
Multi-agent Communication with Attentional and
Recurrent Message Integration

1st Zhaoqing Peng
University of Chinese Academy of Sciences

Beijing, China
pengzhaoqing16@mails.ucas.ac.cn

2nd Libo Zhang
Institute of Software, CAS

Beijing, China
zsmj@hotmail.com

3rd Tiejian Luo
University of Chinese Academy of Sciences

Beijing, China
tjluo@ucas.ac.cn

Abstract—Effective communication is significant for solving
cooperative tasks in multi-agent domain. Agents coordinate their
behaviors by appropriately modeling the communication signals
or messages sent from others. To this end, agents are required to
filter noise and obtain useful information from received messages,
and learn to adapt to the dynamics of messages number. In this
paper, we propose an attentional and recurrent message integra-
tion method (ARMI) that handles the dynamics by recurrently
decoding messages, and performs attentional integration based
on the relevance of each message. We evaluate our proposal
on a new “predator-prey-toxin” environment where the number
of agents changes, and the results outperform other competing
multi-agent methods. Further investigations are also done to
prove the superiority of ARMI in collaborating agents’ behaviors
for complex tasks and establishing interpretable communication
protocol.

Index Terms—multi-agent reinforcement learning, recurrent
message integration, attention mechanism

I. INTRODUCTION

Many tasks in real-world problems require the collaboration
of multiple agents [1]. In multi-agent settings, to achieve self-
awareness, each agent observes its state in the environment
from its local view points, and this partial observability may
lead to the non-stationary of each agent’s perception due to
other agents’ actions [2]. Therefore, communication among
them is essential for each agent to learn and understand the
behaviors of other agents. Efficient learners must establish
meaningful communication protocol to coordinate their be-
haviors and learn to solve complex tasks in collaboration.

The rapid progress in recent years of deep reinforcement
learning [3] opens the door to a new perspective on multi-agent
domain. Deep neural networks are usually adopted to produce
messages to transmit information among agents, and rein-
forcement learning (RL) is applied to guide the optimization
of learning well representations of messages through reward
signals of the environment. However, the handling of generated
messages for each agent remains challenges in two aspects:
1) how to enable agents to extract useful information from
massive messages without prior knowledge, and 2) how to
allow the scalability of agents’ social interactions especially
when the agent number is dynamic.

In this work, we formulate the process of handling mes-
sages using an integration function that inputs raw receiving

Libo Zhang is the corresponding author.

messages and outputs a hidden communication vector for
agent’s decision making. To model the dynamics of message
number and simultaneously learn the useful interactions more
efficiently, we propose an attentional and recurrent message
integration (ARMI) method that consists of two specific
integration functions: 1) an attentional function that uses an
additive attention value to represent the relevance of each
received message w.r.t the observation, and 2) a recurrent func-
tion that utilizes the recurrent neural network (RNN) to feed
in each message by the receiving order. The recurrent function
shows its benefits on modeling the sequential information of
the received messages and dealing with the dynamic agent
number, while the attentional function enables each agent
the capacity of giving more attention to relevant and useful
messages according to its current observation.

To verify the effectiveness of the proposal, we evaluate it
on a new “predator-prey-toxin” environment which consists
of continuous state-action space and a new toxin role to
increase the complexity of tasks. During training, we period-
ically increase the agent number to study the scalability and
performance of each method under a dynamic environmental
setting, and the empirical results show that our method reaches
much higher score than the other methods after introducing the
toxins, and demonstrates the advantage of ARMI in handling
such complex cooperative tasks.

In order to further interpret the well performance of our
proposal, we then visualize the attentions of the agent under
an example state, and the results indicate our method can make
agents learn effective interactions by paying more attention to
useful and relevant messages. We also analyze how messages
affect the agent’s policy, which shows that the receiving agent
could make decisions in view of the fellow agents’ states
while the communication-disabled method cannot. Finally, we
visualize the communication protocol and find a significant
correlation between the message and the receiver agent’ action.
The results prove that agents correctly interpret the received
message and appropriately make decisions in view of those
messages.

The remainder of this paper is organized as follows. Section
2 discusses the previous literature related to our work, which
is followed in Section 3 by a formulation of the environment
and an introduction to main RL techniques. The detail of our
proposal is presented in Section 4. Section 5 gives insights on

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00198

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 06:54:02 UTC from IEEE Xplore. Restrictions apply.

the conduction of serval experiments and the numerical results.
Section 6 provides some final conclusions and directions for
future work.

II. RELATED WORKS

Independent learning (IL) is the simplest method to extend
the single-agent RL to multi-agent domain such as [4], [5]
where each independent learner only cares about its own
unique policy and does not have any explicit or implicit
communication. IL will face the challenge of not being able
to tackle the non-stationary environments.

There exists some related works addressing communication
issues: literature [6] simply concatenates all received messages
and feeds them to a target network. This naive method may fail
in the case where the agent number is large and also dynamic,
since the input size of the first layer in the network will linearly
grow as the agent number increases, which is intractable
for simple feed forward network such as multi-layer percep-
tions (MLP). Multi-Agent Actor-Critic [7] proposes a simple
extension where the critic of each agent has access to the
global policies of other agents while the actor only observes
its local state. BiCNet [8] unrolls the bi-directional RNN
across agents, which allows to transmit the communication
information by the hidden state of each recurrent cell. DIAL
[9] enforces agents to learn communication protocols through
considering other agents’ messages generated in previous time-
step. However, the message in DIAL is delayed for one time-
step, which could cause the bad action decision conditioned
on the old and expire states of other agents.

CommNet [10] conducts averagely pooling operation over
all received messages to get a communication vector for all
agents, but it puts the whole burden of modeling interactions
on the message extractor. In contrast, VAIN [11] increases the
diversity of receiving messages by adding attention mechanism
over CommNet, and it allows different strengths of the interac-
tions among agents. Our previous work [12] introduces prior
knowledge of the environment to help optimize the attentional
value of each message, but it still ignores the scalability of
agent number. In this work, we are more interested in studying
the message integration issues under the environment with
dynamic agent number.

III. BACKGROUND

Multi-agent Markov Games: In this work, we consider
a zero-sum Stochastic Game (SG) with the multi-agent and
partially observed settings. We formulate it as a Partially
Observed Markov Decision Processes (POMDPs), denoted by
a tuple G = 〈S,U, P,R,Ω, O, n〉, in which n agents interact
with the environment. Time is discrete and at each time-step,
each agent takes action a ∈ A, forming the joint action space
a ∈ U ≡ Un, which induces a environment transiting from
a global state s ∈ S to new state s′ ∈ S based on the state
transition function P (s′|s,a) : S×U×S → [0, 1]. Each agent
receives a local observation o ∈ Ω according to observation
function O(s, a) : S × U → Ω and chooses the action with a
stochastic policy π(a|o) : Ω × U → [0, 1]. After performing

the joint action at to the environment at the time-step t, the
agents receives a joint reward vector rt = R(st,at) ∈ Rn
describing the performance rtk ∈ rt of each agent k. The
objective for each agent k is to maximize its own expected
return Rk = E[

∑∞
t=0 γ

trtk] where γ ∈ [0, 1) is the discount
factor.

Deep Q-Networks and Policy Gradient: In single agent
RL, the action value Qπ(s, a) = Eπ[Rt|st, at = s, a] repre-
sents expected return for selecting action a in state s according
to policy π, while V π(s) = E[Rt|st = s] is the state value
of state s under the policy π. In model-free RL methods,
these functions are provided by the environment, where the
agent learns the optimal policy π∗ through trial-and-error
interactions. However, due to the huge searching space of
continuous states and actions, it is not feasible to directly
mapping from state-action pairs to the corresponding Q-value
in practice. Therefore, the recent deep Q-network (DQN) [3]
introduces a function approximator such as a neural network
to approximate optimal action-value function Q(s, a; θ) with
parameter configuration θ, i.e., Q(s, a; θ) ≈ Qπ∗(s, a). At the
time-step t, the parameters θ are optimized using stochastic
gradient descent by minimizing the loss functions:

Lt(θt) = E(y −Q(s, a; θt))
2
, (1)

where y = Rt(s, a)+γmax
a′

Q(s′, a′; θt−1), s′ is the next state
transmitted from state s, and a′ is the action of the next state.

The policy gradient [13] directly parameterizes the policy
π(a|s; θ) and updates the parameters θ in the direction of
∇θ log π(at|st; θ)Rt. In order to reduce the variance of this
estimate log π(at|st; θ)Rt, a relative advantage of the action
w.r.t the current state is introduced by subtracting a relative
baseline bt(st), that is, Rt − bt(st). We commonly use the
action value as the estimate of Rt and the learned state value to
represent the baseline b(st) [14], thus the advantage of action
at in state st can be defined as

A(at, st) = Q(at, st)− V (st), (2)

the resulting gradient is ∇θ log π(at|st; θ)A(st, at). This ap-
proach can be achieved by actor-critic methods in RL where
the policy π is produced by the actor and the baseline is
generated by the critic.

IV. METHOD

In this work, we are devoted to solve the partially observed,
fully cooperative task in multi-agent domain with deep RL,
and we consider a general communication setting: 1) one agent
first produces its own message and broadcast it to all the
others, 2) one receives the messages from the other agents
and then makes decisions on its current action. Our motivation
is to make each agent capable of modeling the dynamics of
received messages and learn the integration of useful messages
for better coordinating its behavior with other agents.

Specifically, we consider a game with N agents, each agent
i observes its local state oti at the time-step t and learns a
mapping that transforms current observation oti into a mes-
sage mt

i = Mi(o
t
i; θ

m
i) with parameters θmi . Each message

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00199

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 06:54:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. (a): The message integration of agent i. (b): The attentional integration function ψa
i . (c): The recurrent-based integration function ψh

i

mt
i ∈ Rl consists of l continuous values in each time-step.

We assume that each agent i receives messages from teammate
agents except for itself. Let mt

−i denote the received message
set of agent i by mt

−i = {mt
1,m

t
2, · · · ,mt

j , · · · ,mt
N |j 6= i}.

Each agent obtains a hidden observation state yti = fi(o
t
i; θ

o
i)

by an observation function with parameters θoi .
We propose two integration functions that deal with the

received messages mt
−i as the Fig. 1 (a) illustrates: 1) a

recurrent integration function ψhi that models the dynamics
of received messages and integrates them into a hidden com-
munication vector m̃h

i = ψhi (mt
−i) and 2) an attentional

integration function ψai that outputs an attentional commu-
nication vector m̃a

i = ψai (mt
−i, y

t
i) according to the relevance

of each received message w.r.t its current observation. The
agent action ai is conditioned on two integrated messages and
its own observation, which is given by πi(ai|m̃h

i , m̃
a
i , y

t
i ; θ

u
i)

with parameters θui . Whether agents eventually develop good
cooperative policies depends on how well these two integrated
messages are learned.

A. Recurrent Integration Function

In view of the sequential order information of the mes-
sages, we make use of the RNN to implement the message
integration where each received message is recurrently fed by
the receiving order. Therefore, the integration function ψhi is
directly parameterized with RNN paramters θhi , and we have
m̃h
i = ψhi (mt

−i; θ
h
i).

Specifically, as the Fig. 1 (c) shows, we unroll the recurrent
cell φi along the dimension of the message number (also agent
number). The hidden state output hki of received message mk

is given by:
hki = φi(h

k−1
i ,mk; θhi) (3)

where the hk−1i is the hidden state output of previous feeding
message mk−1. Our final hidden communication vector m̃h

i is
actually the hidden state output of the last feeding message.
In practical, to allow the input information of hki reachable to
hk−1i , we use bidirectional-RNN architecture [15] to decode
the messages in both forward and backward directions. In this
case, the m̃h

i will become two concatenated hidden vectors:
−→mh
i and ←−mh

i , which are the last hidden state outputs of the

forward and backward network with parameters
−→
θi
h and

←−
θi
h

respectively.
This recurrent integration is inherently beneficial to deal

with dynamics of agents. When there is a new agent k
that enters the environment, we just need to dynamically
instantialize one more recurrent cell and put it in the head
or tail of the message flow chain for receiving message mk.
Similarly, if there is an agent k that is deactivated (exit the
environment), we can skip the computing for mk and use the
previous hidden states of message (e.g.mk−1) to replace the
hidden state of mk.

Another benefit of recurrent integration is that: the sharing
of parameters between all the recurrent cells can learn the
repeated similar messages more efficiently. For instance, the
experience of learning the message mk can be used to learn
message mn especially when the mk and mn convey similar
interaction information. In these settings, to make it easier for
the receiving agent to know where the message comes from,
we input each message with the index of the sending agent.

B. Attentional Integration Function

Since not all the received messages are useful to make
decisions under broadcast settings, we propose an attentional
integration function ψai that gives more attentions to relevant
and useful messages w.r.t its current observation, and our
communication vector is given as m̃a

i = ψai (m−i, yi; θ
a
i) with

paramters θai . The idea behind is straightforward that if the
m̃a
i contains as much as relevant and useful information, it

will be more helpful for the agent to make better decisions in
view of teammate agents’ states.

In this case, as Fig. 1 (b) depicts, the m̃a
i is computed as a

weighted sum of each received message mj :

m̃a
i =

∑
j 6=i

αijmj (4)

where αij is the additive attentional value [16] representing
the relevance of the message mj , and is computed by:

αij =
eeij∑
k 6=i e

eik
(5)

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00200

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 06:54:02 UTC from IEEE Xplore. Restrictions apply.

where the energy value eij is modeled by a relation function a
with the input of the message mj and the observation hidden
state yi:

eij = a(yi,mj) = vi tanh(Wiyi + Uimj) (6)

where Wi, Ui, vi are the learned weight matrixes (actually
denoted by θai) of attentional mechanism to evaluate how
relevant between yi and mj . We reinforce agent i to generate a
larger value of αij with the corresponding message mj when
the occurrence of mj can bring up rewards for it.

C. Policy Learning

We use actor-critic architecture of RL to learn each agent’s
action policy, and the actor is actually composed of four
parts: ψai (θai), ψhi (θhi), fi(θoi) and πi(θui). For simplicity, we
use θi to denote these parameters, thus the action policy can
be revised as πi(ai|oi,m−i; θi). The critic shares non-output
layers of the actor and outputs one linear value Vi(oi,m−i;ωi)
with parameters ωi.

The actor and critic are updated according to asynchronous
advantage actor-critic (A3C) [14]. At the time-step t, the
actor of agent i is optimized through policy gradients as
∇θ log π(ati|oti,mt

−i, θi)A
t
i where the advantage function Ati

is given by Rti − Vi(oti,mt
−i, ωi), and the critic is optimized

with gradients ∂(Rti−Vi(oti,mt
−i;ωi))

2/∂ωi. The updates are
performed after every action until reaching a terminal state,
thus Rti can be computed by Rti = rti + γVi(o

t+1
i ,mt+1

−i ;ωi).
Since all the functions and operations are continuous and

differentiable, an end-to-end training is allowed to apply for
the whole model and the message extractorMi(o

t
i, θi) is opti-

mized by the gradients passed down from each communicating
actor through backpropagation.

V. EXPERIMENT

In this section, we conduct different experiments to verify
the effectiveness and superiority of our ARMI, compared to the
baseline IL, DIAL, CommNet, and VAIN. All the methods are
implemented on MXNet, a scalable deep learning framework,
and our game is built on Pygame development tool.

We give specific implementation of ARMI as followings:
each message has the length l = 50, and the observation
function uses one hidden MLP of 255 neurons. The sizes of
attentional weights W,U, v are set to 255×50, 50×50, 50×1
respectively, while the recurrent-based function is modeled by
one stack layer LSTM with hidden size of 255. We use a
variant of stochastic gradient descent method Adam [17] to
optimize the parameters with default hyperparameters and a
learning rate of 5×10−4. The discount rate is fix to γ = 0.99,
and we start 32 threads running 32 environment instances to
break the irrelevance of the samples for updating the networks.

A. Environmental Setup

We use a predator-prey pursuit problem to be our testbed,
which is a typical benchmark problem of multi-agent RL
[18]. Different from traditional grid-world pursuit problem, we
design a continuous state-action space environment to simulate

a realistic case in real-world applications. We implement a
prototype game with a newly introduced toxin role to make
the task more challenged.

Fig. 2. Predator prey toxin environment

Our scenario is that our predators (agents) need to cooperate
with each other to catch preys for earning rewards, and also
avoid punishments of colliding with toxins. As Fig. 2 (Right)
shows, we have n predators (blue), m toxins (red) and k preys
(green) in total running in the environment. Each agent has
a limited observation range and a fixed predation range as
in the Fig. 2 (Left). An agent is awarded when a prey is
fully covered by the public predation area, which is formed
with the coordination of the fellow agent. Negative reward
is given each time when an agent comes into contact with
any toxin. The existence of toxins increases the difficulty of
collaboration that agents are more likely to get separated while
they encounter toxins, which may lead to a sparser positive
reward distribution. Obviously, the optimal strategy of agents
is to maintain the maximum of public predation area while
cruising around together and also avoiding toxins.

State space: the observation of each agent is divided into
z directions in average and for each direction, there is an eye
sensor pointing in the observation depth d. Each eye sensor
observes the distance to the wall, the prey, the toxin and the
fellow agents. In addition, the agent perceives two additional
sensors for its own speed in both x and y directions.

Action space: there are 4 actions available for the agent to
control the velocity: to apply thrusters to the left, right, up and
down in an accelerated speed, and the velocity is attenuating
with a certain decay rate.

The environment is reset after reaching the terminal state in
each episode. The max step in an episode is limited to 1,000,
and we carried out the experiment with 40 epochs for each
approach and one epoch contains maximum 100,000 steps.

B. Scores Evaluation

We first consider a standard environment instance with 5
predators, 20 preys and 10 toxins (5-20-10). Note that the
environment is dynamic since we will add new agents into
the game within certain number of epochs. In our case, the
agent number starts from 2 in the 0th epoch and reaches 5 in
the 24th epoch. Therefore, the training performance of each
method is evaluated by its average score, which is the ratio
of total rewards to the current agent number in one episode.

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00201

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 06:54:02 UTC from IEEE Xplore. Restrictions apply.

As Fig 3. shows, our ARMI almost obtains the highest scores
in the whole training process, which indicates the agents may
have a stronger learning efficiency to earn rewards and also
avoids toxins.

0 5 10 15 20 25 30 35 40
Running epochs

10

0

10

20

30

Sc
or

es
 p

er
 a

ge
nt

CommNet
IL
VAIN
DIAL
ARMI

Fig. 3. Average scores per agent of each method

To suppress the interference of introduced toxin role, we
further investigate the performance of each method and the
random policy in an environment without toxin (5-20-0). Table
I shows the statistical analysis of the average scores and
collisions per agent in last 20 epochs, and we find that VAIN
and ARMI achieve similar scores without the disturbing of
toxins, but the superiority of ARMI comes out after toxins
are introduced. This result proves that ARMI could perform
better in such complex environments, which is due to the
stronger negotiation skill of each agent while encountering
toxins. We will give out some further discussions on the reason
in following sections.

TABLE I
STATISTICAL RESULT OF THE PERFORMANCE IN LAST 20 EPOCHS

Approach Score (5-20-0) Score (5-20-10) Collision (5-20-10)
Random 1.6 ± 1.2 -17.5 ± 6.8 18.4 ± 7.3

IL 8.3 ± 4.0 3.5 ± 2.9 14.8 ± 4.3
DIAL 3.1 ± 1.7 -0.4 ± 2.3 25.8 ± 6.8
VAIN 18.7 ± 7.1 12.1 ± 6.6 14.6 ± 4.3

CommNet 16.9 ± 6.0 9.6 ± 5.3 13.6 ± 3.9
ARMI 19.6 ± 6.0 15.1 ± 6.4 15.1 ± 4.4

C. Attention visualization
Let us further visualize the attentional weights generated

by ARMI to understand the nature of interactions between
the agents. We randomly sample a state from the environ-
ment as Fig. 4 (Left) illustrates: the agent 1, agent 2 and
agent 3 are in the observation range of each other while
the others are completely separated. In this state, since the
public predation area is the key to get rewards, the agents
should pay more attentions to the messages sent from the close
agents. Therefore, these three agents should care more about
the message sent from each other rather than the agent 0 and
agent 4, which is correctly learned in ARMI shown in Fig. 4
(Right). Although there exist some attentional distractions for
the separated agents, we leave it to future investigation.

D. Comparison with IL
We now investigate how our method works by receiving

messages compared with the case without message exchang-
ing. We examine the changes of one agent’s policy only

Fig. 4. A screenshot of the sampled environment (Left), and the heatmap of
the current attentional weights in matrix from (Right): the color of the block
at i-th row and j-th column represents the attention strength (αij) of the
agent i w.r.t the message sent from agent j.

under the influence of messages sent from the fellow agent.
Therefore, we consider a scenario where agent 1 perceives a
prey in its left side and agent 2 in its right side, in this case,
agent 2 only depends on the messages sent from the agent
1 to decide the next action. We observe the changes of the
probability of choosing left action in agent 2 when the distance
between them changes. The policies are collected through the
trained networks of our method and IL in different epoch, and
we plot them in 3-D space shown as Fig. 5.

Fig. 5. 3-D mappings of the left action

As the Fig. 5 depicts, two specific patterns are well learned
for agent 2 in our method: 1) the left action is more inclined to
be selected when the distance with agent 1 decreases because
the two agents are trying to get near with each other to
keep the public predation area, 2) once the agent 1 observes
the appearance of the prey, the left action of the agent 2 is
dominating since it needs to move towards left side to eat
the prey and get rewards. However, the second pattern is not
formulated in the IL method because there is no provided
information for the agent 2 to decide the next action. This
result shows that the messages can serve as the information
carrier that transfers the agent 1’s instruction of moving left
to agent 2. More importantly, the messages are correctly
interrupted and understood by the agent 2, thus the behavior
is successfully coordinated.

E. Communication protocol visualization

We can also visualize the communication protocol learned
in the predator-prey domain by mapping the high dimensional

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00202

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 06:54:02 UTC from IEEE Xplore. Restrictions apply.

messages data in a two-dimension projection space. We sample
1000 points of 50-dimensional messages sent from one certain
agent to another and the corresponding action policies in the
final epoch of our method. According to the policy, each
message can be labeled with 4 distinct values representing
the taken action of up, down, left and down. However, this
labelling way is discrete, deterministic and ignores the prob-
ability nature of the stochastic policy. Therefore, we map the
output action policy to a continuous angle space in which
each message is labeled with a clockwise angle θ w.r.t to the
direction of up action, which can reflect the resulting direction
of this message. The angle θ can be computed by the following
equation where π(aup), π(adown), π(aright) and π(aleft) are
the probability of the up, down, right, left action respectively.

θ = arctan

(
π(aup)− π(adown)

π(aright)− π(aleft)

)
. (7)

Fig. 6. t-SNE embedding representations of communicated messages

We use t-SNE [19] to map data with similar features near
to each other, thus the messages with similar content will
get clustered in one region of embedding space. As shown
in the Fig. 6, each message is colored by the angle value
θ and we find four distinct colored areas are formed in the
figure to represent the four types of the message features that
result in four different actions, such as the red dots correspond
to the UP action, etc. This result shows a strong correlation
between the received messages and the decided action in one
agent, which explains the fact that the features of messages
are well learned and interpreted by the receiver agent, and the
communication protocol is properly established between the
sender and receiver agent.

VI. CONCLUSION

This paper provides a novel message integration method
ARMI to address the communication issues in multi-agent do-
main. Two specific integration functions are proposed to han-
dle dynamics of agent number and learn effective interactions
respectively. Serval experiments are conducted to verify the
effectiveness of our proposal in a benchmark environment, and
the results show that our method outperforms existing methods
and achieves a much higher score in such environments.

Since we assume each agent feeds messages in sequence by
the receiving order with the recurrent function, the forward
and backward process is hard to be parallelized and sped
up, which may cause intolerant running time especially for
a large number of agents. Our further work may contain the
simplification of integration functions, and more surveys on
the imperfect messages because the transmission in real-time
communication channel is usually very noisy.

REFERENCES

[1] Zhaoqing Peng, T. Kato, H. Takahashi and T. Kinoshita, “Intelligent
home security system using agent-based IoT devices,” IEEE 4th Global
Conference on Consumer Electronics, Osaka, 2015, pp. 313-314.

[2] Omidshafiei S, Pazis J, Amato C, How JP, Vian J, “Deep decentralized
multi-task multi-agent reinforcement learning under partial observabil-
ity,” In International Conference on Machine Learning, pp. 2681-2690,
2017.

[3] Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, et al., “Human-level control through deep reinforcement learning,”
Nature 518.7540 (2015): 529-533.

[4] Gupta, Jayesh K., Maxim Egorov, and Mykel Kochenderfer, “Coopera-
tive multi-agent control using deep reinforcement learning,” International
Conference on Autonomous Agents and Multiagent Systems, pp. 66-83,
2017.

[5] Leibo JZ, Zambaldi V, Lanctot M, Marecki J, Graepel T, “Multi-agent
Reinforcement Learning in Sequential Social Dilemmas,” Proceedings of
the 16th Conference on Autonomous Agents and Multi Agent Systems,
2017, pp. 464-473

[6] Hausknecht, Matthew, and Peter Stone, “Grounded Semantic Networks
for Learning Shared Communication Protocols,” Workshop on Deep
Reinforcement Learning (NIPS), Barcelona, Spain, 2016.

[7] Lowe R, Wu Y, Tamar A, Harb J, Abbeel OP, Mordatch I, “Multi-Agent
Actor-Critic for Mixed Cooperative-Competitive Environments,” arXiv
preprint arXiv:1706.02275, 2017.

[8] Peng P, Yuan Q, Wen Y, Yang Y, Tang Z, Long H, et al., “Multiagent
Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat
Games,” arXiv preprint arXiv:1703.10069, 2017.

[9] Foerster, Jakob, Yannis Assael, Nando de Freitas, and Shimon White-
son, “Learning to communicate with deep multi-agent reinforcement
learning,” In Advances in Neural Information Processing Systems, pp.
2137-2145, 2016.

[10] Sukhbaatar, Sainbayar, and Rob Fergus, “Learning multiagent com-
munication with backpropagation,” In Advances in Neural Information
Processing Systems, pp. 2244-2252, 2016.

[11] Hoshen, Yedid, “Vain: Attentional multi-agent predictive modeling,” In
Advances in Neural Information Processing Systems, pp. 2698-2708,
2017

[12] Zhaoqing Peng, Libo Zhang, Tiejian Luo, “Learning to Communicate
via Supervised Attentional Message Processing,” In 31th International
Conference on Computer Animation and Social Agents, 2018, in press.

[13] Sutton RS, McAllester DA, Singh SP, Mansour Y, “Policy gradient meth-
ods for reinforcement learning with function approximation,” Advances
in Neural Information Processing Systems, 2000.

[14] Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, et al.,
“Asynchronous methods for deep reinforcement learning,” In Interna-
tional Conference on Machine Learning, pp. 1928-1937, 2016.

[15] Graves, A, Mohamed, A. R., Hinton, G., “Speech recognition with deep
recurrent neural networks,” In Acoustics, speech and signal processing
(icassp), pp. 6645-6649 , 2013

[16] Bahdanau, D., Cho, K., Bengio, Y., “Neural machine translation by
jointly learning to align and translate,” International Conference on
Learning Representations(ICLR), pp. 1-15, 2014

[17] Kingma, Diederik P., and Jimmy Ba., “Adam: a method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014

[18] K. Noro, H. Tenmoto, A. Kamiya, “Signal learning with messages
by reinforcement learning in multi-agent pursuit problem,” Procedia
Computer Science 35, pp. 233-240, 2014.

[19] Maaten, Laurens van der, and Geoffrey Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, pp. 2579-2605, 2008

2018 IEEE Symposium on Computers and Communications (ISCC)

978-1-5386-6950-1/18/$31.00 ©2018 IEEE 00203

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 06:54:02 UTC from IEEE Xplore. Restrictions apply.

