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ABSTRACT

Object detection and counting are related but challenging
problems, especially for drone based scenes with small objects
and cluttered background. In this paper, we propose a new
Guided Attention network (GAnet) to deal with both object
detection and counting tasks based on the feature pyramid.
Different from the previous methods relying on unsupervised
attention modules, we fuse different scales of feature maps by
using the proposed weakly-supervised Background Attention
(BA) between the background and objects for more semantic
feature representation. Then, the Foreground Attention (FA)
module is developed to consider both global and local appear-
ance of the object to facilitate accurate localization. Moreover,
the new data argumentation strategy is designed to train a
robust model in the drone based scenes with various illumina-
tion conditions. Extensive experiments on three challenging
benchmarks (i.e., UAVDT, CARPK and PUCPR+) show the
state-of-the-art detection and counting performance of the
proposed method compared with existing methods. Code can
be found at https://isrc.iscas.ac.cn/gitlab/research/ganet.
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1 INTRODUCTION

Object detection and counting are fundamental techniques in
many applications, such as scene understanding, traffic moni-
toring and sports video, to name a few. However, these tasks
become even more challenging in drone based scenes because
of various factors such as small objects, scale variation and
background clutter. With the development of deep learning,
much progress has been achieved recently. Recent methods
deal with the crowd counting solution by convolutional neural
networks based object detectors [7, 22, 32, 33]. To further
improve the detection and counting accuracy, the deep frame-
works focus on discriminative feature representation of the
objects.

First of all, the feature pyramid is widely applied in deep
learning because it has rich semantics at all levels, e.g., U-
Net [35], TDM [36] and FPN [23]. Inspired by a human
visual system, the attention modules play an important role
in object detection, resulting in better performance. There-
fore, the researchers use various attention modules to bet-
ter exploit multi-scale feature representation. In [15], the
channel-wise feature responses are recalibrated adaptively by
explicitly modelling interdependencies between channels. Re-
cently, Wang et al. [41] improve the efficiency of SENet using
a local cross-channel interaction strategy without dimension
reduction. Except channel attention, Woo et al. [43] refine
intermediate features by both channel and spatial attentions.
In [42], the non-local operation is proposed to capture long-
range dependencies by calculating the correlation matrix
between each spatial point in the feature map. To reduce
large amount of computational complexity in the non-local
blocks, Cao et al. [1] develop a lightweight global context
(GC) block. However, all the above methods are unsupervised
attention modules, and consider little about the background
discriminative information in feature maps.

Based on the fused feature maps, the object is represented
by proposals in anchor based methods [4, 25, 33] or keypoints
in anchor-free methods [19, 44, 52]. Anchor based method-
s exploit the global appearance information of the object,
relying on pre-defined anchors. It is not flexible to design
different kinds of anchors because of large scale variation
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in drone based scenes. Anchor-free methods employ corner
points, center points or target part points to capture local ob-
ject appearance without anchors. However, local appearance
representation does not contain object’s structure informa-
tion, which is less discriminative in cluttered background,
especially for small objects.

In addition, the diversity of training data is essential in
deep learning. Especially in the drone based scenes, the
number of difficult samples is very limited. It is difficult for
traditional data argumentation such as rescale, horizontal
flip, rotation and cropping to train a robust model to deal
with unconstrained drone based scenarios.

To address these issues, in this paper, we propose an
anchor-free Guided Attention network (GAnet) with both
background and foreground attentions for drone based scenes.
To learn discriminative information in cluttered background,
we develop the background attention module to enforce dif-
ferent channels of feature maps focus on different semantic
information. Then, we fuse can the multi-scale features in the
network with the weakly-supervision of classification between
background and foreground images. Moreover, to capture
the structure of small objects, we employ the foreground
attention module to capture both global and local appear-
ance representation of the objects. Specifically, we rely on
the corner feature maps of objects to extract more context
information. Due to limited training data, we develop a new
data argumentation strategy to reduce the influence of dif-
ferent illumination conditions on the images for the drone
based scenes, e.g., sunny, night, cloudy and foggy scenes. We
conduct the experiment on three challenging datasets (i.e.,
UAVDT [6], CARPK [14] and PUCPR+ [14]) to show the
effectiveness of the proposed method. The main contributions
of this paper are summarized as follows.

∙ We present an anchor-free guided attention network
for object detection and counting on drones, including
both the foreground and background attention blocks
to extract the discriminative feature representation.

∙ A new data augmentation strategy is designed to ease
the influence of various illumination conditions on the
drone based scene images and boost up the performance
in drone based scenes.

∙ Extensive experiments on several datasets demonstrate
the favorable detection and counting performance of
the proposed method against the state-of-the-arts.

2 RELATED WORK

2.1 Object detection algorithms

Object detection requires algorithms to produce a series of
bounding boxes with categories, which can be roughly divided
into two categories, i.e., anchor-based approach and anchor-
free approach. The anchor-based approach uses the anchor
boxes to generate object proposals, and then determines the
accurate object regions and the corresponding class labels
using convolutional networks. For example, Faster R-CNN
[34] designs the region proposal network to generate propos-
als and uses Fast R-CNN [10] to produce accurate bounding

boxes and class labels of objects. FPN [23] uses multi-scale,
pyramidal hierarchy of deep convolutional networks to con-
struct feature pyramids for object detection. Considering the
efficiency, SSD [25], RetinaNet [24], and RefineDet [48] omit
the proposal generation step and tile multi-scale anchors at
different layers, which run very fast and produce competi-
tive detection accuracy. Recently, the anchor-free approach
attracts much attention of researchers, including CornerNet
[19], CenterNet [52], FCOS [40], RepPoint [44], which gen-
erally produces the bounding boxes of objects by learning
the features of several object key-points. The anchor-free ap-
proach has shown great potential to surpass the anchor-based
approach in terms of both accuracy and efficiency.

2.2 Object counting algorithms

Object counting methods aim to predict the total number
of objects in different categories existing in images, such as
pedestrian counting [20, 26, 46, 50], vehicle counting [12, 49],
goods counting [11, 21] and general object counting [2, 3, 18].
In [2], the regression-based common object counting with
image-level and instance-level supervision is investigated. The
image-level counting strategy directly estimate the global
count of objects without providing their location information
[20, 26, 46, 50]. The instance-level counting strategy predict
an accurate number of objects with their location information
(e.g., center point or bounding box) [3, 11, 12, 21, 43, 49].

The object is represented by proposals with global appear-
ance information in anchor based methods, it is not flexible to
design different kinds of anchors because of large scale varia-
tion in drone based scenes. However, the object is represented
by key-points with local salience information in anchor-free
methods, the local salience representation does not contain
object’s structure information, which is less discriminative
in cluttered background, especially for small objects. Our
algorithm focus on combining the advantages of both global
and local information via a new Guided Attention network
(GAnet) to predict object locations and counts.

3 GUIDED ATTENTION NETWORK

In this section, we introduce the novel anchor-free deep learn-
ing network for object detection and counting in drone images,
the Guided Attention network (GAnet), which is illustrated
in Figure 1. Specifically, GAnet consists of three parts, i.e.,
the backbone, multi-scale feature fusion, and output predic-
tor. We will first describe each part in detail, and then loss
function and data argumentation strategy.

3.1 Backbone Network

Since diverse scales of objects are taken into consideration
in feature representation, we choose the feature maps from
four side-outputs of the backbone network (e.g., VGG-16 [37]
and ResNet-50 [13]). Four side outputs correspond to pool1,
pool2, pool3, and pool4, each of which is the output of four
convolution blocks with different scales, respectively. The
feature maps from four pooling layers are 1
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of the input image. They are marked with light blue regions
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Figure 1: (a) The architecture of GAnet. (b) The background attention module. (c) The foreground attention
module. In (a), 𝑠1, 𝑠2, and 𝑠3 denote pool1, pool2, and pool3 low-level features, respectively; 𝑟1, 𝑟2, and 𝑟3 denote
the corresponding high-level features. In (b), 𝑠𝑙 denotes the low-level features with rich texture details, 𝑟𝑙+1

and 𝑟𝑙 denote the high-level features with strong semantic information.

in Figure 1(a). The backbone network is pre-trained by the
ImageNet dataset [17].

3.2 Multi-Scale Feature Fusion

As discussed in [23], the feature pyramid has strong semantics
at all scales, resulting in significant improvement as a generic
feature extractor. Specifically, we fuse the side-outputs of the
backbone network from top to down, e.g., feature maps from
pool4 to pool1 of VGG-16. Meanwhile, the receptive fields of
the stacked feature maps can adaptively match the scale of
objects. To consider background discriminative information in
the feature pyramid, we introduce the Background Attention
(BA) module in multi-scale feature fusion.

3.2.1 Background Attention. As shown in Figure 1(b), the
BA modules are stacked from the deepest to the shallowest
convolutional layer. Meanwhile, the cross-entropy loss func-
tion is used to enforce different channels of feature maps
focus on either foreground and background in every stage.
Then, the attention module weights the pooling features with
the same scale via the class-activated tensor. Finally, the
weighted pooling features and the up-sampled features are
concatenated as the base feature maps in the next BA.

We denote the 𝑙-th pooling features as 𝑠𝑙, and the input and
output of 𝑙-th BA as 𝑟𝑙+1 and 𝑟𝑙. Specifically, 𝑟𝑙+1 is used to
learn the class-related weights for activating the class-related
feature maps in 𝑠𝑙. For the deepest BA module, the input is
regarded as the pool4 feature maps (see 𝑟4 in Figure 1(a)).
Note that the size of output 𝑟𝑙 in this architecture is the
same as the pooling features 𝑠𝑙 rather than the size of input
𝑟𝑙+1. Therefore, the bilinear interpolation is introduced to
up-sample 𝑟𝑙+1 to 𝑟𝑢𝑙+1. As the up-sampling operation is a
linear transformation, one 3 × 3 convolutional layer 𝑤𝑢

𝑙 is

used as soft-adding to improve the scale adaptability. Instead
of concatenating the up-sampled 𝑟𝑙+1 and the activated 𝑠𝑙
directly, the 1× 1 and 3× 3 convolutional layers 𝑤𝑐

𝑙 is used
to generate 𝑟𝑙. In summary, the 𝑙-th BA is formulated as

𝑟𝑙 = 𝑤𝑐
𝑙 · (𝑓(𝑠𝑙, 𝑟𝑤𝑙+1) + 𝑟𝑤𝑙+1), (1)

where 𝑤𝑐
𝑙 denotes the convolutional weights of the concate-

nation layer. 𝑟𝑤𝑙+1 = 𝑤𝑢
𝑙 * 𝑟𝑢𝑙+1 and 𝑤𝑢

𝑙 are the convolutional
weights of up-sampled 𝑟𝑢𝑙+1. 𝑤

𝑐
𝑙 has two elements, i.e., one

for 𝑟𝑤𝑙+1 and the other for 𝑓(𝑠𝑙, 𝑟
𝑤
𝑙+1). 𝑓(𝑠𝑙, 𝑟

𝑤
𝑙+1) is a class

activation function with two parameters, i.e., the pooling
features 𝑠𝑙 and the weighted up-sampled features 𝑟𝑤𝑙+1. It is
defined as

𝑓(𝑠𝑙, 𝑟
𝑤
𝑙+1) = 𝑠𝑙 ⊗ 𝑔𝑐(𝑟𝑤𝑙+1), (2)

where ⊗ is the multiply operation between the features 𝑠𝑙
and the weight tensor 𝑔𝑐(𝑟𝑤𝑙+1). 𝑔

𝑐(𝑟𝑤𝑙+1) is obtained by three
steps. First, 𝑟𝑤𝑙+1 is compressed into a one-dimensional vector
𝑣𝑤𝑙+1 by the Global Average Pooling (GAP) [51]. Second, 𝑣𝑤𝑙+1

is activated and converted to the vector with class-related
information 𝑣𝑐𝑙+1 via determining whether the input image
contains the objects. Third, 𝑣𝑐𝑙+1 is transformed into a weight
tensor with class-related information 𝑡𝑐𝑙+1 = 𝑔𝑐(𝑟𝑤𝑙+1) via two
1× 1 convolutional layers.

3.2.2 Supervision for Background Attention. To learn class-
related feature maps, we use both the images with and with-
out objects in the training stage. We denote them as positive
and negative images respectively. Specifically, we use positive
images with objects to activate the channels of feature maps
to represent the pixels of object region, and negative images
without overlapping of objects to activate the channels of
feature maps to describe the background region. As shown
in Figure 2, we generate positive and negative images with

Oral Session F2: Mobile Multimedia & Multimedia HCI 
and Quality of Experience

MM '20, October 12–16, 2020, Seattle, WA, USA 

711



Figure 2: Generation of positive and negative sam-
ples.

the size of 512× 512 by randomly cropping and padding the
rescaled training images (from 0.5x to 3x scale).

3.3 Output Predictor

Based on multi-scale feature fusion, we predict the scales and
locations of objects using both score and location maps (see
Figure 1(c)), which are defined as follows:

∙ The score map corresponds to confidence score of the
object region. Similar to the confidence map in FC-
N [27], each pixel of the score map is a scalar between 0
to 1 representing the confidence belonging to an object
region.

∙ The location map describes the location of object by
using four distance channels 𝐺 = (𝑙, 𝑡, 𝑟, 𝑏). The chan-
nels denote the distances from the current pixel 𝑖 to the
left, top, right, and bottom edges of the bounding box
respectively. Then we can directly predict the object
box by four distance channels. Specifically, for each
point in the score map, four distance channels predict
the distances to the above four edges of the bounding
box.

Foreground Attention. In general, based on both score
and location maps, we can estimate the bounding boxes of the
objects in the image. However, the estimated bounding boxes
only rely on the global appearance of the object. That is, little
local appearance of the object is taken into consideration,
resulting in less discriminative foreground representation. To
improve localization accuracy, we introduce the Foreground
Attention (FA) module to consider both global and local
appearance representation of the objects.

In practice, we use four corner maps (top-left, top-right,
bottom-left and bottom-right) to denote different corner posi-
tions within the object region, as shown in Figure 3. Similar
to score map, each pixel of the corner map is also a scalar
between 0 to 1 representing the confidence belonging to a
corresponding position in the object region. The corner is set
as 1/9 the size of the whole object. Specifically, as illustrated
in Figure 1(c), we first use a threshold filter to remove the
candidate bounding boxes with low confidence pixels, i.e.,
𝑐𝑖 < 𝜇. 𝑐𝑖 is the confidence value of pixel 𝑖 in the predicted
score map, and 𝜇 denotes the confidence threshold. Then,

Figure 3: Illustration of four corner maps for fore-
ground attention.

the locality-aware NMS operation [53] is applied to remove
redundant candidate bounding boxes and choose the top
ones with higher confidence. Finally, a corner voting filter is
designed to determine whether the selected bounding boxes
should be retained. Specifically, we calculate the number of
reliable corners N(𝑏𝑘) in the 𝑘-th candidate bounding box 𝑏𝑘
by

N(𝑏𝑘) =
4∑︁

𝑠=1

I(𝜏(𝒞𝑠) > 𝜀), (3)

where 𝜏(𝒞𝑠) denotes the average confidence of the corner
region 𝒞𝑠. 𝜀 indicates the threshold of mean confidence 𝜏(𝒞𝑠)
to determine the reliable corner. I(·) = 1 if its argument is
true, and 0 otherwise. We only keep the bounding box 𝑏𝑘 if
the number of reliable corners is larger than the threshold 𝜅,
i.e., N(𝑏𝑘) > 𝜅.

3.4 Loss function

To train the proposed network, We optimize the location map
and score map, as well as both foreground and background
attentions simultaneously. The overall loss function is defined
as

ℒ = ℒloc + 𝜆scoℒsco + 𝜆FAℒFA + 𝜆BAℒBA, (4)

where ℒloc, ℒsco, ℒFA, and ℒBA are loss terms for the loca-
tion map, score map, foreground attention, and background
attention, respectively. The parameter 𝜆sco, 𝜆FA, and 𝜆BA

are used to balance these terms. In the following, we explain
these loss terms in detail.

Location Map Loss. To achieve scale-invariance, the IoU
loss [45] is adopted to evaluate the difference between the
predicted bounding box and the ground truth of bounding
box. The loss of location map is defined as:

ℒloc = IoU(𝐺,𝐺*), (5)

where 𝐺 = (𝑙, 𝑡, 𝑟, 𝑏) and 𝐺* = (𝑙*, 𝑡*, 𝑟*, 𝑏*) are the esti-
mated and ground-truth bounding box of the object. The
function IoU(·) calculates the intersection-over-union (IoU)
score between 𝐺 and 𝐺*.

Score Map Loss. Similar to image segmentation [47], we use
the Dice loss to deal with the imbalance problem of positive
and negative pixels in the score map. It calculates the errors
between the predicated score map and ground-truth map,
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i.e.,

ℒsco = 1−
2 ·

∑︀𝑁
𝑖=1(𝑐𝑖𝑐

*
𝑖 )∑︀𝑁

𝑖=1(𝑐𝑖) +
∑︀𝑁

𝑖=1(𝑐
*
𝑖 )

, (6)

where the sums run over the all 𝑁 pixels of the score map. 𝑐*𝑖
and 𝑐𝑖 are the confidence values of pixel 𝑖 in the ground-truth
and predicted maps respectively.

Background Attention Loss. Similar to classification al-
gorithms, we use the cross-entropy loss ℒBA to guide back-
ground attention based on the binary classification, i.e.,

ℒBA =

{︂
− log(𝑝) if 𝑦 = 1,
− log(1− 𝑝) otherwise,

(7)

where 𝑦 ∈ {±1} denotes the ground-truth category (i.e., fore-
ground or background), 𝑝 ∈ [0, 1] is the estimated probability
for the category with label 𝑦 = 1.

Foreground Attention Loss. Similar to the score map, to
deal with the imbalance problem of positive and negative
pixels in the feature maps, we use the Dice loss to guide the
foreground attention for the four corner maps.

3.5 Data Augmentation for Drones

Data augmentation is important in deep network training
based on limited training data. Since the data is captured
from a very high altitude by the drone, it is susceptible to
the influence of different illumination conditions, e.g., sunny,
night, cloudy and foggy. Therefore, we develop a new data
augmentation strategy for drones.

As discussed above, sunny or night scenes correspond to the
brightness of the image, therefore we synthesize these scenes
via changing the whole contrast of the image (denoted as
BNoise). On the other hand, since convincing representations
of clouds and water can be created in pixel-level [29], we use
Perlin noise [30] to imitate cloudy and foggy scenes (denoted
as PNoise). Inspired by the image blending algorithm [39],
the data augmentation model is defined as

Φ(𝑖) = 𝛼𝐼(𝑖) + 𝛽𝑀*(𝑖) + 𝛾, (8)

where Φ(𝑖) is the transformed value of the pixel 𝑖 in image.
𝛼 and 𝛽 denote the weight of the pixel of original image 𝐼(𝑝)
and noise map 𝑀*(𝑖) respectively. The asterisk * denotes
different kinds of noise maps, i.e., BNoise 𝑀𝑏(𝑖) and PNoise
𝑀𝑝(𝑖). We have 𝛼 = 1−𝛽 to control the contrast of the image.
The perturbation factor 𝛾 is used to revise the brightness. We
set different factors 𝛼 and 𝛾 for each image in the training
phase.

As shown in Figure 4(a), we employ white and black maps
to synthesize sunny or night images. On the other hand, we
use Perlin noise [30] to generate noise maps in Figure 4(b),
and then revise the brightness via disturbance factor 𝛾 to
synthesize cloudy and foggy images. For each training image,
we first resize it using random scale factors (x0.5, x1, x2 and
x3). Then, we introduce both noise maps into the image to
imitate the challenging scenes (i.e., sunny, night, cloudy, and
foggy). Finally, we select positive and negative images by
random cropping on the blending images, and transform the
selected images to 512× 512 size via zooming and padding.

(a)

(b)

Figure 4: Illustration of data augmentation includ-
ing (a) BNoise (Brightness noises to imitate sunny
or night scenes) and (b) PNoise (Perlin noises to
imitate cloudy and foggy scenes).

4 EXPERIMENT

We evaluate our method on three datasets: UAVDT [6],
CARPK [14], and PUCPR+ dataset [14]. In this section,
we first describe implementation details. Then, we compare
our GAnet with the state-of-the-art methods. More visual ex-
amples are shown in Figure 5. In addition, the ablation study
is carried out to evaluate the effectiveness of each component
in our network.

4.1 Implementation Details

Due to the shortage of computational resources, we train
GAnet using the VGG-16 and ResNet-50 backbone with the
input size 512 × 512. All the experiments are carried out
on the machine with NVIDIA Titan Xp GPU and Intel(R)
Xeon(R) E5-1603v4@2.80GHz CPU.

For fair evaluation, we generate the same top 200 detec-
tion bounding boxes for the UAVDT and CARPK datasets
and 400 detection bounding boxes for the PUCPR+ dataset
based on the detection confidence. Note that the detection
confidence is calculated by summarizing the value of each
pixel in the score map. To output the count of objects in
each image, we calculate the number of detection with the
detection confidence larger than 0.5.

We train our method using the Adam Optimizer. An ex-
ponential decay learning rate is used in the training phrase,
i.e., its initial value is 0.0001 and decays every 10, 000 it-
erations with the decay rate 0.94. The batch size is set as
10. In the loss function (4), we set the balancing factors as
𝜆𝑠𝑐𝑜 = 0.01, 𝜆FA = 0.0025, 𝜆BA = 0.001 empirically. In the
FA module, the confidence threshold 𝜇 is set as 0.8, and
the threshold 𝜀 in (3) is set as 0.3 empirically. The NMS
operation is conducted with a threshold 0.2. In the data
argumentation model (8), we set the balancing weights as
𝛼 = {0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0} and 𝛾 = [−20, 20].
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(a) UAVDT (b) CARPK (c) PUCPR+

Figure 5: Visual examples of GAnet with VGG16 backbone. The ground-truth and predicted detection bound-
ing boxes are highlighted in red and green rectangles, respectively. The blue mask in the top-right corner
indicates the comparison between the ground-truth (GT) and estimated detection (DT) counts.

Table 1: Comparison on the UAVDT dataset.

Method Backbone MAE↓RMSE↓AP@0.7[%]↑

YOLO9000 [31] DarkNet-19 12.59 16.73 7.6
YOLOv3 [32] DarkNet-53 11.58 21.50 20.3
RON [16] VGG-16 - - 21.6
Faster R-CNN [33] VGG-16 - - 22.3
SSD [25] VGG-16 - - 33.6
CADNet [7] VGG-16 - - 43.6
Ours VGG-16 5.10 8.10 46.8

SA+CF+CRT [22] ResNet-101 7.67 10.95 27.8
R-FCN ResNet-50 - - 34.4
Ours ResNet-50 5.09 8.16 47.2

Metrics. To evaluate detection algorithms on the UAVDT
dataset [6], we compute the Average Precision (AP@0.7)
score based on [8, 9]. That is, the hit/miss threshold of the
overlap between detection and ground-truth bounding boxes
is set to 0.7. In terms of CARPK [14] and PUCPR+ [14],
we report the detection score under two hit/miss thresholds,
i.e., AP@0.5 and AP@0.7. To evaluate the counting results,
similar to [14], we use two object counting metrics including
Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE).

4.2 Quantitative Evaluation

Evaluation on UAVDT. The UAVDT dataset [6] consists
of 100 video sequences with approximate 80, 000 frames,
which are collected from various scenes. Moreover, the objects
are annotated by bounding boxes as well as several attributes
(e.g., weather condition, flying altitude, and camera view).
Note that we only use the subset of UAVDT dataset for
object detection in our experiment.

Table 2: Comparison on the CARPK dataset.

Method MAE↓ RMSE↓ AP@0.5[%]↑ AP@0.7[%]↑

One-Look Reg [28] 59.46 66.84 - -

IEP [38] 51.83 - - -

Faster R-CNN [33] 47.45 57.39 - -
YOLO9000 [31] 38.59 43.18 20.9 3.7

SSD [25] 37.33 42.32 68.7 25.9

LPN [14] 23.80 36.79 - -
RetinaNet [24] 16.62 22.30 - -

YOLOv3 [32] 7.92 11.08 85.3 47.0

IoUNet [11] 6.77 8.52 - -
SA+CF+CRT [22] 5.42 7.38 89.8 61.4

Ours (VGG-16) 4.80 6.94 90.2 73.6

Ours (ResNet-50) 4.61 6.55 90.1 74.9

As presented in Table 1, we can conclude that our GAnet
performs the best among all the compared detection methods
in terms of both the VGG-16 and ResNet-50 backbones.
Specifically, GAnet with VGG-16 backbone achieves 5.10
MAE and 8.10 RMSE; while GAnet with ResNet-50 backbone
achieves better 5.09 MAE and 8.16 RMSE. Besides, GAnet
surpasses YOLO9000 [31], YOLOv3 [32], RON [16], Faster
R-CNN [33], SSD [25], CADNet [7], R-FCN [4] and SA+CF+
CRT [22] by 39.2%, 26.3% 25.2%, 24.5%, 13.2%, 3.2%, 12.8%,
and 19.4% AP scores, respectively. Moreover, our method
achieves better counting accuracy than SA+CF+CRT [22]
with the more complex ResNet-101 backbone, i.e., 5.09 vs.
7.67 in MAE score and 8.16 vs. 10.95 in RMSE score. It
demonstrates that the effectiveness of our method in object
detection in drone based scenes.

Evaluation on CARPK. The CARPK dataset [14] pro-
vides the largest-scale drone view parking lot dataset in
unconstrained scenes, which is collected in various scenes for
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Figure 6: Different fusion strategies of multi-scale feature maps. 𝑠𝑙 denotes the low-level features with rich
texture details, 𝑟𝑙+1 and 𝑟𝑙 denote the high-level features with strong semantic information.

Table 3: Comparison on the PUCPR+ dataset.

Method MAE↓ RMSE↓ AP@0.5[%]↑ AP@0.7[%]↑

SSD [25] 119.24 132.22 32.6 7.1
Faster R-CNN [33] 111.40 149.35 - -

YOLO9000 [31] 97.96 133.25 12.3 4.5

RetinaNet [24] 24.58 33.12 - -
LPN [14] 23.80 36.79 - -

One-Look Reg [28] 21.88 36.73 - -

IEP [38] 15.17 - - -
IoUNet [11] 7.16 12.00 - -

YOLOv3 [32] 5.24 7.14 95.0 45.4

SA+CF+CRT [22] 3.92 5.06 92.9 55.4

Ours (VGG-16) 3.68 5.47 91.3 67.0

Ours (ResNet-50) 3.28 4.96 91.4 65.5

Table 4: Influence of data augmentation.

Method AP APday APnight APfog

GAnet 0.3908 0.4779 0.5513 0.1509
GAnet+BNoise 0.4034 0.4928 0.5686 0.1579
GAnet+PNoise 0.4063 0.4798 0.5263 0.2118
GAnet+BPNoise 0.4181 0.4940 0.5581 0.2027

4 different parking lots. It contains approximately 90, 000
cars in total.

We compare our method with state-of-the-art algorithms
in Table 2. The results show that our approach achieves the
best MAE, RMSE and AP scores. Specifically, GAnet with
VGG-16 backbone achieves 4.80 MAE and 6.94 RMSE; while
GAnet with ResNet-50 backbone achieves better 4.61 MAE
and 6.55 RMSE. Both of them obtain the AP@0.5 score more
than 90.0%. It is worth mentioning that we obtain much
better AP@0.7 score than the second best SA+CF+CRT [22]
(i.e., 74.9% vs. 61.4%). This is attributed to the proposed
attention modules to locate the objects more accurately.

Evaluation on PUCPR+. The PUCPR+ dataset [14] is
the subset of PKLot [5], which is annotated with nearly
17, 000 cars in total. It shares the similar high altitude at-
tribute to drone based scenes, but the camera sensors are
fixed and set in the same place.

As presented in Table 3, our method performs the best in
terms of MAE and RMSE. Specifically, GAnet with VGG-16

Table 5: Influence of background attention.

Method AP APfront APside APbird

GAnet+BPNoise 0.4181 0.4618 0.5219 0.2533
GAnet+BPNoise+LF 0.4457 0.4667 0.5301 0.3294
GAnet+BPNoise+MF 0.4530 0.4699 0.5338 0.3495
GAnet+BPNoise+EF 0.4576 0.4719 0.5309 0.3640

GAnet+BPNoise+FPN 0.3985 0.4378 0.4943 0.2480
GAnet+BPNoise+GC 0.4343 0.4681 0.5374 0.2919
GAnet+BPNoise+SE 0.4442 0.4723 0.5347 0.3142
GAnet+BPNoise+BA 0.4576 0.4719 0.5309 0.3640

backbone achieves 3.68 MAE and 5.47 RMSE; while GAnet
with ResNet-50 backbone achieves better 3.28 MAE and
5.47 RMSE. YOLOv3 [32] achieves the best AP score at
0.5 hit/miss threshold, but inferior AP@0.7 score than that
of our method. We speculate that YOLOv3 lack of global
appearance representation of objects to achieve accurate
localization. SA+CF+CRT [22] performs slightly better than
our method in AP@0.5 score, but much worse in AP@0.7
score. It indicates the effectiveness of our method.

4.3 Ablation Study

We select the UAVDT dataset [6] to conduct the ablation
experiment because it provides various attributes in terms
of altitude, illumination and camera-view for comprehensive
evaluation.

Effectiveness of Data Augmentation. As discussed above,
the data augmentation strategy is used to increase the dif-
ficult samples affected by various illumination attributes in
the UAVDT dataset [6] such as daylight, night and fog. We
compare different variants of GAnet with different data aug-
mentation, denoted as GAnet+BNoise, GAnet+PNoise and
GAnet+PBNoise. Notably, BNoise denotes the brightness
noise, PNoise denotes the Perlin noise, and BPNoise denotes
both. As shown in Table 4, GAnet+BNoise outperforms
GAnet slightly, which shows the effectiveness of brightness
noise in daylight and night scenarios. GAnet+PNoise achieves
better AP score in terms of foggy scenes compared to GAnet
(21.18% AP𝑓𝑜𝑔 vs. 15.09% AP𝑓𝑜𝑔), which demonstrates that
Perlin noise can simulate the foggy scenes effectively. If we use
the above two data augmentation strategies, the performance
will increase by 2.73% AP score.
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Table 6: Comparison of variants of GAnet on the UAVDT dataset.

Method AP APday APnight APfog APlow APmed APhigh APfront APside APbird

GAnet 0.3908 0.4779 0.5513 0.1509 0.5505 0.4616 0.1227 0.4478 0.5111 0.1981
GAnet+BPNoise 0.4181 0.4940 0.5581 0.2027 0.5565 0.4867 0.1665 0.4618 0.5219 0.2533
GAnet+FA 0.4207 0.5006 0.5878 0.1890 0.5935 0.4834 0.1431 0.4595 0.5462 0.2439
GAnet+BA 0.4353 0.5041 0.5743 0.2401 0.5908 0.4812 0.1996 0.4655 0.5451 0.2947
GAnet+FA+BA 0.4519 0.5079 0.5781 0.2686 0.5763 0.4955 0.2514 0.4667 0.5407 0.3434
GAnet+BPNoise+FA 0.4411 0.5272 0.5819 0.2139 0.5900 0.5146 0.1751 0.4805 0.5618 0.2715
GAnet+BPNoise+BA 0.4576 0.5049 0.5779 0.3068 0.5815 0.4923 0.2695 0.4719 0.5309 0.3640
GAnet+BPNoise+FA+BA 0.4679 0.5240 0.5841 0.3084 0.5820 0.5206 0.2624 0.4852 0.5435 0.3603

Table 7: Influence of foreground attention.

Method 𝜅 AP APlow APmed APhigh

GAnet+BPNoise - 0.4181 0.5565 0.4867 0.1656

GAnet+BPNoise+FA

0 0.4271 0.5729 0.4978 0.1698
1 0.4411 0.5900 0.5146 0.1751
2 0.4391 0.5869 0.5130 0.1736
3 0.4372 0.5817 0.5128 0.1718
4 0.4347 0.5764 0.5116 0.1699

Effectiveness of Background Attention. Different from
the previous unsupervised attention modules, our Background
Attention (BA) is guided based on discrimination between
the background and objects. Firstly, we study different fusion
strategies of the proposed BA module in Figure 6, i.e., early
fusion (EF), mixed fusion (MF) and late fusion (LF). The
results presented in Table 5 show the early fusion strategy
(i.e., GAnet+BPNoise+EF) achieves the best performance.
Secondly, we also compare the BA module with several pre-
vious channel-wise attention modules including SE block [15]
and GC block [1]. For fair comparison, we use the same early
fusion strategy in Figure 6(a). Compared to the baseline FPN
fusion strategy using lateral connection [23], all the atten-
tion modules can improve the performance by learning the
weights of different channels of feature maps. However, our
BA module can learn additional discriminative information
of background, resulting in the best AP score in the drone
based scenes under different camera views.

Effectiveness of Foreground Attention. We enumerate
the threshold for Foreground Attention (FA) 𝜅 in (3), i.e.,
𝜅 = {0, 1, 2, 3, 4}, to study its influence on the accuracy. As
shown in Table 7, we can conclude that GAnet with the FA
module achieves the best AP score 44.11% when the threshold
𝜅 = 1. If we remove the FA module, the detection performance
will decrease to 41.81%. It shows the effectiveness of the FA
module.

Variants of GAnet. In Table 6, we show the impact of
different conditions and compare various variants of GAnet
that combine several components in the network. Using data
argumentation strategy GAnet can improve the performance
considerably in all the attributes. FA facilitates GAnet to

extract the local and global salient features of the object, and
BA can distinguish difficult background effectively and ex-
tract multi-scale features of objects, especially small objects.
Either BA or FA can improve the performance by 3% ∼ 4%.
Combining BA and FA, the GAnet+BA+FA method achieves
the AP score of 45.19%, which surpasses GAnet, GAnet+FA,
and GAnet+BA by 6.11% (i.e., 45.19% vs. 39.08%), 3.12%
(i.e., 45.19% vs. 42.07%), and 1.66% (i.e., 45.19% vs. 43.53%)
respectively. Moreover, the proposed method with all pro-
posed modules (i.e., GAnet+BPNoise+FA+BA) can boost
the performance by approximate 8% improvement in AP
score compared to the baseline GAnet method.

5 CONCLUSION

In the paper, we propose a novel guided attention network to
deal with object detection and counting in drone based scenes.
Specifically, we develop both background and foreground at-
tention modules to not only learn background discriminative
representation but also consider local appearance of the ob-
ject, resulting in better accuracy. Moreover, we propose a new
data argumentation strategy in drone based scenes. Extensive
experiments on three challenging datasets demonstrate that
our method can improve the localization and counting accura-
cy considerably with different backbone. We plan to expand
our method to multi-class object detection and counting for
future work.
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