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ABSTRACT
Security inspection often deals with a piece of baggage or suitcase
where objects are heavily overlapped with each other, resulting in
an unsatisfactory performance for prohibited items detection in
X-ray images. In the literature, there have been rare studies and
datasets touching this important topic. In this work, we contribute
the first high-quality object detection dataset for security inspection,
named Occluded Prohibited Items X-ray (OPIXray) image bench-
mark. OPIXray focused on the widely-occurred prohibited item
"cutter", annotated manually by professional inspectors from the
international airport. The test set is further divided into three occlu-
sion levels to better understand the performance of detectors. Fur-
thermore, to deal with the occlusion in X-ray images detection, we
propose the De-occlusion Attention Module (DOAM), a plug-and-
play module that can be easily inserted into and thus promote most
popular detectors. Despite the heavy occlusion in X-ray imaging,
shape appearance of objects can be preserved well, and meanwhile
different materials visually appear with different colors and tex-
tures. Motivated by these observations, our DOAM simultaneously
leverages the different appearance information of the prohibited
item to generate the attention map, which helps refine feature maps
for the general detectors. We comprehensively evaluate our module
on the OPIXray dataset, and demonstrate that our module can con-
sistently improve the performance of the state-of-the-art detection
methods such as SSD, FCOS, etc, and significantly outperforms
several widely-used attention mechanisms. In particular, the advan-
tages of DOAM are more significant in the scenarios with higher
levels of occlusion, which demonstrates its potential application
in real-world inspections. The OPIXray benchmark and our model
are released at https://github.com/OPIXray-author/OPIXray.
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Figure 1: Samples of the five categories of cutters and corre-
sponding X-ray images.

1 INTRODUCTION
With the increasing crowd density in public transportation hubs,
security inspection has becomemore andmore important in protect-
ing public safety. Security inspection usually adopts X-ray scanners
to find whether there is any prohibited item in passenger luggage.
In this scenario, objects in the luggage are randomly stacked and
heavily overlapped with each other, leading to heavy object occlu-
sion. As a result, after a long time localizing prohibited items in
large amounts of complex X-ray images without distraction, secu-
rity inspectors struggle to accurately detect all the prohibited items,
which may cause severe danger to the public. And changing shifts
frequently will cost a large number of human resources, which is
not advisable.
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Therefore, a rapid, accurate and automatic approach to assist
inspectors to detect prohibited items in X-ray scanned images is
desired eagerly. As the technology of deep learning [9] especially
the convolutional neural network develops [3, 22], the recognition
of occluded prohibited items from X-ray pictures can be regarded
as an object detection problem of computer vision, which has been
widely studied in the literature.

There are several works trying to solve occlusion problems in
different scenarios, such as person re-identification [24, 29, 30],
face recognition [5, 17, 25]. The object occlusion in Person Re-
identification or Face Recognition belongs to intra-class occlusion,
and every occluded object has a corresponding annotation. There-
fore, a loss function can be designed by annotation information
to decrease the impact of occlusion. However, object occlusion in
X-ray images for security inspection often exists between prohib-
ited items and safety items, which belongs to inter-class occlusion.
For the prohibited items detection task, what we obtained are the
annotations of prohibited items, so methods of these senses can
not be used for comparison. To the best of our knowledge, up to
now, no dataset targeting occluded prohibited items detection in
X-ray images has been proposed by researchers even there are also
two released X-ray benchmark, namely GDXray [12] and SIXray
[13]. However, GDXray [12] contains images which are grayscale,
while another dataset SIXray [13] only contains less than 1% im-
ages having annotated prohibited items. And both GDXray [12]
and SIXray [13] are used for classification task. As a result, both
of the two datasets are inconsistent with our task that detecting
occluded prohibited items.

To torch this important topic, we contribute the first high-quality
object detection dataset for security inspection, named Occluded
Prohibited Items X-ray (OPIXray) image benchmark. Considering
that cutter is the most common tool passengers carry, we choose
it as the prohibited item to detect. OPIXray contains 8885 X-ray
images of 5 categories of cutters (illustrated in Fig. 1). Each sample
has at least one prohibited item, while some samples have more.
All samples are annotated manually by the professional inspectors
from the international airport and the standard of annotating is
based on the standard of training security inspectors. Our dataset
brings meaningful challenges to this topic in two main folds. First,
OPIXray mimics a similar testing environment to the real-world
scenario, where items randomly overlappedwith each other, leading
to object occlusion challenge. Second, cutters of different categories
usually share the similar shape appearance, e.g., folding knives and
multi-functional knives, bringing difficulties to discriminate.

Furthermore, to deal with the occlusion in X-ray images, we pro-
pose the De-occlusion Attention Module(DOAM), a plug-and-play
module that can be easily inserted into most popular detectors. As
we have observed, X-ray imaging preserves the shape appearance
in the heavy occluded part and assigns various colors to different
materials in the visual part. Inspired by the fact we observed, our
module simultaneously lays particular emphasis on edge informa-
tion and material information of the prohibited item by utilizing
two sub-modules, namely, Edge Guidance (EG) and Material Aware-
ness (MA). Then, our module leverages the two information above
to generate an attention distribution map as a high-quality mask for
each input sample to generate high-quality feature maps, serving
identifiable information for the general detectors.

The main contributions of this work are as follows:
• We provide the first benchmark for occluded prohibited
items detection in X-ray images for security inspection. The
OPIXray dataset we contributed is high-quality because all
prohibited items are manually annotated by professional
security inspectors from the international airport.

• We present the De-occlusion Attention Module (DOAM),
simultaneously laying particular emphasis on edge informa-
tion andmaterial information of the prohibited item, inspired
by the X-ray imaging principle.

• DOAM can be easily inserted as a plug-and-play module
into various detectors, including SSD [10], YOLOv3 [15] and
FCOS [20], etc., which means our module can be widely
applied.

• We evaluate our method on the OPIXray dataset and com-
pare it to various baselines, including popular detection ap-
proaches and widely-used attention mechanisms. These re-
sults show that DOAM can not only consistently improve the
performance of the state-of-the-art detection methods but
also significantly outperform several widely-used attention
mechanisms.

2 RELATEDWORK
2.1 X-ray Images and Benchmarks
X-ray offers powerful ability in many tasks such as medical imaging
analysis [1, 6, 11] and security inspection [8, 13]. However, the
visibility of the object information contained in X-ray images suffers
a lot because of object occlusion.

Several studies in the literature have attempted to address this
challenging problem. Unfortunately, due to the particularity of
security inspection, very few X-ray datasets have been published.
A released benchmark, GDXray[12] contains 19407 images, partial
of which contains three categories of prohibited items including
gun, shuriken and razor blade. However, GDXray only contains
gray-scale images in a very simple background, which is far away
from real-world scenario. Recently, SIXray[13] is a large-scale X-ray
dataset which is about 100 times larger than the GDXray dataset[12].
SIXray consists of 1059231 X-ray images, but the positive samples
are less than 1% to mimic a similar testing environment to the real-
world scenariowhere inspectors often aim at recognizing prohibited
items appearing in a very low frequency. Different from ours, SIXray
is a dataset for the task of classification, focusing on the problem
of data imbalance.

2.2 Attention Mechanism
Attention can be interpreted as a means of biasing the allocation
of available computational resources towards the most informa-
tive components of a signal, which has been widely studied in
many tasks, like image retrieval [18, 26], visual question answering
[14, 28]. It captures long-range contextual information and has been
widely applied in various tasks such as machine translation [21],
image captioning [2], scene segmentation [4] and object recogni-
tion [19]. The work [23] is related to self-attention module, mainly
exploring the effectiveness of non-local operation in space-time
dimensions for videos and images. [4] proposed a dual attention
network (DANet) for scene segmentation by capturing contextual
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dependence based on the self-attention mechanism. Squeeze-and-
Excitation Networks (SENet) [7] terms the Squeeze-and-Excitation
block (SE), that adaptively re-calibrates channel-wise feature re-
sponses by explicitly modeling inter-dependencies between chan-
nels.

Table 1: The category distribution of the OPIXray dataset.
Due to that some images contain more than one prohib-
ited item, the sum of all items in the different categories is
greater than the total number of images.

OPIXray Categories TotalFolding Straight Scissor Utility Multi-tool
Training 1589 809 1494 1635 1612 7109
Testing 404 235 369 343 430 1776
Total 1993 1044 1863 1978 2042 8885

3 THE OPIXRAY DATASET
The performance of deep learning models largely depends on the
quality of the dataset. Only with high quality dataset can the detec-
tion ability of a model be evaluated reasonably. Thus, a professional
dataset with high-quality annotations is necessary for training
models and performing evaluations. In this work, we build the first
dataset specially designed for occluded prohibited items detection
in security inspection.

3.1 Data properties
Data Acquisition: The backgrounds of all samples are scanned
by the security inspection machine and the prohibited items are
synthesized into these backgrounds by the professional software. In
the international airport, these synthesized images are used to train
security inspectors to recognize prohibited items, which is exactly
what we want to be executed automatically. And each prohibited
item is annotated manually by professional inspectors from the
international airport, which localized by a box-level annotation
with a bounding box. These X-ray images still retain the specific
property that X-ray imaging preserves the shape appearance in
the heavy occluded part and assigns various colors to different
materials, mainly reflected in the visual part.

Data Structure: The OPIXray dataset contains a total of 8885 X-
ray images of 5 categories of cutters, namely, Folding Knife, Straight
Knife, Scissor, Utility Knife, Multi-tool Knife. A statistics of category
distribution is shown in Tab. 1. All images are stored in JPG format
with the resolution of 1225*954. The dataset is partitioned into a
training set and a testing set, with the former containing 80% of
the images (7109) and the latter containing 20% (1776), where the
ratio is about 4 : 1. The statistics of category distribution of training
set and testing set are also shown in Tab. 1. Note that there are
35 images of the dataset, each of which contains more than one
prohibited item, by 30 in the training set and 5 in the test set.

Data Occlusion Levels: In order to study the impact brought by
object occlusion levels, we divide the testing set into three subsets
and name them Occlusion Level 1 (OL1), Occlusion Level 2 (OL2)
and Occlusion Level 3 (OL3), where the number indicates occlusion
level of prohibited items in images. As illustrated in Fig. 2, there

Table 2: The category distribution of different occlusion lev-
els in the testing set.

Testing set Categories TotalFolding Straight Scissor Unility Multi-tool
OL1 206 88 160 214 255 922
OL2 148 84 126 88 105 548
OL3 50 63 83 41 70 306
Total 404 235 369 343 430 1776

is no or slight occlusion on prohibited items in OL1 and partial
occlusion in OL2. To maximally evaluate the ability of models to
deal with object occlusion, we construct OL3 by choosing images
where severe or full occlusion exists in. The category distribution
of the three subsets with different occlusion levels are shown in
Tab. 2.

3.2 Dataset Analysis
Data Authenticity: The OPIXray dataset mostly mimics a similar
environment to the real-world scenario. First, the occlusion of
prohibited items is inspired that items within personal luggage are
usually stacked randomly and overlapped with each other, which
we describe in detail in this work. Second, the statics of category
distribution is inconsistent obviously. The number of folding knife
and multi-tool knife are higher than straight knife because the
former two categories are more common for passengers to bring.
And the number of OL3 is significantly less than OL1 because
cutters are usually small and move freely in luggage, as a result,
cutters are seldom fully occluded in the real scenario.

Data Application: OPIXray dataset has two major application
scenarios. First, the dataset can evaluate the ability of a model to
detect prohibited items in X-ray images. A better model can achieve
better performance no matter which occluded levels. As we can
see from Fig. 3, there is a significant decline in the performance of

Figure 2: Samples of different occlusion levels.
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famous detection approaches e.g., SSD [10] and YOLOv3 [15], with
the occlusion level increasing. Second, the dataset can evaluate the
ability of a model of solving object occlusion problem, by comparing
the improvement than other methods in different occlusion level
settings. The improvement amount of an approach increases with
the occlusion level increases, which illustrates the effectiveness of
this approach to the object occlusion problems.

(a) SSD (b) YOLOv3

Figure 3: The performance of SSD and YOLOv3 under three
different object occlusion levels.

4 DE-OCCLUSION ATTENTION MODULE
We propose the De-occlusion Attention Module(DOAM), simultane-
ously laying particular emphasis on edge information and material
information of the prohibited item by utilizing two sub-modules,
namely, Edge Guidance (EG) and Material Awareness (MA). Then,
our module leverages the two information above to generate an
attention distribution map as a high-quality mask for each input
sample to generate high-quality feature maps, serving identifiable
information for general detectors. Without losing of generality, we
apply the DOAM to the widely-used SSD [10] and demonstrate our
design from the following aspects: 1) how DOAMwork briefly (4.1);
2) how to impel the edge information to guide the model (4.2); 3)
how to aggregate the region information to express the material
information (4.3); 4) how to leverage the two source of information
and generate the attention map (4.4); 5) how to compare our module
with the base detector and other counterparts (4.5).

4.1 Network Architecture
Fig. 4 illustrates the architecture of the SSD detector with the pro-
posed DOAM. On the top of the SSD, DOAM leverages edge and
material information generated by two parallel branches, namely
EG and MA, to generate an attention distribution map, providing
enhanced features for further accurate detection.

Specifically, suppose there are 𝑛 training images in the dataset
𝑋 = {x1, · · · , x𝑛}. Each input image x ∈ 𝑋 is fed into EM andMA to
obtain F𝐸 and F𝑀 , laying particular emphasis on edge information
of the occluded part and material information of the visual part,
respectively. In EG, we first extract the edge map through an edge
detection operation and then generate the edge guidance informa-
tion F𝐸 which emphasizes the complete edge information of the
prohibited item, especially in occluded part. In MA, we take the
concatenation of x and edge guidance F𝐸 as input and denote it as P,
and extract a temporary feature map F𝑡𝑚𝑝1 (Note that F𝑡𝑚𝑝1, F𝑡𝑚𝑝2
and F𝑡𝑚𝑝3 are intermediate states of the refined feature F𝑀 during

Algorithm 1 The Operation Process of DOAM.

1: Input: an X-ray image x ∈ R𝐶×𝐻×𝑊 ;
2: Generate the horizontal edge image Eℎ and the vertical edge

image E𝑣 by the 𝑆𝑜𝑏𝑒𝑙 operator.
3: Generate the edge image E by synthesizing Eℎ and E𝑣 .
4: for 𝑁1 steps do
5: Refine the feature map F𝐸 by operating E through 𝑓e (·).
6: end for
7: Generate the concatenated image P by concatenating x and E.
8: for 𝑁2 steps do
9: Refine the feature map F𝑡𝑚𝑝1 by operating P through 𝑓r (·).
10: end for
11: for 𝑘 ∈ {k1, . . . , k𝑛} do
12: Generate refined feature map F𝑘

𝑡𝑚𝑝2 by operating F𝑡𝑚𝑝1
through Eq. (5).

13: Generate refined feature map F𝑘
𝑡𝑚𝑝3 by concatenating

F𝑡𝑚𝑝1 and F𝑘
𝑡𝑚𝑝2.

14: Update the feature map set 𝑆 = 𝑆 ∪ F𝑘
𝑡𝑚𝑝3.

15: end for
16: Choose the appropriate feature map F𝑀 from 𝑆 by drawing the

gated convolutional network.
17: Generate the fused feature map F𝑓 𝑢𝑠 by operating F𝐸 and F𝑀 .
18: Generate the attention map S = 𝜎 (F𝑓 𝑢𝑠 ).
19: Generate the final feature map F by performing a matrix multi-

plication between S and P.
20: Output: the refined feature map F ∈ R𝐶ℎ×𝐻×𝑊 .

the refining process). To further aggregate the region information to
emphasis the material characteristics of the input image, we design
a Region Information Aggregation (RIA) operation where different
pooling kernels are utilized to aggregate multi-scale region-wise
features which will be selected by a gated CNN to further adaptively
generate the material awareness information F𝑀 . F𝑀 remains and
emphasizes information of identifiable properties of the visible part.
Finally, We fuse the edge guidance information F𝐸 and material
awareness information F𝑅 to obtain the attention distribution map
S. With the help of S, we can obtain the enhanced features F of the
input image for further accurate detection. The entire process of
DOAM is illustrated in detail in Algorithm 1.

4.2 Edge Guidance (EG)
For each input image x ∈ 𝑋 , we utilize the convolutional neural
network with the horizontal and vertical kernel denoted as 𝑠ℎ , 𝑠𝑣 of
the 𝑆𝑜𝑏𝑒𝑙 operator, to respectively compute the edge images Eℎ and
E𝑣 in horizontal and vertical directions. We further generate the
edge image E of the input image x by synthesizing the above two
results Eℎ and E𝑣 . To lead EG to only magnify edge information of
the prohibited items, we use N1 network blocks (Here, we define
N1 as the Module Operation Intensity of EG, which represents that
the performance of the module changes with the value of N1.), in
which each block consists of a convolutional layer with a 3 × 3
kernel size, a batch normalization layer, and a relu layer, to extract
the feature map F𝐸 . The operations can be formulated as follows:

𝑓e (a) = 𝑟𝑒𝑙𝑢 (W𝑒 · a + b𝑒 ) . (1)
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Figure 4: DOAM integrated with a general backbone network architecture. As illustrated, two feature maps are generated by
Edge Guidance (EG) and Material Awareness (MA) and fused to generate the attention map in Attention Generation. Further,
the attention map is applied to the input image to generate refined feature maps we desire. Finally, the refined feature map
can be utilized by the SSD network.

F𝐸 = {𝑓e (E)}𝑁1 . (2)

where {·}𝑁1 means that the operation is repeated 𝑁1 times, W𝑒 ,
b𝑒 are parameters of the convolutional layer. After extracting the
feature map F𝐸 as shown in Eq. 2, we adaptively attend to the edge
guidance information of the prohibited item within the feature map
F𝐸 by optimization.

4.3 Material Awareness (MA)
Material information is mainly reflected in color and texture. For
color information, each position of the image has the ability to
represent. However, when it comes to the texture information, each
position needs to combine its surroundings to represent. Inspired by
the fact that the aggregation of regional information can represent
both color and texture, we define that the region information after
aggregated is the representation of the material information. In
order to construct relations between each position of the concate-
nated image (the input image x and its edge image E in EG) and a
certain region around the point, we utilize N2 network blocks (As
we state N1 in EG, N2 is the Module Operation Intensity of MA.),
in which each block consists a convolutional layer with the kernel
size is 3 × 3, a batch normalization layer, a relu layer, to extract
a temporary feature map F𝑡𝑚𝑝1 from the concatenated image as
follows:

𝑓r (a) = 𝑟𝑒𝑙𝑢 (W𝑟 · a + b𝑟 ) . (3)

F𝑡𝑚𝑝1 = {𝑓r (x| |E)}𝑁2 . (4)

where | | represents concatenating operation. We further generate
the refined feature map F𝑀 of MA by refining F𝑡𝑚𝑝1 through the
Region Information Aggregation (RIA) operation, central of MA.

Fig. 5 illustrates the detailed process of RIA operation. For the
input feature map F𝑡𝑚𝑝1 and a parameter 𝑘 , RIA operation aggre-
gates the information of a certain size of 𝑘 × 𝑘 of region around it
by average pooling and extending to generate another temperate
feature map F𝑘

𝑡𝑚𝑝2. The average pooling and extending operations

can be formulated together as follows:

F𝑡𝑚𝑝2
𝑘
𝑖 𝑗

=

∑𝑖−(𝑖 mod 𝑘)+𝑘
𝑚=𝑖−(𝑖 mod 𝑘)

∑𝑗−( 𝑗 mod 𝑘)+𝑘
𝑛=𝑗−( 𝑗 mod 𝑘) F𝑡𝑚𝑝1𝑚𝑛

𝑘2
. (5)

where F𝑡𝑚𝑝2𝑘𝑖 𝑗 represents the feature of the 𝑖-th row and 𝑗-th col-
umn of feature map F𝑡𝑚𝑝2 when the kernel size for the average
pooling layer is 𝑘 .

We further concatenate the two feature maps (F𝑡𝑚𝑝1 and F𝑡𝑚𝑝2)
in the dimension of channel to generate a new feature map F𝑡𝑚𝑝3,
where the dimensions are 2𝐶𝑟 ×𝐻 ×𝑊 . Then every point of the new
feature map has the ability to perceive the region of size𝑘×𝑘 around
it, which means that the relations have been constructed. Due to
different sizes of region information to aggregate (different values of
𝑘), the module generates a feature map set 𝑆=

{
F𝑘1
𝑡𝑚𝑝3, · · · , F

𝑘𝑛
𝑡𝑚𝑝3

}
.

In order to enable RIA operation to perform well on various
scales of prohibited items, it is necessary to design a mechanism
to adaptively choose an optimal value for 𝑘 . We exploit the gated
convolutional neural network [27] G with 3 × 3 kernels into RIA,
to select the proper feature map F𝑀 from the feature map set 𝑆 as
output. The operations are formulated as follows:

F𝑀 = G(𝑆). (6)
where 𝑆=

{
F𝑘1
𝑡𝑚𝑝3, · · · , F

𝑘𝑛
𝑡𝑚𝑝3

}
.

4.4 Attention Generation
As is illustrated in Algorithm 1, for the result feature maps F𝐸
and F𝑀 outputted by the EG and the MA respectively, where
F𝐸 ∈ R𝐶𝑒×𝐻×𝑊 , F𝑀 ∈ R𝐶𝑟×𝐻×𝑊 , we concatenate them for in-
formation fusion. And further we feed the concatenated feature
into a convolutional layer, where the kernel size is 1×1, to generate
the feature map F𝑓 𝑢𝑠 ∈ R(𝐶𝑒+𝐶𝑟 )×𝐻×𝑊 , which have confused the
edge information and the reginal information, both strengthened.
The operation can be formulated as follows:

F𝑓 𝑢𝑠 = W𝑚 (F𝐸 | |F𝑀 ) + b𝑚 . (7)
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Figure 5: The Operation Process of RIA.

where | | represents the operation of concatenating, and W𝑚 , b𝑚
are parameters of the convolutional layer. Then we utilize the fea-
ture map F𝑓 𝑢𝑠 as the input of a sigmoid function to generate the
attention map S as follows:

S = 𝜎 (F𝑓 𝑢𝑠 ) =
1

1 + 𝑒−F𝑓 𝑢𝑠
. (8)

where S ∈ R𝐻×𝑊 . Finally, we calculate the inner product of the
attention map S and the concatenated image P as follows:

F𝑗 =
𝐻×𝑊∑
𝑖=1

S𝑗𝑖P𝑖 . (9)

where F ∈ R𝐶ℎ×𝐻×𝑊 , and it is the final refined feature map we
desire to serve to detectors, of which the information highly con-
tributes to the detection of the prohibited item are emphasised.

4.5 Module Complexity Analysis
In this section, we analyze the model complexity with or without
DOAM in SSD [10] and compare the complexity including the total
number of parameters, model size and computation cost, with other
attention mechanisms.

Table 3 reports that DOAM only brings a slight increase in com-
putational cost (7.14% in GFLOPs), compared to the SSD [10] with-
out any attention mechanisms. Additionally, we compare the com-
plexity between DOAM and three variants of attention mechanisms,
including SE [7], Non-local [23] and DA [4]. The three attention
mechanisms focus on channel information, spatial information and
combination of the two kinds of information, respectively. As we
can see from table 3, compared to the single SSD [10], First, for
total number of parameters, SE [7], Non-local [23] and DA [4] re-
spectively bring 32.23%, 27.69% and 88.43% increases, while the
increase our module brings is almost negligible. Second, for model
size, SE [7], Non-local [23] and DA [4] respectively bring 31.86%,
27.32% and 88.01% increases, while the increase our module brings
is almost negligible. However, for computational cost, SE [7], Non-
local [23] and DA [4] respectively bring 3.15%, 6.54% and 23.07%
increases, while our module brings 7.14%.

In conclusion, for total number of parameters and model size,
DOAM is much more computation efficient than the three famous
attention mechanisms. For computational cost, DOAM is slightly
more computationally expensive. We conjecture that it is mainly

because that different values of parameter 𝑘 cause repetitive com-
putation in RIA.

Table 3: Complexity comparison of different models.
PARAMs, SIZE and GFLOPs represent the total number of
parameters, the Model Size and the Giga Floating Point op-
erations, respectively.

Method PARAMs SIZE(MB) GFLOPs
SSD [10] 24.2 × 106 92.6 30.6522

SSD+SE [7] 32.0 × 106 122.1 31.6169
SSD+Non-local [23] 30.9 × 106 117.9 32.6577
SSD+DA [4] 45.6 × 106 174.1 37.7231
SSD+DOAM(ours) 24.3 × 106 92.7 32.8435

Table 4: Performance comparison between DOAM and other
different attention mechanisms on object categories. FO, ST,
SC, UT andMU represent Folding Knife, Straight Knife, Scis-
sor, Utility Knife and Multi-tool Knife, respectively.

Method mAP Categories
FO ST SC UT MU

SSD [10] 70.89 76.91 35.02 93.41 65.87 83.27
SSD+SE [7] 71.85 77.17 38.29 92.03 66.10 85.67
SSD+Non-local [23] 71.41 77.55 36.38 95.26 64.86 82.98
SSD+DA [4] 71.96 79.68 37.69 93.38 64.14 84.90
SSD+DOAM(ours) 74.01 81.37 41.50 95.12 68.21 83.83

5 EXPERIMENTS
In this section, we carry on extensive experiments to evaluate the
DOAMwe proposed. In ourwork, themain task is to detect occluded
prohibited items in X-ray images in security inspection scenario. To
the best of our knowledge, no dataset targeting this task has been
proposed in the literature, so we only adopt the OPIXray dataset
in the experiments. First, we verify that DOAM outperforms all
the attention mechanisms mentioned above, over different cate-
gories and different occlusion levels. Second, we perform ablation
experiments to thoroughly evaluate the effectiveness of DOAM.
Third, we demonstrate the general applicability of DOAM across
different architectures and the effectiveness after DOAM-integrated.
Finally, we apply the Grad-CAM [16] to visualize the attention
mechanism of DOAM.

Evaluation strategy:All experiments are carried on theOPIXray
dataset. In experiments of comparing with different attention mech-
anisms over different occlusion levels, every model is trained by
training set data in Tab. 1 and tested on OL1, OL2 and OL3 in Tab.
2 respectively. In any other experiments, every model is trained by
training set data and tested by the testing set data in Tab. 1.

Baseline Detail: In experiments of comparing with different
attention mechanisms, we respectively plug DOAM and each of
the attention modules into SSD [10] and report the performances
of SSD [10] and these integrated networks. In our experiments,
these attention modules are added to the backbone (VGG16) of
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SSD. More specifically, they are inserted behind the max pooling
layer where the feature map is scaled to half. In ablation study,
we plug each sub-module of DOAM into SSD [10] separately and
report the performances of SSD [10] and these integrated networks.
In experiments of comparing with different detection approaches,
we plug DOAM into a number of popular detection networks and
report the model performance with or without DOAM in every
detection network.

Parameter setting: In all experiments following, all models are
optimized by the SGD optimizer and the learning rate is set to
0.0001. The batch size is set to 24 and the momentum and weight
decay are set to 0.9 and 0.0005 respectively. We evaluate the mean
Average Precision (mAP) of the object detection to measure the
performance of the model and the IOU threshold is set to 0.5. We
further select the best performance model to calculate the AP of
each category to observe the performance improvement in different
categories. Furthermore, in order to avoid the influence of image
data modification on edge image generation, we do not use any
data augmentation methods to expand the data or modify the pixel
value of the original image, which helps us to better analyze the
impact of edge information.

5.1 Comparing with Different Attention
Mechanisms

We compare three variants of attention mechanisms above, includ-
ing SE [7], Non-local [23] and DA [4]. Tab. 4 and 5 reports the
performances of all models.

Object Categories: As we observed from Tab. 4, the DOAM-
integrated model outperforms SSD [10] by 3.12%. Besides, DOAM
outperforms SE [7], Non-local [23] and DA [4], by 2.16%, 2.60%,
2.05%, respectively. Moreover, Tab. 4 shows the improvement of
DOAM is mainly reflected in Straight Knife, Folding Knife and Util-
ity Knife, all of which are with the high level occlusion. Especially
for Straight Knife, which is the category with highest level occlu-
sion, DOAM outperforms SSD [10] by an impressive amount of
6.48% and Non-local [23] by 5.12%. For Scissor, the lightest occlu-
sion category, the performance of DOAM is only improved by 1.71%
compared to SSD [10] and similar to Non-local [23]. It is obvious
that DOAM surpasses these current popular attention mechanisms
over different categories.

Object Occlusion Levels: The experimental results are shown
in Tab. 5. Further, Fig. 6 is drawn according to Tab. 5 to illustrate
the effectiveness of DOAM to occluded object detection in X-ray
images more clearly. In Fig. 6, we can clearly obtain a conclusion
that DOAM can achieve a higher performance than the baseline
and other attention mechanisms with the X-ray images suffer a
higher level of occlusion. It verifies the effectiveness of DOAM that
it has a significant effect on the performance of detecting occluded
prohibited items in X-ray images. (Note that in OL3, the perfor-
mance of "SSD+Non-local" is lower than "SSD". Due to the attention
mechanism of Non-local is to capture spatial information by con-
structing the relations between regions, we conjecture that this
type of relation reduces effect when the noises of image increase.)

Table 5: Performance comparison between DOAM and other
different attention mechanisms on object occlusion levels.

Method OL 1 OL 2 OL 3
SSD [10] 75.45 69.54 66.30
SSD+SE [7] 76.02 70.11 67.53
SSD+Non-local [23] 75.99 70.17 65.87
SSD+DA [4] 77.41 69.68 66.93
SSD+DOAM(ours) 77.87 72.45 70.78

Figure 6: The amount changes of performance improvement
of DOAM over differentmodels with occlusion level increas-
ing.

5.2 Ablation Study
Tab. 6 shows that EG improved the performance by 0.43% compared
with the method of simply concatenating the input image and the
corresponding edge image without any other operations of EG.
We conjecture that it is mainly because the EG has the ability to
focus adaptively on the prohibited items we desire to detect by
specifically increasing the weight of edge information through the
optimization of a loss function, while simply concatenating operates
all the objects in the image equally whether the object is we desire
to detect or not for feature fusion.

Besides, model integrating both EG and MA achieves better
performance by 0.37% than integrating EG alone, which verifies
the effectiveness of MA. Note that we observe prohibited item size
is about 10×10 averagely, so we choose 10×10 as the region scale
to perceive for each position of the feature map.

We choose three different scales of the regions (5 × 5, 10 × 10,
15 × 15 respectively), and draw the gated convolutional neural
network [27] G into MA, to adaptively select the best feature map
which generated by operation of average pooling with appropriate
pooling size. The experimental results show that after drawing G,
the performance improves by 0.9%.
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Table 6: Ablation studies of DOAM. "C" represents sim-
ply concatenate operation, "DOAM-MA" represents DOAM
without Material Awareness module, "DOAM-G" represents
DOAM without the Gate Convolutional Neural Network.

Method mAP Category
FO ST SC UT MU

SSD [10] 70.89 76.91 35.02 93.41 65.87 83.27
SSD+C 72.32 79.00 36.46 94.13 68.85 83.18
SSD+(DOAM-MA) 72.75 80.26 35.54 94.81 67.96 85.19
SSD+(DOAM-G) 73.12 79.94 38.58 93.39 69.40 84.28
SSD+DOAM(ours) 74.01 81.37 41.50 95.12 68.21 83.83

5.3 Comparing with Different Detection
Approaches

To further evaluate the effectiveness of DOAM and verify DOAM
can be applied to various detection networks, we conduct experi-
ments on the famous detection approaches, SSD [10], YOLOv3 [15]
and FCOS [20]. The results are shown in Tab. 7.

Table 7: Performance comparison between DOAM-
integrated network and baselines for three famous de-
tection approaches.

Method mAP Category
FO ST SC UT MU

SSD [10] 70.89 76.91 35.02 93.41 65.87 83.27
SSD+DOAM(ours) 74.01 81.37 41.50 95.12 68.21 83.83
YOLOv3 [15] 78.21 92.53 36.02 97.34 70.81 94.37
YOLOv3+DOAM(ours) 79.25 90.23 41.73 96.96 72.12 95.23
FCOS [20] 82.02 86.41 68.47 90.22 78.39 86.60
FCOS+DOAM(ours) 82.41 86.71 68.58 90.23 78.84 87.67

As we can see from Tab. 7, the performance of DOAM-integrated
networks are improved by 3.12%, 1.04% and 0.39% compared with
SSD [10], YOLOv3 [15] and FCOS [20] respectively, which verify
that our module can be inserted as a plug-and-play module into
most detection networks and receive a better performance. Note
that the performances on Folding Knife and Scissor after DOAM-
integrated are slightly reduced. We speculate that the reason is
that these images of the two categories in the dataset are occluded
not seriously. When the occlusion level increases, the attention
mechanism pays more attention to the objects occluded highly like
straight knives while less attention to the objects occluded slightly,
which results in the slight performance degradation for Folding
Knife and Scissor.

5.4 Attention Visualization Analysis
In this section, we visualize the attention map generated in DOAM
to observe the effects of DOAM. The attention distribution can be
visualized in Fig. 7. In rows 1 and 3, we select 10 input X-ray im-
ages (each category has two images) and show their corresponding
attention visualizations in rows 2 and 4. We observe that DOAM
could capture edge and region information accurately. For example,

in column 4, a red box is marked on a utility knife of the X-ray
image (in row 1), and the boundaries of the utility knife are very
clear in the attention visualization (in row 2). Moreover, in the first
column, a red box is marked on a folding knife and the correspond-
ing attention map (in row 2) highlights most of the areas where the
folding knife lies on. In short, these visualizations further demon-
strate the effectiveness of capturing edge and region information
for improving feature representation in occluded prohibited items
detection.

Figure 7: Attention visualization results.

6 CONCLUSION
In this paper, we investigate occluded prohibited items detection
in X-ray scanned images, which is a promising application in in-
dustry yet remains fewer studied in computer vision. To facilitate
research in this field, we contribute the first high-quality object
detection dataset for security inspection, named Occluded Prohib-
ited Items X-ray (OPIXray) image benchmark. OPIXray focused on
the widely-occurred prohibited item "cutter", annotated manually
by professional inspectors from the international airport. To deal
with the occlusion in X-ray images detection, we propose the De-
occlusion Attention Module (DOAM), a plug-and-play module that
can be easily inserted into and thus promote most popular detectors.
We comprehensively evaluate our module on the OPIXray dataset,
and demonstrate that our module can consistently improve the
performance of the state-of-the-art detection methods such as SSD,
FCOS, etc, and significantly outperforms several widely-used atten-
tion mechanisms. In particular, the advantages of DOAM are more
significant in the scenarios with higher levels of occlusion, which
demonstrates its potential application in real-world inspections.
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