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Abstract

Existing hand detection methods usually follow the pipeline
of multiple stages with high computation cost, i.e., feature
extraction, region proposal, bounding box regression, and ad-
ditional layers for rotated region detection. In this paper, we
propose a new Scale Invariant Fully Convolutional Network
(SIFCN) trained in an end-to-end fashion to detect hands effi-
ciently. Specifically, we merge the feature maps from high to
low layers in an iterative way, which handles different scales
of hands better with less time overhead comparing to concate-
nating them simply. Moreover, we develop the Complemen-
tary Weighted Fusion (CWF) block to make full use of the
distinctive features among multiple layers to achieve scale
invariance. To deal with rotated hand detection, we present
the rotation map to get rid of complex rotation and derota-
tion layers. Besides, we design the multi-scale loss scheme to
accelerate the training process significantly by adding super-
vision to the intermediate layers of the network. Compared
with the state-of-the-art methods, our algorithm shows com-
parable accuracy and runs a 4.23 times faster speed on the
VIVA dataset and achieves better average precision on Ox-
ford hand detection dataset at a speed of 62.5 fps.

Introduction
Hand detection is applied in many tasks such as virtual real-
ity, human-computer interaction, and driving monitoring, to
name a few. However, it is still challenging due to many dif-
ficulties such as the low-resolution, clutter background, oc-
clusions, the varying sizes and shapes of hands due to differ-
ent view angle, and inconsistent appearances due to chang-
ing illuminations.

Several methods have been developed for the hand de-
tection in the literature. Traditional methods first employ
human-crafted features such as Histograms of Oriented Gra-
dients (HOG) (Betancourt et al. 2015) and skin color (Kaku-
manu, Makrogiannis, and Bourbakis 2007), and then distin-
guish hand regions by classifiers such as SVM (Mittal, Zis-
serman, and Torr 2011) and Latent SVM (Felzenszwalb et
al. 2010). However, most of these methods are not robust to
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(a) (b)

Figure 1: Performance comparison between our SIFCN with
ResNet50 backbone (cyan) and Multi-scale fast RCNN (Yan
et al. 2017) (red). (a) Examples from the VIVA dataset. (b)
Examples from the Oxford dataset.

background clutters, which give rise to high false positive
rates.

In recent years, more effective hand detection methods
are obtained based on the deep learning based object de-
tection methods, for instance, Region-Based Convolutional
Networks (R-CNNs) (Girshick et al. 2016), Faster Region-
based Convolutional Network (Faster R-CNN) (Ren et al.
2015), and Single Shot MultiBox Detector (SSD) (Liu et
al. 2016). Multi-scale features (Le et al. 2017; Yan et al.
2017) extracted by Convolutional Neural Networks are ex-
plored to detect different scales of hands. In the very recent
work (Deng et al. 2018), rotation and derotation layers are
added to the network to handle rotated hands. One prob-
lem with the existing deep learning based hand detection
methods is that merging all the multi-scale features rudely
and the complex network structure to handle rotation usually
lead to high computational cost, which limits the practicality
of these methods in applications that require fast processing
time.

To address these issues, in this paper, we propose a

4344



new efficient hand detection method termed as Scale In-
variant Fully Convolutional Network (SIFCN). SIFCN em-
ploys existing popular deep learning architecture such as
VGG16 (Simonyan and Zisserman 2014) or ResNet50 (He
et al. 2016) as backbone, and synthesizes multi-scale fea-
tures to make predictions so as to be scale-invariant for han-
dling hands of different sizes. To reduce the computation
cost, we merge feature maps from multiple layers iteratively
instead of concatenating them simply. Before that, the 1× 1
convolution kernel is conducted on feature maps from higher
layers to reduce the number of output channels by control-
ling the number of kernels, as a result of which the compu-
tation cost in the next steps is decreased further more. We
develop the Complementary Weighted Fusion (CWF) block
to make full use of the distinctive features among multi-
ple layers and exploit complementary information. Different
from previous methods using additional rotation and dero-
taion layers (Deng et al. 2018), our model generates the ro-
tation map to represent the rotated hand regions effectively.
Moreover, we design the multi-scale loss to accelerate the
training process by providing supervision to the intermedi-
ate layers of the network. Finally, the Non-Maximum Sup-
pression (NMS) is applied to the bounding boxes detected by
our network to yield the detection results. As shown in Fig-
ure 1, our SIFCN method detects different scales of hands
well. It achieves fewer false positives and generates more
accurate hand locations than Multi-scale fast RCNN (Yan et
al. 2017). Besides, our model predicts the hand orientation
precisely on the Oxford dataset with rotated hand annota-
tions, due to the incorporation of the rotation map. The main
contributions of this paper are summarized as follows:
• We propose a new Scale Invariant Fully Convolutional

Network for hand detection, which makes full use of the
distinctive features of multiple scales in an iterative way
with the CWF block.

• We design the multi-scale loss scheme to provide super-
vision to the intermediate layers of the network, leading
to faster convergence of the network.

• Experiments on VIVA and Oxford datasets show that
our method achieves competitive performance with the
state-of-the-art hand detection methods but with much im-
proved running time efficiency.

Related Work
Traditional Methods. Traditional hand detection meth-
ods usually consist of human-crafted feature extraction and
classifier training. (Dardas and Georganas 2011) describes
a skin detection based method, which uses contour compar-
ison to find hands from skin areas. However, it is difficult
to distinguish between hands and faces well since faces and
fists share similar contour shapes. (Niu et al. 2013) proposes
a feature fusion strategy for hand detection in clutter back-
ground, but it does not perform well under low resolution
and occlusions. (Betancourt et al. 2015) uses the HOG fea-
tures to train a SVM classifier, and extend it with a Dynamic
Bayesian Network for better performance. (Mittal, Zisser-
man, and Torr 2011) combines a hand shape detector, a
context-based detector and a skin-based detector to generate

region proposals. Then each proposal is scored to obtain the
final results using the SVM classifier. Due to the limitation
of hand-crafted features, the performance of these traditional
methods is sub-par for practical applications.

Deep learning based Methods. Motivated by the good
performance of convolutional neural networks (CNNs) in
computer vision, many recent hand detection methods are
proposed based on CNN models. (Bambach et al. 2015) de-
velops a method combining a candidate region generator and
CNNs for hand detections in complex egocentric interac-
tions. Context (Zhou, Pillai, and Yalla 2016) is also explored
to design the hand detector, which provides extended infor-
mation of the prevalent hand shapes and locations. However,
the additional context cues lead to complicated preprocess-
ing and post-processing. In (Le et al. 2017), the Fully Con-
volutional Network (Long, Shelhamer, and Darrell 2015) is
used to generate hand region proposals and then the convo-
lution features are sent to the detection network. In terms
of merging multi-scale features into a large feature map,
the convolution operations are time-consuming in the later
steps. Similarly, (Yan et al. 2017) concatenates the multi-
scale feature maps from the last three pooling layers into
a large feature map. Although different receptive fields are
taken into account, simple concatenation of feature maps re-
sults in high computation overhead.

On the other hand, hands are typically in a rotated pose,
and rarely being precisely horizontal or vertical in real
scenes. To predict more accurate locations and poses of
hands, (Deng et al. 2018) design a shared network for learn-
ing features, a rotation network to predict the rotation angle
of region proposals, a derotation layer to obtain axis-aligned
rotating feature maps and a detection network for the last
classification task. However, the method is of great com-
plexity to handle the rotated distances, even when carefully
designed.

Different from the aforementioned deep-learning based
methods, our model fuses multi-scale features iteratively and
handles hand rotation with the rotation map instead of com-
plex rotation and derotation layers, resulting in comparable
accuracy and better efficiency. To be more specific, since
the high-level feature maps reflect the global features while
the low-level feature maps contains more local information,
the feature maps from different scales are weighted before
merged, so that the features from multiple scales can com-
plement each other in subsequent process.

Scale Invariant Fully Convolutional Network
As shown in Figure 2, our network is composed of feature
extraction layers, feature fusion layers and output layers. In
the following, we first describe these modules. Then, we in-
troduce the rotation map to detect rotated hands effectively.
Finally, the multi-scale loss function is formulated.

Network Architecture
Feature Extraction Layers. For feature extraction, we
employ VGG16 (Simonyan and Zisserman 2014) or
ResNet50 (He et al. 2016) as the backbone, as shown
in Figure 2(a). As multiple scales of hand regions are
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Figure 2: The SIFCN architecture with VGG16 backbone. The network consists of three modules: (a) feature extraction layers,
(b) feature fusion layers, and (c) output layers.

taken into consideration in the feature fusion layers, we
select the feature maps from pooling-2 to pooling-5 for
VGG16, and conv2 1, conv3 1, conv4 1 and conv5 1 for
ResNet50. The feature maps extracted from VGG16 or
ResNet50 are ( 14 )

2, ( 18 )
2, ( 1

16 )
2, ( 1

32 )
2 the size of input im-

ages, corresponding to the above four scales, respectively.
The backbone network is pre-trained based on the ImageNet
dataset (Krizhevsky, Sutskever, and Hinton 2012).

Feature Fusion Layers. To detect different scales of
hands well, it is wise to take full advantage of multi-scale
features. However, the computation cost of fusing all fea-
ture maps simultaneously can be prohibitive. Therefore, we
design the Unweighted Fusion (UF) block to reduce com-
putation overhead, as shown in Figure 2(b), which works as
follows:

• The last higher level feature maps are up-sampled to fit
the size of the current lower level feature maps in the un-
pooling layer. Then the feature maps from the two levels
are concatenated on the channel dimension.

• Two convolution operations are performed on the con-
catenated feature maps. Firstly, the 1 × 1 convolution is
used to reduce the output channels. Then, the 3 × 3 con-
volution is conducted to combine the feature maps of dif-
ferent scales.

• The merged feature maps are regarded as the base feature
maps in the next UF block.

The UF block is computation-efficient since it merges
multi-scale feature maps iteratively. However, it treats the
feature maps from different scales equally, i.e., concatenates
the current level feature maps with the up-sampled feature

maps from the higher layer directly and then conducts con-
volutions on the concatenated feature maps. Thus the re-
dundant information in the combined features may under-
estimate the distinctive features, resulting in inferior perfor-
mance.

To make full use of the distinctive multi-scale features, we
introduce Complementary Weighted Fusion (CWF) block
as an improved version of UF block. As illustrated in Fig-
ure 2(b), the CWF block first weights the current feature
maps fs by the up-sampled higher level feature maps us−1
by {

W (fs) = fs ∗ C(us−1),
C(us−1) = 1− Conv1×1(us−1).

(1)

s is the current scale, and W (fs) is the weighted feature
maps. C(us−1) denotes the complementary feature maps of
us−1 using the subtraction. Conv1×1 represents the 1 × 1
convolution. ∗ denotes element-wise multiplication. Weight-
ing fs with C(us−1) can highlight the fine-grained distinc-
tive information contained in fs that us−1 may not have.
Then the CWF block concatenates us−1 withW (fs) instead
of fs, so that the feature maps from different scales can fully
complement each other. Finally the same two convolutions
as used in the UF block are conducted on the concatenated
feature maps.

After the final block (i.e., UF block or CWF block), the
feature maps go through the 3 × 3 convolution layer and
then are fed to the output layers.

Output Layers. Given the image input, the score map, ro-
tation map and distance map will be generated as the out-
put, as illustrated in Figure 2(c). The width and height of
the three kinds of maps are the same as the input image.
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Similar to the confidence map in Fully Convolutional Net-
works (FCN) (Long, Shelhamer, and Darrell 2015), each
pixel of the score map is a scalar between 0 and 1 repre-
senting the confidence belonging to a hand region. The rota-
tion map only has 1 channel recording the rotation angle of
the box and the pixel value is in (−π/2, π/2). Inspired from
the work in (Zhou et al. 2017), the distance map stores the
geometry information of hand bounding boxes by 4 chan-
nels, which record the distances to four boundaries of the de-
tected hand bounding box respectively. The bounding boxes
of hands are restored with the three kinds of maps and will
be purified with the NMS to yield final results.

Handling Rotated Hand Detection
Before performing NMS to remove redundant detection
boxes, we restore rotated rectangles from distance maps
and rotation maps by estimating the coordinates of the four
vertices of the corresponding bounding box for pixels, the
scores of which exceed a certain threshold in the score map,
called as the score map threshold.
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Figure 3: Restore the corresponding rectangle for p from the
rotation map and the distance map. The image coordinate
system is drawn in black while the auxiliary coordinate sys-
tem is red.

To better understand this process, we illustrate with an
example of clockwise rotation in Figure 3. Based on the dis-
tance map we can obtain the distances td, rd, bd, ld from p to
the four boundaries (top, right, bottom, left) of the rectangle
R. In order to calculate the coordinates of p0, p1, p2, p3 in
image coordinate system, an auxiliary coordinate system is
introduced with p3 as the origin. The directions of X-axis
and Y-axis are the same as the image coordinate system.
We rotate R to the horizontal around p3. p′ is the corre-
sponding position of p in the rotated rectangle R′. For two-
dimensional rotation, the rotation matrix is

M (θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (2)

where θ is the rotation angle with counter-clockwise as the
positive direction, which can be restored from the rotation
map. Let (x′, y′) be the coordinates of p in the auxiliary co-
ordinate system. Then we can calculate the rotation of p as

M (θ)

(
x′

y′

)
=

(
ld
−bd

)
. (3)

Similarly, for p0, p1, p2, we have

M (θ)

(
x′0
y′0

)
=

(
0

−(td+ bd)

)
,

M (θ)

(
x′1
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)
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)
,
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(
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)
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(
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0

)
,

(4)

where (x′i, y
′
i), i ∈ {0, 1, 2} are the coordinates of pi

in the auxiliary coordinate system. Finally, the coordinates
(xi, yi), i ∈ {0, 1, 2, 3} of pi in the image coordinate sys-
tem are calculated by(

x3
y3

)
=

(
x
y

)
−
(
x′

y′

)
,(

xi
yi

)
=

(
x′i
y′i

)
+

(
x3
y3

)
, i ∈ {0, 1, 2}.

(5)

(x, y) are the coordinates of p in the image coordinate
system. According to Equation (2)∼(5), the rectangle cor-
responding p can be restored from the rotation map and
distance map and represented as R = {(xi, yi)|i ∈
{0, 1, 2, 3}}.

Multi-Scale Loss Function
As discussed above, the output of the network includes three
components, namely the score map, the rotation map and the
distance map. For better optimization of our model, we add
supervision to the intermediate layers in addition to the top
output layer. The total loss, named the multi-scale loss, can
be calculated as follows:

L =
∑
s∈S

ws (αLsco + βLrot + Ldis) , (6)

where Lsco, Lrot and Ldis are losses for the score map,
rotation map and distance map, respectively. The scale set
S = {1, 2, 3, 4} represents the scale index of the extracted
feature maps. The parameter ws adjusts the weight of the
corresponding scale. The factors α and β control the weights
of the three loss terms. We explain the three loss functions
in detail as follows.

Loss Function of Score Map The dice loss is proved to
perform well in segmentation tasks to handle the imbalance
problem of positive and negative samples (Ronneberger, Fis-
cher, and Brox 2015; Milletari, Navab, and Ahmadi 2016;
Zhang et al. 2017). Motivated by this strategy, the loss for
the score map can be written as:

Lsco =
2
∑N

i pigi∑N
i p2i +

∑N
i g2i

, (7)
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(a) (b)

Figure 4: Detection examples of SIFCN with ResNet50 backbone. (a) Examples from the VIVA dataset. (b) Examples from the
Oxford dataset.

where the sums run over the all N pixels of the score map.
pi is the value of the pixel i in the score map generated by
the prediction network, and gi is the value of pixel i in the
ground truth map.

Loss Function of Rotation Map For the rotation angle,
we use cosine function to evaluate the distance between the
predicted angle θ̃ and the ground truth θ:

Lrot = 1− cos
(
θ̃ − θ

)
. (8)

Loss Function of Distance Map Since the loss of distance
maps should be scale-invariant, the IoU loss (Everingham et
al. 2015) is adopted to calculate the loss of distance:

Ldis = − log
X̃ ∩X
X̃ ∪X

, (9)

where X̃ and X are the predicted axis-aligned box and the
ground truth bounding box, respectively.

Experiments
We evaluate our algorithm1, and compare it with existing
methods on two benchmark datasets: the VIVA hand de-
tection dataset (Das, Ohn-Bar, and Trivedi 2015) and the
Oxford hand detection dataset (Mittal, Zisserman, and Torr
2011). We show several qualitative examples in Figure 4.
As these results show, the SIFCN with ResNet50 backbone
can handle different scales of hands and shapes in various
illumination conditions, even the blurred samples.

1The source code of the proposed method is available at http:
//39.107.81.62/Diana/sifcn.

Dataset
VIVA Hand Detection Dataset is used in the Vision for
Intelligent Vehicles and Applications Challenge (Das, Ohn-
Bar, and Trivedi 2015). The training set includes 5, 500 an-
notated images, and the testing set with ground truths that
is publicly accessed includes the same number images. The
images are extracted from 54 videos collected in natural-
istic driving scenarios. Annotations are given in .txt for-
mat. The bounding boxes of hand regions are represented
as (x, y, w, h), where x, y are the upper-left coordinates of
the box and w, h are the width and height of the box, respec-
tively. Note that, the annotations are axis-aligned so that the
rotation angles are set to 0 in training and the predictions are
axis-aligned bounding boxes in our experiments.
Oxford Hand Detection Dataset consists of three parts: the
training set, the validation set and the testing set, with 1, 844,
406 and 436 images separately. Unlike the VIVA dataset, the
images in Oxford dataset are collected from various differ-
ent scenes. Moreover, the ground truth is given by the four
vertexes (xi, yi), i ∈ {1, 2, 3, 4} of the box in the format of
.mat and not necessarily to be axis aligned but oriented with
respect to the wrist. The rotation angle will be calculated
furthermore in our experiments.

Experimental Settings
The experiments are conducted on a single GeForce GTX
1080 GPU and an Intel(R) Core(TM) i7-6700K @ 4.00GHz
CPU. For comprehensive evaluation, we try two backbone
networks: VGG16 (Simonyan and Zisserman 2014) and
ResNet50 (He et al. 2016) with the ImageNet (Krizhevsky,
Sutskever, and Hinton 2012) pre-trained models.

Training is implemented with stochastic gradient algo-
rithm using the ADAM scheme. We take the exponential
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Table 1: Results on VIVA Dataset.
Methods Level-1(AP/AR)/% Level-2(AP/AR)/% Speed/fps Environment
MS-RFCN (Le et al. 2017) 95.1/94.5 86.0/83.4 4.65 6 cores@3.5GHz, 32GB RAM, Titan X GPUMS-RFCN (Le et al. 2016) 94.2/91.1 86.9/77.3 4.65
Multi-scale fast RCNN (Yan et al. 2017) 92.8/82.8 84.7/66.5 3.33 6 cores@3.5GHz, 64GB RAM, Titan X GPU
FRCNN (Zhou, Pillai, and Yalla 2016) 90.7/55.9 86.5/53.3 - -
YOLO (Redmon et al. 2016) 76.4/46.0 69.5/39.1 35.00 6 cores@3.5GHz, 16GB RAM, Titan X GPU
ACF Depth4 (Das, Ohn-Bar, and Trivedi 2015) 70.1/53.8 60.1/40.4 - -
Ours (VGG16+UF) 88.9/82.8 72.6/56.7 13.88

4 cores@4.0GHz, 32GB RAM, GeForce GTX 1080

Ours (VGG16+UF+Multi-Scale Loss) 92.9/88.3 80.9/62.7 13.16
Ours (VGG16+CWF+Multi-Scale Loss) 92.3/89.1 83.6/68.8 13.10
Ours (ResNet50+UF) 93.7/89.9 83.6/73.6 20.40
Ours (ResNet50+UF+Multi-Scale Loss) 94.0/90.1 85.7/74.0 20.00
Ours (ResNet50+CWF+Multi-Scale Loss) 94.6/92.1 86.3/75.8 19.68

Table 2: Results on Oxford Dataset.
Methods AP/%
MS-RFCN (Le et al. 2017) 75.1
Multiple proposals (Mittal, Zisserman, and Torr 2011) 48.2
Multi-scale CNN (Yan et al. 2017) 58.4
Ours (VGG16+UF) 68.7
Ours (VGG16+UF+Multi-Scale Loss) 77.8
Ours (VGG16+CWF+Multi-Scale Loss) 78.0
Ours (ResNet50+UF) 78.2
Ours (ResNet50+UF+Multi-Scale Loss) 78.6
Ours (ResNet50+CWF+Multi-Scale Loss) 80.4

decay learning rate, the initial value of which is 0.0001
and decays every 10, 000 iterations with rate 0.94. ws, s ∈
{1, 2, 3, 4} are all set to 1. The hyper-parameters α, β are set
to 0.01 and 20, respectively. Besides, the score map thresh-
old is set to 0.8 and the NMS is conducted with a threshold
0.2.

For data augmentation, we randomly mirror and crop the
images, as well as do color jittering by distorting the hue,
saturation and brightness. Due to the limitation of the GPU
capacity, the batch size is set as 12 and all the images are
resized to 512× 512 before fed into the network.

Evaluations on VIVA Dataset
Following the Vision for Intelligent Vehicles and Applica-
tions Challenge, we evaluate the algorithms on two levels ac-
cording to the size of the hand instances. Specifically, Level-
1 evaluates the instances with minimum height of 70 pixels
while Level-2 with 25 pixels. The Average Precision (AP)
and Average Recall (AR) are used to rank compared meth-
ods on the VIVA dataset. AP is the area under the precision-
recall curve and AR is calculated over 9 evenly sampled
points in log space between 10−2 and 100 false positives per
image. As performed in PASCAL VOC (Everingham et al.
2015), the hit/miss threshold of the overlap between a pair
of predicted and ground truth bounding boxes is set to 0.5.

As presented in Table 1, we compare our methods
with MS-RFCN (Le et al. 2017; 2016), Multi-scale fast
RCNN (Yan et al. 2017), FRCNN (Zhou, Pillai, and Yalla
2016), YOLO (Redmon et al. 2016) and ACF Depth4 (Das,
Ohn-Bar, and Trivedi 2015). Using VGG16 as the back-
bone network, our model achieves 92.3%/89.1% (AP/AR)
at Level-1 while 83.6%/68.8% (AP/AR) at Level-2. In
terms of ResNet50, we obtain more accurate performance,

i.e., 94.6%/92.1% (AP/AR) at Level-1 and 86.3%/75.8%
(AP/AR) at Level-2. Besides, the running speeds of SIFCN
based on VGG16 and ResNet50 are 13.10 and 19.68 fps,
respectively.

YOLO (Redmon et al. 2016) performs hand detection in
real time, but its accuracy is unsatisfactory. On the contrary,
MS-RFCN (Le et al. 2017) performs against other competi-
tors in accuracy but the detecting speed is very slow, i.e.,
4.65 fps. Therefore, it is of great significance that our model
achieves a good trade-off between the accuracy and speed.
The model (ResNet50+CWF+Multi-Scale Loss) is compa-
rable to (Le et al. 2017) in accuracy while achieves a 4.23
times faster running speed as shown in Table 1.

Evaluations on Oxford Dataset
According to the official evaluation tool2 in the Oxford
dataset, we report the performance on all the “bigger” hand
instances, those with more than 1, 500 pixels. As shown in
Table 2, similar to the results on VIVA dataset, ResNet50
performs better than VGG16 as a backbone network. Specif-
ically, ResNet50 based SIFCN achieves an improvement of
5.3% in AP score compared with the state-of-the-art MS-
RFCN (Le et al. 2017). VGG16 based SIFCN still outper-
forms MS-RFCN (Le et al. 2017) by 2.9% in AP score. In
addition, it is worth mentioning that the detecting speed on
the Oxford dataset is up to 62.5 fps using ResNet50 while
52.6 fps using VGG16.

Ablation Study
We further perform experiments to study the effect of dif-
ferent aspects of our model on the detection performance.
We choose the Oxford dataset to conduct the ablation exper-
iments with the ResNet50 and UF block as the defaults.
Effectiveness of multi-scale loss. In order to investigate the
effectiveness of the multi-scale loss, we report the training
time and AP scores considering different numbers of scales
in Figure 6. The number of scales 1, 2, 3, 4 correspond to
S = {4}, S = {3, 4}, S = {2, 3, 4}, S = {1, 2, 3, 4} in
Equation (6) respectively. It can be seen that as the number
of scales used in loss function increases, the time it takes
to train the model to convergence decreases. The conver-
gence of the network is accelerated significantly (more than
10 hours) using the multi-scale loss. At the same time, there

2http://www.robots.ox.ac.uk/∼vgg/data/hands/index.html
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(a) (b)

Figure 5: The change of AP with α and β on the Oxford dataset. (a) AP score vs. α if β = 20. (b) AP score vs. β if α = 0.01.
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Figure 6: Training time and AP score vs. different numbers
of scales for the Oxford dataset.

is even a slight increase in AP score. That is, the multi-scale
loss accelerates the training process without sacrificing the
AP score. This is attributed to the multiple supervision to the
intermediate layers of the network.
Influence of score map. We change the value of α in Equa-
tion (6) to find appropriate weights of score map in train-
ing. The results are reported in Figure 5(a). As α increases
from 0.01 to 1, the AP increases first and then decreases, and
reaches the maximum when α is 0.10 in our experiments. It
can be seen that the AP is not too sensitive to the weight of
score map.
Effectiveness of rotation map. As discussed above, β in
Equation (6) weights the loss of rotation angle in the train-
ing process. As shown in Figure 5(b), when the angle loss
is considered in the optimization procedure, i.e., β > 0, the
AP score is stable and larger than 0.78 for different values of
β. Otherwise, if β = 0, there is a significant drop in the AP
score on Oxford dataset (i.e., 0.4991). It can be concluded

that the rotation map plays a very important role in optimiz-
ing the final model.
Effectiveness of CWF block. From Table 1 and 2, we can
see that the CWF block outperforms the UF block whether
using the VGG16 or ResNet50 as the backbone. Specifi-
cally, the CWF block achieves higher AP and AR on VIVA
dataset, especially the AR score, which has been greatly im-
proved. It indicates that the model with the CWF block pro-
duces less false negatives than the UF block and makes bet-
ter use of the distinctive features of different scales. For ex-
ample, the CWF block gains an improvement of 0.2% in AP
score with VGG16 and 1.8% with ResNet50 comparing to
the UF block on the Oxford dataset.

Conclusion
We present an efficient Scale Invariant Fully Convolutional
Network (SIFCN) for hand detection. The proposed Com-
plementary Weighted Fusion (CWF) block can make full use
of the distinctive features of different scales to achieve scale
invariance effectively. Specifically, the multi-scale features
are merged iteratively rather than concatenated simultane-
ously to reduce computation overhead. Moreover, the multi-
scale loss scheme is employed to accelerate the training
procedure significantly. Experimental results on the VIVA
and Oxford datasets show comparable performance of our
method compared with the state-of-the-art methods with
much higher speed. For the future work, we will optimize
the code to further improve the run time efficiency of SIFCN
so that it can run in real-time with better accuracy.
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