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a b s t r a c t 

We present a novel extractive document summarization approach based on a Deep Q-Network (DQN), 

which can model salience and redundancy of sentences in the Q-value approximation and learn a policy 

that maximize the Rouge score with respect to gold summaries. We design two hierarchical network 

architectures to not only generate informative features from the document to represent the states of 

DQN, but also create a list of potential actions from sentences in the document for the DQN. At training 

time, our model is directly trained on reference summaries generated by human, eliminating the need 

for sentence-level extractive labels. For testing, we evaluate this model on the CNN/Daily corpus, the DUC 

2002 dataset and the DUC 2004 dataset using Rouge metric. Our experiments show that our approach 

achieves performance which is better than or comparable to state-of-the-art models on these corpora 

without any access to linguistic annotation. This is the first time DQN has been applied to extractive 

summarization tasks. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

In the era of the information explosion, it is impossible to ob-

tain all the information only through the human brain, especially

the overwhelming news reports, massive text messages, etc. How

to help people effectively have access to critical and salient in-

formation becomes a challenge. Therefore, it is necessary to de-

velop an automatic summarization system to effectively extract the

key information of the text and to guarantee the minimum loss

of the information for the summary. At present, many effort s have

been made to the following summarization approaches: abstractive

summarization and extractive summarization. Abstractive methods

aim to concisely paraphrase the information content in the docu-

ments to produce a condensed summary while extractive summa-

rization techniques target at selecting salient words, sentences or

passages from source documents. 

Recently, the emergence of generative models based on neu-

ral network for text [1] makes abstractive approaches increasingly

popular [2,3] . Especially, Nallapati et al. [4] modified an existing

corpus that was used for the task of passage-based question an-

swering [5] and then produced a multi-sentence summaries based

corpus — the CNN/Daily Mail corpus which is available to train

deep learning models for abstractive or extractive summarization. 
∗ Corresponding author. 
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In spite of the fact that the current deep learning approaches

or abstractive summarization have achieved good performance on

hort input and output sequences, and abstractive approaches are

onsistent with the pattern of human beings summarization gener-

tion, these approaches have a poor performance for longer docu-

ents and summaries. Hence, extractive approaches are still ap-

ealing since they are less complicated, and produce grammati-

ally and semantically correct summaries, so we do not have to

orry about the genuine linguistic quality. A series of traditional

echniques for extractive approaches have been proposed, such as

reedy approaches [6] , hidden Markov models [7] , graph based ap-

roaches [8,9] , constraint optimization based approaches [10] , and

nteger linear programming [11] , etc. 

Neural network based approaches for extractive summarization

ave gained huge popularity with the development of deep learn-

ng techniques. For instance, Kageback et al. [12] used the recur-

ive autoencoder [13] to summarize documents, achieving the best

esult on the Opinosis dataset [14] . Yin and Pei [15] used Convolu-

ional Neural Network (CNN) to project sentences into dense dis-

ributed representations and then selected sentences by minimiz-

ng the cost based on their prestige and diverseness for the task

f multi-document extractive summarization. In a recent work,

heng and Lapata [16] proposed an attentional encoder-decoder

f classifier model for extractive single-document summarization

hich is trained on the CNN/Daily Mail corpus. Nallapati et al.

17] also treated extractive summarization as binary-classification

https://doi.org/10.1016/j.neucom.2018.01.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.01.020&domain=pdf
mailto:libo@iscas.ac.cn
https://doi.org/10.1016/j.neucom.2018.01.020
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ask and proposed a Recurrent Neural Network (RNN) based

equence model which selects sentences according to their con-

ent, salience and novelty. In addition to using supervised learn-

ng approaches in their works for extractive summarization, Ryang

nd Abekawa [18] constructed an extractive summarization system

ithin the framework of reinforcement learning, and Rioux et al.

19] did the similar work with reinforcement learning methods. 

Inspired by extractive summarization approaches based on tra-

itional reinforcement learning and deep neural network, we de-

elop a deep reinforcement learning framework for extractive sum-

arization tasks by employing a Deep Q-Network(DQN). More

pecifically, we deploy a CNN-RNN hierarchical network architec-

ure to not only generate informative features from text to repre-

ent the states of DQN, but also create a list of potential actions

rom the text for the DQN. At the same time, our DQN learns to

ake decision on which action ( e.g. sentence) will be selected

rom action spaces ( e.g. sentences in the document) according to

heir information content, salience and redundancy in the Q-value

unction approximation. In addition, we also deploy a RNN-RNN hi-

rarchical network to compare the performance for CNN and RNN

n encoding sentences. The difference of two hierarchical networks

s that they encode each word in sentence to a fixed dimensional

entence representation with CNN or RNN in the bottom layer. Af-

er that, these sentence representations will be the inputs of RNN

n the top layer to generate the hidden state representations of

entences and document content representation. In this paper, our

ork concentrates only on sentential extractive summarization of

ingle document using deep reinforcement learning. We train our

QN model on the CNN/Daily Mail corpus used by Nallapati et al.

20] and Cheng et al. [16] . Unlike their supervised classifier models

reating labels manually by converting abstractive summaries to

xtractive labels, our extractive summarization approach is based

n deep reinforcement learning which allows us to directly op-

imize our summarizing tasks by using Rouge [21] metrics, so it

liminates the need of extractive labels and does not incur addi-

ional annotation costs. 

We evaluate our model automatically on the following datasets:

he benchmark DUC 2002 document summarization corpus and

he CNN/Daily Mail news highlights corpus. Evaluations are per-

ormed using ROUGE for ROUGE-1, ROUGE-2 and ROUGE-L values

f ROUGE metrics for extractive summarization. We also evaluate

ur approach using the DUC 2004 dataset for comparison with the

esults in other traditional reinforcement learning methods such as

yang and Abekawa [18] , and Rioux et al. [19] , which is a multi-

ocument extractive summarization corpus. The main contribu-

ions of this paper are as follows: (i) We apply DQN in extractive

ummarization tasks for the first time. (ii) We design two hier-

rchical network architectures ( i.e. CNN-RNN and RNN-RNN) for

QN to capture local and global features of the document. (iii) In

he Q-value approximation, we model salience and redundancy of

entences in the document to help DQN make better policy. Exper-

mental results show that our summarizer achieves performance

hich is better than or comparable to state-of-the-art approaches

mploying hand engineered features and sophisticated linguistic

onstraints. 

. Background 

.1. Definition of extractive summarization 

Approaches of extractive summarization are used to generate a

ummary by extracting some sentences or words from the origi-

al document, and extractive methods are able to yield naturally

rammatical summaries so that we don’t worry about the genuine

inguistic quality. 
In this paper, the extractive summarization tasks are defined as

ollows. Given a document D consisting of a sequence of sentences

 x 1 , x 2 , ..., x m 

}, and each sentence is composed of n words { w 1 ,

 2 , ..., w n } where | D | = m, x i represents a single sentence in the

ocument and w k represents a word in the sentence. The objective

f extractive summarization is to create a summary Sum from the

ource document D by selecting a subset of j sentences (where j <

 ), and Sum is a subset of the document: Sum ⊂ D . 

Next, a score function score( Sum ) and a length function L ( Sum )

re defined, where the subset Sum is the summary generated from

he given document and L ( Sum ) indicates the length of the sum-

ary Sum . The score function is defined in Section 3.4 , which

sually takes the tradeoff between relevance and redundancy into

onsideration. In extractive summarization tasks, the length of

ummary is arbitrary, which can be based on the word or sentence,

nd we assume the summary length is limited to K . The extractive

ummarization problem is defined as follows: 

Sum 

∗ = argmax score (Sum ) 

s.t. L (Sum ) ≤ K and Sum ⊂ D (1) 

The aim of the summarization problem is to find the optimal

ummary Sum 

∗ that maximizes this score function for its provided

ocument D . 

.2. Reinforcement learning and deep Q-network 

A standard reinforcement learning setup consists of an agent

nteracting with its environment [22,23] in discrete iteration steps.

iven a set of internal states s = s 1 , ..., s I and a set of predefined

ctions A = a 1 , ..., a K , at each iteration step i , the agent receives a

tate s i and takes an action a i by following certain policies. Then a

ew state s i +1 , and a scalar reward r i will be received from envi-

onment. The objective of the agent is to maximize the cumulative

eward in the process of a sequences of actions. Each such action

onstitutes a transition tuple ( s i , a i , r i , s i +1 , ) of a Markov Decision

rocess (MDP). Generally speaking, the environment may be par-

ially observed, and a sequence of state transition tuples can be

sed to formulate the environment. 

Reinforcement learning methods are widely used in control-

ng system [24,25] . Among these technologies, Q-Learning [26] is

 model-free technique which is used to approximate optimal

ction-value function Q ( s, a ) that measures the action’s expected

ong-term reward for the agent. The Q-value function depends on

ll possible state-action pairs which are visited and updated by the

olicy. The main challenge for Q-learning is how to approximate

he action-value function Q ( s, a ). Typically, a parameterized func-

ion Q ( s, a ; θ ) is used to approximate Q ( s, a ), where the param-

ter θ is often learned from feature representations of the states

nd actions of the environment [27,28] . Promisingly, with the pop-

larity of deep learning techniques, deep learning has shown the

owerful advantage for effectively generating informative feature

epresentations for a variety of complex problems. Mnih et al. pro-

osed the Deep Q-Network (DQN) [29] , which approximates the

-value function with a non-linear deep convolutional neural net-

ork and automatically creates informative features to represent

he internal states of the reinforcement learning. 

In DQN, the agent learns a policy by interacting with environ-

ent at each iteration step i , and targets at maximizing its long

erm reward. Beginning with a random Q-value function, the agent

akes actions according to the current policy, obtains rewards from

nvironment and continuously updates its Q-values at each itera-

ion step. The iterative updates are derived from the Bellman equa-

ion [28] , shown as follows: 

 i +1 (s, a ) = E[ r + λmax a ′ Q i (s ′ , a ′ | s, a )] (2)
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Fig. 1. The two different hierarchical network architectures of DQN for extractive summarization (RNN-RNN architecture and CNN-RNN architecture). The left-bottom in 

the graph is RNN operating at word-level, the right-bottom in the graph is CNN operating at word-level, and the top in the graph is RNN running over sentences. Double- 

pointed arrows indicate a bi-directional RNN. The word or in the middle represents RNN or CNN as our sentence encoder. The character i indicates each iteration step for 

the DQN, D i on the left-top denotes the document content representation at iteration step i , and Sum 

i on the right-top denotes the summary representation at iteration 

step i . 
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where r is reward and E denotes the expectation which often com-

pute over all transition tuples that involve the agent taking ac-

tion a in state s. λ denotes a discounted factor for future rewards

and λ∈ [0, 1]. Setting λ = 0 means that the current policy is short-

sighted and it only pays attention to the reward of the current ac-

tion. On the contrary, a larger value for λ denotes more confidence

on the future. A good policy should balance the current reward and

the future reward, and maximize the cumulative reward. 

3. DQN for extractive summarization 

In this work, we develop a deep reinforcement learning frame-

work for extractive summarization tasks by employing a DQN. The

DQN model is schematically illustrated in Fig. 1 . In detail, we de-

ploy two different architectures based on CNN-RNN hierarchical

network or RNN-RNN hierarchical network to not only generate in-

formative features from the document to represent the states of

DQN, but also create a list of potential actions from sentences in

the document for the DQN. From the hierarchy, CNN or RNN in the

bottom layer is a sentence encoder operating at word level within

each sentence, which encodes words to a fixed dimension sentence

feature vector. RNN operating at word level is depicted in left bot-

tom in Fig. 1 and CNN operating at word level is depicted in right-

bottom in Fig. 1 . RNN in the top layer is a document encoder run-
ing over sentence level, which encodes sentence feature vectors

o a document feature vector, depicted in top in Fig. 1 . In practice,

entence encoder and document encoder are a dynamic encoding

rocess in our DQN, which continually generates the representa-

ions of words, sentences, document content and summary at each

teration of the DQN. 

.1. Sentence encoder 

.1.1. RNN structure 

Recurrent neural network has achieved promising performances

n text sequence processing tasks, especially handling a variable-

ength sequence [30] . The RNNs with the gating units have been

hown to outperform vanilla RNN on many tasks [31] . Therefore,

e use a gated recurrent unit (GRU) based Recurrent Neural Net-

ork (RNN) [31] as the basic building block of our sentence en-

oder. RNN based sentence encoder is a bi-directional recurrent

etwork with GRU and we denote it as Bi-GRU-RNN. A GRU con-

ist of the update gate, the reset gate and the activation and it can

daptively capture dependencies of different time scales, as shown

y the following equations: 

 t = σ (W ux x t + W uh h t−1 + b u ) (3)

 t = σ (W rx x t + W rh h t−1 + b r ) (4)
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′ 
t = tanh (W hx x t + W hh (r t � h t−1 ) + b h ) (5) 

 t = (1 − u t ) � h 

′ 
t + u t � h t−1 (6) 

here σ ( · ) and tanh ( · ) indicate the element-wise sigmoid and hy-

erbolic tangent functions, x t , u t , r t and h t are referred to as the

nput vector, the update gate, the reset gate and the hidden-state

utput vector at time step t , and � is an element-wise multiplica-

ion operator. The W ’s and b ’s are the parameters of the Bi-GRU-

NN. 

This layer consists of bi-directional GRU-RNN, and operates at

ord level, as presented in the left-bottom in Fig. 1 . The forward

NN generates hidden state representations at each word position

n sequence according to the current word embedding input and

he previous hidden state. At the same time, the backward RNN

lso computes hidden state representations for each word in re-

ersed sequence. That is to say, the pair of forward and backward

NNs is considered as a bidirectional RNN. Then, we obtain the

entential representations from the average pooling of the concate-

ated hidden states of the bi-directional RNN running at word-

evel, which used as inputs to document encoder (a Bi-GRU-RNN

tructure as well). The representation vector for each sentence in

he document is as shown below: 

 = 

1 

N s 

N s ∑ 

j=1 

[ h 

f 
j 
, h 

b 
j ] (7)

here h 
f 
j 

and h b 
j 

are the hidden states corresponding to the j th

ord of the forward and backward word-level RNNs respectively,

 s is the number of words in a sentence and [ ] represents vector

oncatenation. 

.1.2. CNN structure 

We also explore CNN structure as our sentence encoder. That is,

e generate sentential representation vectors using a single-layer

onvolutional neural network with a max pooling operation [32–

4] . Likewise, the CNN runs over words in each sentence, resulting

o sentence-level representations which are then used as inputs to

ocument encoder (a Bi-GRU-RNN structure as well). 

There are two reasons for obtaining sentential representations

ith a convolutional neural network. At first, CNN has shown suc-

ess in natural language processing tasks such as text sentiment

nalysis [35] , character-aware neural language models [34] and so

n. What’s more, compared with RNN, CNN can be trained more

ffectively and process text faster due to no long-term dependen-

ies. 

Let V denote the vocabulary of words in the document, d de-

ote the dimensionality of word embeddings, and Q ∈ R ( d × | V |) be

he matrix word embeddings. Suppose word w ∈ V and a sequence

f n words ( w 1 , w 2 , w n ) constitutes a sentence in the document,

hich can be represented by a dense column matrix W ∈ R ( n × d ) .

e execute a narrow convolution operation between sentence rep-

esentation matrix W and a filter (or kernel) K ∈ R ( c × d ) of width c

s follows: 

f k j = tanh (W j : j + c−1 � K + b) (8)

here � denotes an element-wise multiplication operator. f k 
j 

de-

otes the j th element of the k th feature map f k and b denotes the

ias. We perform max-pooling operation over time to obtain a sin-

le feature (the k th feature) representing the sentence correspond-

ng to the kernel K : 

 

k = max j f 
k 
j (9) 

In order to obtain different feature maps of a sentence to rep-

esent sentence vectors, we use multiple feature maps to compute
 list of features that match the dimensionality of a sentence un-

er each kernel width. In addition, we apply multiple kernels with

ifferent widths to obtain a set of different sentence vectors. Fi-

ally, we concatenate these feature maps to obtain the final sen-

ence representation. The CNN structure is schematically illustrated

n the right-bottom of Fig. 1 . In the example, the sentence embed-

ings have twelve dimensions, so twelve feature maps are used

nder each kernel width. The orange feature maps have width

hree, the pink feature maps have width four and the blue feature

aps have width five. The sentence embeddings obtained under

ach kernel width are concatenated to get the final sentence rep-

esentation. 

In practice, we obtain a new set of features by running y k 

hrough one layer of a highway network [36] , which is regarded

s the real inputs to next Bi-GRU-RNN layer. One layer of a high-

ay network describes as follows: 

 = t � g(W H y + b H ) + (1 − t) � y (10)

here g is a nonlinearity, t = σ (W T y + b T ) is called the transform

ate, and (1 − t) is called the carry gate. In order to ensure the

ame dimensions for y and S, W T and W H are square matrices. 

.2. Document encoder 

Document encoder also consists of a bi-directional GRU-RNN,

hich has same structure with sentence encoder based on Bi-GRU-

NN, but it runs at the sentence-level and accepts the outputs of

entence encoder as its inputs. Its graphical representation is pre-

ented in top in Fig. 1 . Firstly, document encoder encodes sen-

ential representation vectors obtained from the bottom layer to

he corresponding hidden states. Next, we concatenate the hidden

tates of forward and backward RNNs, which perform a non-linear

ransformation to obtain the representation of the entire docu-

ent, as shown blow. 

 = tanh 

( 

W d 

1 

N d 

N d ∑ 

j=1 

[ H 

f 
j 
, H 

b 
j ] + b d 

) 

(11) 

here H 

f 
j 

and H 

b 
j 

denote the hidden states corresponding to the j th

entence of Bi-GRU-RNN in top layer respectively, N d is the number

f sentences in the document, b d is the bias and ‘[ ]’ represents

ector concatenation. 

Document encoder is the import component in whole model,

hich not only generates hidden states for each sentences in the

ocument, but also composes a sequence of sentences into a doc-

ment representation. At the same time, the representation of the

urrent summary depends on the hidden state of the sentence. The

idden states of document encoder may be treated as a list of par-

ial representations, which concentrates mostly on the correspond-

ng input sentence given the previous and following context and

aptures local sentential information. What’s more, these represen-

ations altogether constitute the document representation, which is

sed to capture global sentential information. 

.3. Training the DQN 

In this section, we describe how to train our DQN model in

etail. The algorithm for training deep Q-networks is depicted in

lgorithm 1 . The hierarchical network consisting of sentence en-

oder and document encoder not only learns the representations

f the internal states for the DQN, but also generates a set of ac-

ion representations for sentences in document. 

At each iteration step i , we encode each sentence in the docu-

ent consisting of n words { w 1 , w 2 , w n } using sentence encoder,

hose inputs is the corresponding word embedding vectors. This
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Algorithm 1 Deep Q-network training for extractive summariza- 

tion. 

1: Initialize replay memory R to capacity N 

2: Initialize action-value function Q(s, a ; θ ) with random weights 

θ
3: Initialize target action-value function 

ˆ Q (s, a ; θ ) with weights 

θ = 

ˆ θ
4: randomize given training set with sequence pairs < X, Y > 

5: for epsiode = 1 , M do 

6: for each sequence pair source text x ∈ X and gold summary 

y ∈ Y do 

7: initialize the state s 1 , that is Sum 

1 = ∅ 

8: for iteration i = 1 , L do 

9: feed x into sentence encoder and document encoder, 

and obtain sentence representations H 

i 
j 

and document repre- 

sentation D 

i 

10: if random () < ε then 

11: select a random action a i 

12: else 

13: compute Q(s, a ; θ ) for all actions using equation 

(10); select a i = argmax a Q(s, a ; θ ) 

14: end if 

15: add action a i to the current summary to obtain new 

state s i +1 ( Sum 

i +1 ), and compute the similarity of current sum- 

mary and gold summary y , resulting reward score r i 

16: store transition ( s i ; a i ; r i ; s i +1 ) in R 

17: sample a mini-batch of transitions ( s i ; a i ; r i ; s i +1 ) 

from R 

18: set q i = 

{
r i if s i +1 is state of termination , 

r i + λmax a ′ ˆ Q (s i +1 , a ′ ; ˆ θ ) otherwise . 

19: perform gradient descent step on (q i − Q(s i , a i ; θ )) 2 

with respect to network parameters θ
20: every C steps reset ˆ θ = θ
21: end for 

22: end for 

23: end for 
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encoding process running at word level results in a fixed dimen-

sional vector representation S i 
j 

( i.e. , S i 
1 
, S i 

2 
, , S i m 

in Fig. 1 ), and

its formulation representation is Eq. (7) for RNN structure or Eq.

(10) for CNN structure in Section 3.1 . Sentence encoder generates

the vector representation of each sentence in the document which

is used as the inputs to document encoder. 

Next, we feed sentence vector S i 
j 

into document encoder, gener-

ating the hidden layer vector representation H 

i 
j 

for each sentence

( i.e. , H 

i 
1 
, H 

i 
2 
, H 

i 
m 

in Fig. 1 ). In addition, we obtain the representa-

tion of the extracted summary Sum 

i ( i.e., Sum 

i in Fig. 1 ) and the

representation of document content D 

i ( i.e., D 

i in Fig. 1 ) for the

entire sentence. We utilize Eq. (11) in Section 3.2 to compute the

document content representation at each iteration step i , and the

summary representation will be given later. 

The DQN learns to approximate the Q-value function based on

the current state. Generally speaking, there is no practical mean-

ing for the traditional Q-value approximation in specific tasks such

as video games [37,38] . How to approximate the Q-value function

in meaningful way? In our extractive summarization approach, we

consider the information content, the salience and the redundancy

between the action (sentence vector representation) and the cur-

rent state (the extracted summary) in the Q-value function Q ( s, a )

approximation. The Q-value function Q ( s, a ) is estimated by the fol-

lowing formulation: 

Q 

i 
j (s, a ) = W C H 

i 
j + H 

i 
j 

T 
W s D 

i − H 

i 
j 

T 
W r tanh (Sum 

i ) + W p P j + b q (12)
here H 

i 
j 

denotes the hidden state representation of the j th sen-

ence given by document encoder at iteration step i; D 

i is the en-

ire document representation at iteration step i; P j is the positional

mbedding of the sentence in the document; W C , W s and W p are

arameter vectors in order to model the information content rich-

ess, the salience of the sentence and positional importance of

entences respectively; the term H 

T 
j 
W r tanh (Sum 

i ) captures the re-

undancy of the sentence with respect to the current summary

nd Sum 

i is the dynamic representation of the summary at cur-

ent iteration step i . Given a set � representing the current chosen

he number of the sentence in the document by the DQN, Sum 

i is

hown as follows: 

um 

i = 

∑ 

j 

Q 

i 
j 
(s, a ) ∑ m 

k =1 Q 

i 
k 
(s, a ) 

H 

i 
j s.t. j ⊂ � (13)

The initial state of Sum should be set to ∅ . That is, Sum 

0 =
 . The summary representation depends on the sentence hidden

tates and the Q-value of the corresponding actions (sentences)

aken by the DQN. The Q-value for each action in � is normalized

o the respective weight at each iteration step, so it is dynamic

rocess to generate the summary representation dynamic process. 

The DQN considers the vector representation Sum 

i as its inter-

al state. Also, { H 

i 
1 
, H 

i 
2 
, ..., H 

i 
j 
, ..., H 

i 
m 

} are treated as the poten-

ial action representations which directly correspond to the num-

er of every sentence {1, 2, ..., j , ..., m } in the document. From these

equence of sentence numbers (action spaces), the DQN learns to

redict what actions should be taken in order to accumulate larger

ong-term reward. 

The DQN will take the action with the max Q-value as its out-

ut. The action took by the DQN is considered as selecting the

umber of the sentence in document at iteration step i . Then the

urrent state of the DQN will be modified accordingly. That is, the

ummary will be modified by adding a new sentence into it. Es-

ecially, at different iteration step, the document content and the

epresentation of the sentences will be updated as well due to the

odification of the parameter of the DQN. This process results in

 modified representation of sentence, summary and document,

amely H 

i +1 , Sum 

i +1 and D 

i +1 . Next, the score between the gold

ummary and the current extracted summary is evaluated by a

OUGE metric, which then a reward r i is assigned to the action of

electing the corresponding sentence. Thus, a transition tuple for

he DQN contains [ Sum 

i , H 

i 
j 
, r i , Sum 

i +1 ] . 

The training of the DQN is treated as a process of minimiz-

ng a sequence of loss functions, and the weight parameters θ of

-network is updated at each iteration i . In practice, we use two

etwork to improve the stability of algorithm [37] . The original Q-

etwork Q with parameters θ approximates the Q-value, and a tar-

et Q-network ˆ Q with parameters ˆ θ will be used to generate the

argets q i in the Q-learning update. The loss function L i ( θ i ) is given

s follows: 

 

i (θ i ) = E s,a [ (q i − Q 

i (s, a ; θ i )) 
2 
] (14)

here q i = E s,a [ r 
i + λmax a ′ Q 

i (s i +1 , a ′ ; ˆ θ ) | s, a ] is the target Q-value

r reward, which is generated by the target Q-network with pa-

ameters ˆ θ from next state s i +1 . Namely, the DQN is trained to pre-

ict its expected future reward. The parameters θ i of loss function

 

i ( θ i ) is updated with the following gradient: 

 θ i L i (θ i ) = E s,a [2(q i − Q 

i (s, a ; θ i )) ∇ θ i Q 

i (s, a ; θ i )] (15)

We clone the original Q-network Q to the target Q-network ˆ Q 

fter every C update steps and use ˆ Q to generate the Q-learning

argets q i for the following C update steps. In the process of train-

ng, a experience replay [39] is used to store the agents experience

transition tuple [ Sum 

i , H 

i 
j 
, r i , Sum 

i +1 ] ) at every iteration step. Be-

ides, the agent chooses the action with the maximal Q-value in
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rder to maximize its expected future rewards or selects a ran-

om action with probability ε [40] by an ε-greedy policy to en-

ure adequate exploration of the state space. The full algorithm is

resented in Algorithm 1 . 

.4. Rouge score for DQN reward 

The DQN selects sentences (actions) from the document should

e the ones that maximize the Rouge score with respect to ground

ruth summaries. Our reward function calculate the similarity be-

ween the gold summary { y 1 , ..., y j } and the current extracted sum-

ary { x 1 , ..., x j }, which is based on the n-gram concurrence score

etric and the longest-common-subsequence recall metric con-

ained within ROUGE [21] , in terms of ROUGE-1, ROUGE-2, ROUGE-

 and ROUGE-L in our work, shown as follows: 

eward(Sum ) = 

{
−1 if length( Sum ) > K , 

score (Sum ) otherwise . 
(16) 

We measure the score difference between the current iteration

nd the previous iteration, hence, score ( Sum ) is formulated as: 

core (Sum ) = 

{ 

score (S c ) − score (S p ) if score( S n )-score( S p ) 
> threhold, 

−1 otherwise . 

(17) 

here S c and S p represent the summary extracted in the current

teration step and in the previous iteration step, and threhold is a

onstant, which means the sentence extracted in the current itera-

ion for current summary must be informative and effective com-

ared to previous summary. The score function is defined as fol-

ows: 

core (S n/p ) = 1 × Rouge _ 1 + 5 × Rouge _ 2 + 2 

× Rouge _ 3 + 2 × Rouge _ L (18) 

The different weights are assigned to the score of Rouge _ 1 ,

ouge _ 2 , Rouge _ 3 , and Rouge _ L respectively. The larger weight

eans we pay more attentions to the corresponding Rouge met-

ic. 

. Related works 

The traditional approach to resolve extractive summarization

roblem such as TextRank [41] is by ranking sentences importance

ccording to their salience and novelty. Some researchers regard

xtractive document summarization as a binary classification prob-

em. For example, Shen et al. [42] have proposed a modeling ap-

roach that extracts sentences from the source document using

onditional Random Fields to binary-classify sentence sequences. 

Especially in recent years, the deep learning method is ap-

lied to the extractive document summarization task, but most

atasets for single-document summarization tasks such as DUC

orpora are too small to train deep learning models. Nallapati et al.

4] and Cheng et al. [16] have reconstructed a new corpus based

n news stories from CNN and Daily Mail, which is made up of

round 280,0 0 0 documents and human generated summaries. On

his datasets, Cheng and Lapata [16] have constructed a classifier

ramework based on an encoder–decoder model where the en-

oder learns the representation of sentences and documents while

he decoder classifies each sentence using an attention mecha-

ism. Nallapati et al. [17] have proposed an approach named Sum-

aRuNNer, a sequence classifier based on a hierarchical recurrent

etwork structure that selects sentences from the source document

ccording to their information content, salience and redundancy. 

Our approach is very different from theirs that we use deep re-

nforcement learning framework (a Deep Q-Network) to select sen-

ences that eliminate the need for extractive labels. The classifier
ased approach is a supervised learning and it requires sentence-

evel labels to train the model for extractive summarization. Svore

t al. [43] convert the abstractive summaries to extractive labels

ia a simple greedy approach in their model. Further, an integer

inear programming (ILP) based approach recently proposed by Cao

t al. [44] solve this problem optimally. 

It is different from the classifier based approaches that Ryang

t al. [18] and Rioux et al. [19] have proposed an automatic ex-

ractive summarization framework using reinforcement learning

pproach. The former proposed an approach named ASRL which

s used to solve multi-document summarization tasks. ASRL uses

D ( λ) algorithm to learn and then execute a policy for a summariz-

ng tasks. Another reinforcement learning method named REAPER

roposed by the latter is very similar to ASRL. In their experiments,

he generated summary is evaluated using ROUGE-1, ROUGE-2, and

OUGE-L, and the results indicate that ASRL and REAPER based

n reinforcement learning approach outperform greedy and inte-

er linear programming (ILP) techniques on DUC 2004 dataset. 

Unlike traditional reinforcement learning, we use a Deep Q-

etwork (DQN) to learn the representation of sentences and doc-

ments. At the earliest, the DQN has been applied in playing Atari

ames [37,38,45] successfully. Trained with a variant of Q-learning

46] , the DQN uses a deep neural network to generate informa-

ive features to represent the internal states and approximate pol-

cy function for taking action. In addition to playing video games,

ther researchers have employed DQN to learn control policies in

atural language tasks such as playing text-based games [47–49] .

n our work, we employ two different hierarchical networks to

ot only generalize informative features from text to represent the

tates of DQN, but also create a list of potential actions from the

ext for the DQN, and the actions taken by the DQN constitute our

ummary. 

. Experiments and results 

.1. Corpora 

The CNN/Daily Mail corpus is used in our experiments for train-

ng and testing our DQN model. It is originally created for the task

f passage-based question answering [5] and reconstructed for the

ask of extractive summarization [16,17] and abstractive summa-

ization [4] . Our extractive approach will make a fair comparison

ith the two former [16,17] only on the Daily Mail corpus, and to

ompare with the latter [4] , we evaluate it on the joint CNN/Daily

ail dataset. There are 196,557 training documents, 12,147 valida-

ion documents and 10,396 test documents in the Daily Mail cor-

us. In total, we have 286,722 training sets, 13,362 validation sets

nd 11,480 test sets for the whole CNN/Daily Mail corpus. There

re about 800 words per document in training set, and each of

ocument is about 28 sentences on an average while the gold sum-

aries contain an average of 3–4 sentences. 

Besides, we also evaluate our model on the DUC 2002 single-

ocument summarization dataset consisting of 567 documents and

n the DUC 2004 dataset consisting of 50 document clusters, each

ontaining 10 documents as an additional out-of-domain test set. 

.2. Evaluation 

In our experiments, the quality of summaries extracted by our

pproach is automatically evaluated by using the Rouge metric

21] , which computes the number of overlapping units such as

-gram, word sequences, and word pairs between the computer-

enerated summary and the ground truth summary. To compare

ith other extractive summarization approaches such as Cheng

t al. [16] and Nallapati et al. [17] , 75 bytes and 275 bytes of

imited length Rouge recall are used on the Daily Mail corpus.
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Likewise, the full-length Rouge F1 metric is used on the whole

CNN/Daily Mail corpus in order to compare with the work of Nalla-

pati et al. [4] . According to the official guidelines of DUC 2002 cor-

pus, we use the limited length Rouge recall metric at 75 words. To

compare with other approaches of reinforcement learning [18,19] ,

we also test our approach on the DUC 2004 dataset. We compute

the score of Rouge-1, Rouge-2 and Rouge-L using the matches of

unigrams, bigrams and longest common subsequences respectively,

which assess informativeness and fluency between our extracted

summaries and reference summaries. 

5.3. Baselines 

The summary generated by our DQN model is compared with

other various summarization methods on different datasets. On

the Daily Mail corpus, the joint CNN/Daily Mail corpus and the

DUC 2002 corpus, Lead-3 model is used as the standard baseline,

which simply selects the leading three sentences from the docu-

ment as the extracted summary. In addition, we also compare with

the extractive and abstractive approaches based on deep learning

on these datasets. For example, Cheng et al. [16] have proposed a

deep learning based supervised extractive model which achieves

high performance. Nallapati et al. [4] have proposed an abstractive

method using attentional encoder-decoder recurrent neural ret-

works which achieves state-of-the-art performance on abstractive

summarization tasks. Nallapati et al also proposed two extractive

approaches — Deep Select [50] and SummaRuNNer [17] . The for-

mer is based on a deep learning selector architecture and the latter

is a deep learning classifier model which achieves state-of-the-art

performance on two different corpora. On the Daily Mail and DUC

2002 datasets, LReg model, a feature-rich logistic classifier, is also

used as a baseline. On DUC 2002 corpus, several approaches such

as Integer Linear Programming based ILP proposed by Woodsend

and Lapata [11] , graph based TGRAPH proposed by Parveen, et al.

[51] and URANK proposed by Wan [52] are reported as baselines,

which achieve high performance on this corpus. On DUC 2004 cor-

pus, ILP approach is used as a baseline once again. At the same

time, ASRL and REAPER, two traditional approach based on rein-

forcement learning proposed by Ryang et al. [18] and Rioux et al.

[19] respectively, are also used as baselines on this dataset. 

5.4. Experimental settings 

We present our experimental settings for evaluating the per-

formance of our DQN model in this section. The word vectors in-

putted as sentence encoder were initialized with 100-dimensional

Glove [53] embeddings pre-trained on the joint CNN/Daily Mail

corpus. We trained our model using the RMSProp 

1 algorithm with

mini-batches of size 64 at training time. The vocabulary size is lim-

ited to 6K. In order to speed up computation, the maximum num-

ber of sentences per document is restricted to 50, and the max-

imum sentence length to 50 words. That is to say, each sentence

per document was padded to the maximum length with an ad-

ditional mask variable. We fixed the hidden state size at 200 for

Bi-GRU-RNN structure of sentence encoder. but for CNN structure,

we used a list of kernel sizes {1, 2, 3, 4, 5, 6, 7} and corresponding

feature maps {40, 50, 50, 60, 60, 70, 70}, so the size of sentence

and document embeddings is 400 and 800, respectively. The depth

of each GRU module was 1. We initialized all parameters for CNN

or RNN randomly with a uniform distribution within [ −0.1, 0.1]. 

For the DQN training, we set the epsilon ε to 0.9, which de-

creased 0.001 automatically after each 10 0 0 iterations. In other

words, most of actions were random at the beginning of the DQN
1 http://www.cs.toronto.edu/tijmen/csc321/slides/lecture _ slides _ lec6.pdf 

o  

d  

S  
raining, and then became more and more greedy as the train-

ng process carry on. We used a prioritized experience replay

54] memory with a capacity of 20 0,0 0 0 to save the transition in

ach iteration. The discount factor λ for reward was set to 0.95.

lso, we set the difference threshold between the summary ex-

racted in previous iteration and the summary extracted in current

teration to 0.1. We trained our DQN model based on CNN-RNN

tructure and RNN-RNN structure, so we respectively denote them

s DQN cnn −rnn and DQN r nn −r nn in the results. All our experiments

ere run on a NVIDIA GTX 1080 GPU with 8GB memory and our

QN model with CNN-RNN structure and RNN-RNN structure took

bout 10 days and 15 days of training time until convergence, re-

pectively. 

.5. Results 

.5.1. Daily mail Corpus 

In Table 1 we report the results of our DQN model on the

aily Mail corpus using Rouge recall at 75 bytes of summary

ength and at 275 bytes of summary length, respectively. The per-

ormance of DQN model is compared with state-of-the-art model

 SummaRuNNer [17] and other baselines. DQN cnn −rnn represents

ur DQN model based on CNN-RNN hierarchical architecture and

QN r nn −r nn denotes our DQN model based on RNN-RNN hierarchi-

al architecture. 

Our DQN model performs worse than the state-of-the-art

odel — SummaRuNNer at 75 bytes of summary length and per-

orms on par with it at 275 bytes of summary length. The po-

ential reason may be that our approach models information con-

ent, salience and redundancy of sentences based on the current

ummary content, therefore our approach has an advantage over

ong summary. Although the results achieved by the DQN at 275

ytes are slightly worse than that of SummaRuNNer, SummaRuN-

er is trained by supervised learning and it needs sentence-level

inary labels for each document, while our DQN model optimizes

irectly Rouge metric eliminating the need for extractive labels.

hat’s more, the experiments show the model based on CNN-RNN

r RNN-RNN hierarchical architecture performs a little difference

hat indicates CNN is applicable to Natural Language Processing

NLP) tasks as well compared to RNN’s superiority in NLP. 

.5.2. CNN/Daily Mail Corpus 

We also evaluate our DQN model on the joint CNN/Daily Mail

orpus in Table 2 . The performance of some abstractive and extrac-

ive approaches are reported on this dataset. For example, the ab-

tractive models include Nallapati et al’16 [4] and SummaRuNNer-

bs [17] and the extractive models include Lead-3 and SummaRuN-

er [17] , which all perform good results on this corpus using full-

ength F1 as the metric. Our DQN model uses the same metric as

hem in order to have a fair comparison with their works. On this

oint corpus, our approach performs on par with state-of-the-art

odel — SummaRuNNer as shown in Table 2 . Table 2 also demon-

trates the current performance gap between extractive and ab-

tractive approaches to summarization. Apparently, extractive ap-

roaches have a superior performance over the abstractive ones

ince abstractive summarization is a much harder problem. 

.5.3. DUC 2002 Corpus 

Table 3 shows the performance comparison of our DQN model

ith other extractive approaches on the DUC 2002 dataset using

ouge recall with summary length restricted to 75 words. We train

he model on the Daily Mail Corpus but we evaluate it on this

ut-of-domain DUC 2002 corpus. The experimental results indicate

ur reinforcement learning approach is statistically on par with

eep learning based models such as Cheng et al’16 [16] , Deep-

elector [50] and SummaRuNNer [17] . However, our DQN model

http://www.cs.toronto.edu/tijmen/csc321/slides/lecture_slides_lec6.pdf


K. Yao et al. / Neurocomputing 284 (2018) 52–62 59 

Table 1 

Performance of various models on the entire Daily Mail Test set using the limited length 

recall variants of Rouge with respect to the abstractive ground truth at 75 bytes and 275 

bytes. 

Approach 75bytes 275bytes 

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L 

Lead-3 21.9 7.2 11.6 40.5 14.9 32.6 

LReg 18.5 6.9 10.2 – – –

Cheng et al’16 22.7 8.5 12.5 42.2 17.3 34.8 

Deep-Select 26.1 10.7 14.3 41.3 15.3 33.5 

SummaRuNNer 26.2 10.8 14.4 42.2 16.9 34.1 

DQN cnn −rnn 23.6 9.8 13.4 41.7 16.4 33.5 

DQN r nn −r nn 23.8 10.0 13.5 41.9 16.5 33.8 

Table 2 

Performance comparison of abstractive and extractive mod- 

els on the entire CNN Daily Mail test set using full-length 

F1 variants of Rouge. 

Approach Rouge-1 Rouge-2 Rouge-L 

Lead-3 39.2 15.7 35.5 

Nallapati et al’16 35.4 13.3 32.6 

SummaRuNNer-abs 37.5 14.5 33.4 

SummaRuNNer 39.6 16.2 35.3 

DQN cnn −rnn 39.3 15.8 35.2 

DQN r nn −r nn 39.4 16.1 35.6 

Table 3 

Experimental results with ROUGE-1, ROUGE-2 and ROUGE-L 

scores on the DUC 2002 set using the limited length recall 

variants of Rouge at 75 words. 

Approach Rouge-1 Rouge-2 Rouge-L 

Lead-3 43.6 21.0 40.2 

LReg 43.8 20.7 40.3 

ILP 45.4 21.3 42.8 

TGRAPH 48.1 24.3 –

URANK 48.5 21.5 –

Cheng et al’16 47.4 23.0 43.5 

Deep-Selector 45.9 21.5 42.4 

SummaRuNNer 46.6 23.1 43.0 

DQN cnn −rnn 45.9 22.3 42.5 

DQN r nn −r nn 46.4 22.7 42.9 

Table 4 

Experimental results with ROUGE-1,ROUGE-2 and ROUGE-L 

scores on DUC2004. 

Approach Rouge-1 Rouge-2 Rouge-L 

ILP 34.7 7.5 31.2 

ASRL 39.0 9.4 33.7 

REAPER 40.3 11.3 36.5 

DQN cnn −rnn 42.9 13.8 38.8 

DQN r nn −r nn 43.4 14.1 39.2 
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reform worse than the state-of-the-art models such as graph-

ased TGRAPH [51] and URANK [52] algorithms on this corpus. Just

ike deep learning based supervised models such as SummaRuNNer

17] and Cheng et al. [16] , our model usually performs better on

he domain datasets which is trained on, but may suffer from do-

ain adaptation issues when evaluated on a different dataset such

s DUC 2002. In domain variation issues, graph based unsupervised

ethods may be more robust. 

.5.4. DUC 2004 Corpus 

In order to compare with traditional reinforcement learn-

ng approaches — ASRL [18] and REAPER [19] , we evaluate our

QN model on another out-of-domain DUC 2004 dataset as pre-

ented in Table 4 . Our DQN model is trained on the Daily Mail

orpus for single-document summarization task but DUC 2004

orpus is a multi-document summarization task, so we concate-
 i
ate all sentences in a document cluster into a document. The

esults in Table 4 demonstrate our deep reinforcement learning

pproach significantly outperforms the traditional reinforcement

earning. the potential reason may be that the former is superior

o the latter in generalizing informative features from text. 

. Discussion 

Compared with deep neural network based classifier models,

ur extractive summarization approach is based on deep rein-

orcement learning and it can be directly optimized using the

ouge metrics, eliminating the need for extractive sentence-level

abels. Comparatively speaking, the Deep Q-Network is less stable

nd converge harder than general supervised learning approaches

ased on deep learning at training time. To speed up training,

e use prioritized experience replay memory [54] and double Q-

etwork [29] techniques to train our DQN, which can alleviate data

ependency and enhance the stability of training to guarantee con-

ergence faster. 

In addition, we employ DQN using two different hierarchical

etwork architectures — CNN-RNN and RNN-RNN. CNN or RNN in

ottom layer operates at word level. The advantage of RNN is their

bility to implicitly model long term dependencies. But RNN oper-

tes sequentially, the output for the next input relies on the pre-

ious one and so we cannot parallelize an RNN. CNN has no such

roblem, each“patch” a convolutional kernel operates on is inde- 

endent of the other meaning that we can go over the entire input

ayer concurrently. In our experiments, training DQN r nn −r nn costs

bout 1.5 times as much time as training DQN cnn −rnn . 

In our extractive summarization tasks, we use reinforce-

ent learning methods to optimize ROUGE metric because it is

ot differentiable. Com pared with DQN, policy gradient methods

55] seem to be able to do the same work, and it is more widely

pplied in NLP tasks [56,57] nowadays. However, DQN is more ap-

ropriate for our scenario than policy gradient methods. In this

ask, Each sentence in the source document is regarded as a poten-

ial action and DQN directly estimates the future expected reward

f each potential action. The action with the max Q-value will be

aken as the output to constitute the current summary, and then

e estimate the Q-value function of next state based on the infor-

ation content, the salience and the redundancy between a sen-

ence and the summary. Policy gradient methods are more widely

sed to generate text sequence in NLP by combining with a pre-

rained RNN based encoder-decoder [58] model using maximum

ikelihood estimation. 

On some datasets, the results achieved by the DQN at 275 bytes

re slightly worse than that of SummaRuNNer. The potential rea-

on may be that it is hard to update the parameters of DQN only

y a scalar guiding signal and the guiding signal lacks more infor-

ation for text structure. We could use a semi-supervised learning

pproaches to improve the performance of our model or make the

uiding signals more informative to guide the parameters updat-

ng. These work will be our future research direction. 
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Table 5 

Example documents and gold summaries from Daily Mail (top) and DUC 2002 (bottom) corpora. The sentences chosen by DQN cnn −rnn and DQN r nn −r nn for extractive sum- 

marization are displayed in table respectively. 

Source Document: @entity0 have revealed the first gameplay details for their latest golf game @entity0 @entity3 which is due out in july. @entity4 replaced @entity5 

as the cover star for @entity8 video games this year. ������ firmer, links - style courses like @entity42 will provide more bounce and roll, while softer courses such as 

@entity18 will have less bounce and be more receptive to spin. @entity0 @entity47 will be available for @entity48 and @entity49 on july 16, 2015 pre-order now at 

@entity50. 

Ground Truth Summary: @entity4 will be on the front cover of @entity0’ @entity8 2015 game. the game offers multiple ways to play, including arcade controls. fans 

can create their own custom gameplay style. 

DQN cnn −rnn : @entity4 replaced @entity5 as the cover star for @entity8 video games this year. fans can also mix and match all three settings to create their own 

custom gameplay style. @entity0 have revealed the first gameplay details for their latest golf game @entity0 @entity3 which is due out in july. 

DQN rnn −rnn : @entity4 replaced @entity5 as the cover star for @entity8 video games this year. fans can also mix and match all three settings to create their own 

custom gameplay style. the latest version of the long - running game series, due out on july 16, features a number of new features, including various gameplay styles 

as well as enhanced ball physics. 

Source Document: The White House is making sure nobody will accuse it of taking this crisis lightly. In the aftermath of the California earthquake, President Bush 

and his aides flew into a whirlwind of earthquake-related activity yesterday morning. Some of it was necessary to get federal help flowing to victims, but some 

seemed designed mostly to project an image of a White House in action. ������ Mr. Bush himself essentially acknowledged that he and his aides were trying to head 

off criticism. On his FEMA visit, Mr. Bush said that he hoped there would be “less carping” about the emergency office’s performance this time, adding that the 

agency “took a hit” for its reaction to Hurricane Hugo. The White House already is talking of Mr. Bush visiting the California earthquake site this weekend. He visited 

the Hugo devastation but not until after local leaders urged him to do so. 

Ground Truth Summary: Yesterday, in response to the California earthquake, President Bush and his aides flew into a whirlwind of activity that seemed designed to 

dispel any thought that the White House was not engaged. After the Exxon Valdez oil spill and the devastation of Hurricane Hugo the administration was criticized 

for its slow response. Bush as much as admitted that the present flurry of activism was intended to counter such criticism, remarking during a visit to the Federal 

Emergency Management Agency that he hoped there would be “less carping” this time about the Agency’s performance. The President may visit the earthquake site 

this weekend. 

DQN cnn −rnn : In the aftermath of the California earthquake, President Bush and his aides flew into a whirlwind of earthquake-related activity yesterday morning. Mr. 

Bush himself essentially acknowledged that he and his aides were trying to head off criticism. The White House already is talking of Mr. Bush visiting the California 

earthquake site this weekend. 

DQN rnn −rnn : In the aftermath of the California earthquake, President Bush and his aides flew into a whirlwind of earthquake-related activity yesterday morning. Mr. 

Bush himself essentially acknowledged that he and his aides were trying to head off criticism. The White House already is talking of Mr. Bush visiting the California 

earthquake site this weekend. 
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We display a couple of example documents from the Daily

Mail and DUC corpora and compare the sentences chosen by DQN

model with the gold summary in Table 5 . Our model has an advan-

tage over long summary generation due to the fact that it models

information content, salience and redundancy of sentences based

on the current summary content. 

7. Conclusion 

In this paper, we develop a novel extractive summariza-

tion approach based on deep reinforcement learning - a Deep

Q-Network(DQN) and explore two different hierarchical network

architectures to deploy the DQN. At the same time, the abstract

features such as information content, salience and redundancy of

sentences is captured in the Q-value approximation. The exper-

imental results show that our deep reinforcement learning ap-

proach is comparable to the state-of-the-art deep learning models.

What’s more, the performance on RNN-RNN structure is slightly

better than CNN-RNN structure. The reason for this situation may

be that RNN can better capture global information for text due to

long-term dependencies. But CNN can be trained more effectively

because it can process the entire input layer concurrently. 

Unlike the supervised learning approaches, our extractive sum-

marization system based on deep reinforcement learning can be

directly optimized using the Rouge metrics and eliminate the need

for extractive sentence-level labels. In the future, we plan to ex-

plore a word-level based extractive approach through deep rein-

forcement learning. Further, we plan to combine extractive and

abstractive approaches to construct a joint extractive-abstractive

model. What’s more, we also intend to further explore the per-

formance difference between CNN and RNN on different natural

language processing tasks. 
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