 54.6 60.7 67.1 60.4 52.9

Boosted-OICR+FRCNN [19] 65.8 58.6 55.0 32.4 19.5 74.2 71.4 70.9 19.2 54.8 46.2 67.5 57.0 65.6 1.4 16.7 40.4 53.0 69.5 61.1 50.0

OIM+FRCNN [46] 53.4 72.0 51.4 26.0 27.7 69.8 69.7 74.8 21.4 67.1 45.7 63.7 63.7 67.4 10.9 25.3 53.5 60.4 70.8 58.1 52.6

Ours+FRCNN 68.2 68.3 49.4 32.1 28.3 67.7 69.1 71.3 27.3 70.0 46.0 65.7 55.0 68.1 2.1 28.7 57.7 55.2 65.0 64.5 53.0

dataset [61] is truncated from conv1 to conv5 as backbone. We initialize model parameters from
norm distributionN (μ,σ 2). We set μ = 0,σ = 0.01 experimentally. The training data is augmented
by strategy of normalization, random flipping and re-sizing. During training, stochastic gradient
descent optimizer is used to train proposed model with momentum of 0.9, weight decay of 0.0005.
The learning rates are initialized to 0.0005 and 0.0001 for main iterations and the warm-up iter-
ations, respectively. We train each network with 30K and 90K iterations for the PASCAL VOC
2007, 2012 datasets, respectively, where warm-up period is included to bootstrap learning pro-
cess. To reduce redundancy, we apply non-maximum suppression to filter out duplicated boxes.
For comparison, a fully supervised Fast-RCNN [25] detection network is trained, where weakly
supervised bounding boxes are regarded as pseudo-ground truths. We adopt the same data aug-
mentation strategy in works [23, 46, 71, 72], and set threshold to be 0.3 for confidence score and
0.3 in terms of IoU to choose the regional boxes.

4.4 Results and Evaluations

In this section, we compare our method with state-of-the-art methods for WSOD and present
the visualized results for qualitative analysis. The comparisons between the proposed method
and state-of-the-art methods on the PASCAL VOC 2007 and 2012 datasets are shown in Table 1,
Table 2, Table 3, and Table 4.

As presented in Table 1, we can conclude that the proposed method achieves the best method
improves the original OICR [72] by 9.2% and outperforms other approaches such as WSDDN [4]
(by 11.2%), PCL [71] (by 6.9%), WeakRPN [74] (by 5.1%), SDCN [44] (by 2.1%), Boosted OICR [19]
(by 0.7%), and WS-JDS [63] (by 4.8%). Besides, our method presents the best performance in some
categories, which shows the effectiveness of our graph-based network with multi-peak strategy.
In addition to weakly supervised training, we also re-trained a Fast-RCNN detector using the
learned pseudo-objects as ground-truth. It is clear that the results are boosted further, which
achieves 53.0% mAP, as shown in Table 1.
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Table 2. Comparison with the State-of-the-art Methods in Terms of Localization

Performance (%) on the PASCAL VOC 2007 Trainval Set

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep soft train tv mAP

WSDDN [4] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

TST [65] - - - - - - - - - - - - - - - - - - - - 59.5

OICR [72] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6

WCCN [13] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

TS2C [85] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

C-WSL [23] 85.8 81.2 64.9 50.5 32.1 84.3 85.9 54.7 43.4 80.1 42.2 42.6 60.5 90.4 13.7 57.5 82.5 61.8 74.1 82.4 63.5

WeakRPN [74] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8

WS-JDS [63] 82.9 74.0 73.4 47.1 60.9 80.4 77.5 78.8 18.6 70.0 56.7 67.0 64.5 84.0 47.0 50.1 71.9 57.6 83.3 43.5 64.5

PCL [71] 79.6 85.5 62.2 47.9 37.0 83.8 83.4 43.0 38.3 80.1 50.6 30.9 57.8 90.8 27.0 58.2 75.3 68.5 75.7 78.9 62.7

MELM [81] - - - - - - - - - - - - - - - - - - - - 61.4

Boosted-OICR [19] 86.7 73.3 72.4 55.3 46.9 83.2 87.5 64.5 44.6 76.7 46.4 70.9 67.0 88.0 9.6 56.4 69.1 52.4 79.8 82.8 65.7

C-MIL [80] - - - - - - - - - - - - - - - - - - - - 65.0

OIM+IR [46] - - - - - - - - - - - - - - - - - - - - 67.2

Ours 86.7 80.4 66.1 52.7 47.3 81.7 83.4 74.4 45.6 82.2 49.4 68.6 72.8 88.7 73.0 57.9 76.3 60.5 75.3 84.2 67.1

Table 3. Comparison with the State-of-the-art Methods in Terms of Detection

Performance (%) on the PASCAL VOC 2012 Test Set

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep soft train tv mAP

WSDDN [4] - - - - - - - - - - - - - - - - - - - - 37.9

WSDDN+context [4] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3

OICR [72] 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9

WCCN [13] - - - - - - - - - - - - - - - - - - - - 37.9

PCL [71] - - - - - - - - - - - - - - - - - - - - 40.6

TS2C [85] 67.4 57.0 37.7 23.7 15.2 56.9 49.1 64.8 15.1 39.4 19.3 48.4 44.5 67.2 2.1 23.3 35.1 40.2 46.6 45.8 40.0

WeakRPN [74] - - - - - - - - - - - - - - - - - - - - 40.8

C-WSL∗ [23] 74.0 67.3 45.6 29.2 26.8 62.5 54.8 21.5 22.6 50.6 24.7 25.6 57.4 71.0 2.4 22.8 44.5 44.2 45.2 66.9 43.0

MELM [81] - - - - - - - - - - - - - - - - - - - - 42.4

OICR+W-RPN [69] - - - - - - - - - - - - - - - - - - - - 43.2

SDCN [44] - - - - - - - - - - - - - - - - - - - - 43.5

WS-JDS [63] - - - - - - - - - - - - - - - - - - - - 39.1

C-MIL [80] - - - - - - - - - - - - - - - - - - - - 46.7

OIM+IR [46] - - - - - - - - - - - - - - - - - - - - 44.4

Ours 73.1 70.0 53.4 33.2 29.3 59.6 59.4 41.7 19.8 60.0 23.4 51.2 63.4 72.2 4.3 26.2 53.4 25.6 55.9 62.8 46.9

C-WSL∗+FRCNN [23] 75.3 71.6 52.6 32.5 29.9 62.9 56.9 16.9 24.5 59.0 28.9 27.6 65.4 72.6 1.4 23.0 49.4 52.3 42.4 62.2 45.4

SDCN+FRCNN [44] - - - - - - - - - - - - - - - - - - - - 46.7

WS-JDS+FRCNN [63] - - - - - - - - - - - - - - - - - - - - 46.1

Pred Net(FRCNN) [2] - - - - - - - - - - - - - - - - - - - - 48.4

C-MIL+FRCNN [80] - - - - - - - - - - - - - - - - - - - - 46.7

OIM+FRCNN [46] - - - - - - - - - - - - - - - - - - - - 46.4

Ours+FRCNN 62.7 58.5 50.8 35.1 32.7 59.0 55.1 67.4 27.2 58.3 27.9 65.4 62.9 71.3 5.1 26.0 57.6 37.2 60.4 49.3 48.5

The proposed method achieves the comparable performance with state-of-the-art performance
on the Pascal VOC 2007 train −val set, as shown in Table 2. Specifically, the proposed method
outperforms OICR [72] (by 6.5%), WSDDN [4] (by 13.6%), TST [65] (by 7.6%), WeakRPN [74] (by
3.3%), PCL [71] (by 4.4%), MELM [81] (by 5.7%), Boosted-OICR [19] (by 1.4%), and C-MIL [80]
449 (by 2.1%). It is well verified that multi-peak strategy is a feasible way to deal with the issue of
mislabeling on multiple instances in the same bag, which enhances the final detection performance.
Our method achieves a comparable performance with OIM [46], i.e., 67.1 vs. 67.2. As we use graph
neural network to aggregate complementary information from neighboring proposals, our method
presents the best CorLoc results in some classes, which indicates graph-based network with multi-
peak strategy can facilitate accurate result.

Furthermore, the detection and localization performances on PASCAL VOC 2012 dataset are
reported in Tables 3 and 4. Our method presents a competitive Corloc performance in PASCAL
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Table 4. Comparison with the State-of-the-art Methods in Terms of Localization

Performance (%) on the PASCAL VOC 2012 Trainval Set

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep soft train tv CorLoc

WSDDN+context [4] 78.3 70.8 52.5 34.7 36.6 80.0 58.7 38.6 27.7 71.2 32.3 48.7 76.2 77.4 16.0 48.4 69.9 47.5 66.9 62.9 54.8

OICR [72] 86.2 84.2 68.7 55.4 46.5 82.8 74.9 32.2 46.7 82.8 42.9 41.0 68.1 89.6 9.2 53.9 81.0 52.9 59.5 83.2 62.1

PCL [71] - - - - - - - - - - - - - - - - - - - - 63.2

TS2C [85] 79.1 83.9 64.6 50.6 37.8 87.4 74.0 74.1 40.4 80.6 42.6 53.6 66.5 88.8 18.8 54.9 80.4 60.4 70.7 79.3 64.4

WeakRPN [74] - - - - - - - - - - - - - - - - - - - - 64.9

C-WSL∗ [23] 86.6 80.8 73.9 43.2 44.4 87.7 76.2 32.2 34.0 87.1 49.1 46.2 88.2 91.2 12.1 57.1 78.4 65.5 65.1 85.3 64.2

MELM [81] - - - - - - - - - - - - - - - - - - - - 61.4

OICR+W-RPN [69] - - - - - - - - - - - - - - - - - - - - 67.5

SDCN [44] - - - - - - - - - - - - - - - - - - - - 67.9

WS-JDS [63] - - - - - - - - - - - - - - - - - - - - 63.5

Boosted-OICR [19] - - - - - - - - - - - - - - - - - - - - 66.3

C-MIL [80] - - - - - - - - - - - - - - - - - - - - 67.4

OIM+IR [46] - - - - - - - - - - - - - - - - - - - - 67.1

Ours 87.6 83.7 72.7 59.7 53.0 88.6 77.1 49.1 48.7 84.5 48.8 63.8 85.3 90.7 13.8 59.9 80.7 41.6 73.6 84.9 67.4

VOC 2012 trainval set, outperforming OICR [72] (by 5.3%), WSDDN [4] (by 12.6%), TS2C [85] (by
3.0%), WeakRPN [74] (by 2.5%), PCL [71] (by 4.2%), MELM [81] (by 6.0%), Boosted-OICR [19] (by
1.1%), and OIM [46] (by 0.3%). Regarding the mAP metric on Pascal VOC 2012 test set, the proposed
method achieves the best mAP result,1 which outperforms OICR [72] (by 9.0%), WSDDN [4] (by
9.0%), TS2C [85] (by 6.9%), WeakRPN [74] (by 6.1%), PCL [71] (by 6.3%), MELM [81] (by 4.5%),
C-MIL [80] (by 0.2%), and OIM [46] (by 2.5%). The proposed method achieves the best AP results
in a lot of categories.

Figure 3 depicts some qualitative visualized results generated by the proposed method. It is well
observed that our method is robust to variations of the size and scale, especially for rigid objects.
Besides, our model is capable to deal with localization in different scenes, for example, multiple
instances from the same bag co-existing in an image or various objects from different classes
in relatively complicated scenarios. We also analyze some failure cases (Figure 3, last column),
which can be roughly divided into two groups: (1) the most common failure for our model is that
partial instance (e.g., person face, horse body, chair top) is easily localized, compared with the
entire object. Reasons behind this can be explained that partial regions with less variable appear-
ance such as “face” are more distinguishable than the other parts of the object instance. This is
because we define the object regions as the most discriminative parts of the instance instead of
the whole object; (2) instance overlaps confuse the detector when it predicts the multiple potted
plants on the grass (Figure 3 third row rightmost subfigure). The model locates overlapped boxes
that not only encircle one object but also include multiple same class instances as a big bounding
box. Thus, our detector tends to regard them as a whole object instead of individual instances.

4.5 Ablation Study

We conduct ablation studies on the PASCAL VOC 2007 dataset to analyze the influence of impor-
tant parameters and different modules in the proposed methods. Specifically, the effectiveness of
global context information, object instance graph, multi-peak-based instance discovery strategy
and the influence of super-parameters will be discussed in detail.

Global context information. It is well recognized that modeling the global contextual rep-
resentations can obtain richer local and non-local information of target objects [49]. As can be
seen in Figure 1 a proposal with road background is helpful to predict vehicle classes. To verify

1We submmit our results for VOC 2012 to the evaluation server, the anonymous result link is http://host.robots.ox.ac.uk:

8080/anonymous/LYGIGK.html.
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Fig. 2. The overview of our proposed model architecture, formed by (a) backbone network for feature ex-

traction, (b) multiple-instance detection stream with graph neural network, (c) multi-peak-based instance

discovery refinement streams. Best visualization in color.

Table 5. Ablation Experiments of Detection

Performance (mAP%) and Localization

Performance (CorLoc%) on the VOC2007 for

Using Different Combinations of the

Proposed Method

Method CorLoc (%) mAP (%)
Ours w/o GAP 62.4 45.6
Ours w/o graph 64.8 48.3
Ours w/o MPID 66.2 49.8

Ours 67.1 50.4

the effectiveness of global context information in the proposed method, we construct a variant of
the proposed method, i.e., “ours w/o GAP.” As shown in Figure 2, “ours w/o GAP” indicates that
we construct instance graph based on proposals directly, without combination with the global
context information. As shown in Table 5, there is a sharp decrease of mAP score, i.e., 50.4% vs.
45.6%. We can conclude that it is beneficial to achieve the accurate result based on global context
information.

Pooling strategy. Moreover, we also analyze the influence of the pooling strategy to get global
context information in Table 6. We can figure out that incorporating the global max-pooling in-
formation instead of the GAP information, resulting in 3.4% performance drop in terms of mAP
score. We argue that the GAP operation facilitates the convolutional filter focusing on high av-
erage response patches instead of only the outstanding features, which is able to integrate more
global context information for better results. It is essential to locate object instance and predict the
class of instance based on global context information.

Object instance graph. To verify the effect of object instance graph in our method, we re-
move the object instance graph from our proposed method and term it as “ours w/o graph.” As
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Fig. 3. Detection examples for Pascal VOC 2007 dataset. Blue rectangles are ground-truth boxes that have

at least one detection with IoU > 0, and yellow ones are ground-truth with no detection intersection. Green

boxes are correctly detected (IoU > 0.5 with ground truth), and red boxes are wrongly detected. The label in

each detection box is the class label and confidence score of the detection.

Table 6. Ablation Experiments of

Detection Performance (mAP%) and

Localization Performance (CorLoc%)

on the VOC2007 for Using Different

Pooling Strategy

Pooling CorLoc (%) mAP (%)
GAP 67.1 50.4
GMP 65.4 47.0

presented in Table 5, we can observe that object instance graph can bring 2.1% mAP improve-
ment. We attribute this improvement to the capability of modeling relations between instances,
as instance graph can mine the relations between correlated object instances. The aggregation of
correlated feature can better characterize the target and provide a more discriminative feature for
multiple-instance learning. Our graph-based model confirms the benefit of graph-based MIL for
WSOD task.
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Table 7. The Influence of Related Super-parameters

Parameter 2 4 8 Parameter 0 2 8
no 49.2 50.4 50.1 nd 49.0 50.4 46.6
(a) The influence of no . (b) The influence of nd .

Parameter 0.1 0.15 0.2 Parameter 0.1 0.15 0.2
λo 50.4 48.9 48.3 λs 50.4 47.3 46.8
(c) The influence of λo . (d) The effectiveness of λs .

Multi-peak strategy. As illustrated in Section 3.4, we design a multi-peak-based instance dis-
covery strategy to avoid mislabeling object instance into background category. To demonstrate the
influence of multi-peak based instance discovery strategy, we construct a variant of the proposed
method by abandoning the multi-peak based instance discovery strategy, i.e., “ours w/o MPID.”
From the Table 5, it can be seen that the mAP score of “ours w/o MPID” on PASCAL VOC 2007 test
set drops 0.6% compared to the proposed method. We think degradation is caused by the misla-
beled instances in the training process, which demonstrates the effectiveness of multi-peak-based
instance discovery strategy.

The influence of super-parameters. We choose empirical values of no and nd for each node
to control numbers of overlap edges and center edges, as illustrated in Section 3.2. Increasing the
number of center edges and overlap edges leads to a large volume of correlated neighborhoods,
introducing the noisy information and redundant computation while decreasing the values of no

andnd makes a sharp decrease of number of edges within graph, which simplifies the relationships
between object instances and leads to limited performance. In a summary, an appropriate number
of edges improves the detection performance. Numerous neighborhoods will lead to overwhelming
computation and do harm to model performance while too small values of no and nd lead to too
simple graph structure, which degrades the performance.

Furthermore, we also study the influence of λo and λs for multi-peak-based instance discovery
strategy. As demonstrated in Section 3.4, we use the threshold λs to filter out instances with a
low confidence score and employ the threshold λo to select proposals with a small overlap. The
influence of different λ values is presented in Table 7. Higher values of λ lead to loosed criteria for
selecting multiple peaks, too much noisy information involved, resulting in limited performance,
while smaller values of λ lead to valid peaks filtered out, decreasing the volumes of object instance
for training, which impacts the final performance.

5 CONCLUSION

In this article, we propose two improvements to boost the weakly supervised object detection. First,
we propose a multi-peak-based instance discovery methodology that discovers multiple peaks
from the same bag. Second, we propose a graph-based MIL method that aggregates information
from correlated neighborhoods within the same bag of instances. Extensive quantitative and qual-
itative evaluations on two public challenging datasets, PASCAL VOC 2007 and 2012, demonstrate
the superiority and effectiveness of the proposed method. In the future, we plan to optimize the
multi-peak graph-based model for better performance and explore RPN-like networks as an alter-
native way to the selective search method.
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