
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Dual Encoding for Abstractive Text Summarization
Kaichun Yao, Libo Zhang , Dawei Du , Tiejian Luo, Lili Tao, and Yanjun Wu

Abstract—Recurrent neural network-based sequence-to-
sequence attentional models have proven effective in abstractive
text summarization. In this paper, we model abstractive text
summarization using a dual encoding model. Different from the
previous works only using a single encoder, the proposed method
employs a dual encoder including the primary and the secondary
encoders. Specifically, the primary encoder conducts coarse
encoding in a regular way, while the secondary encoder models
the importance of words and generates more fine encoding
based on the input raw text and the previously generated output
text summarization. The two level encodings are combined
and fed into the decoder to generate more diverse summary
that can decrease repetition phenomenon for long sequence
generation. The experimental results on two challenging datasets
(i.e., CNN/DailyMail and DUC 2004) demonstrate that our dual
encoding model performs against existing methods.

Index Terms—Abstractive text summarization, dual encoding,
primary encoder, recurrent neural network (RNN), secondary
encoder.

I. INTRODUCTION

TEXT summarization aims to generate short, accurate, and
informative summary from larger text documents. It is

widely applied in natural language understanding and infor-
mation retrieval, etc. Summarization techniques are mainly
grouped into extractive and abstractive approaches. Extractive
methods construct a summary by extracting salient words,
phrases, or sentences from the source text. Abstractive meth-
ods produce a summary similar to a human-written abstract
by concisely paraphrasing the source content. That is, the for-
mer ensures the grammatical and semantic correctness of the
generated summaries, while the latter creates more diverse
and novel content. In this paper, we focus on abstractive text
summarization.

Recently, neural networks are widely leveraged in many
natural language processing tasks because of promising per-
formance [1]. Specifically, the neural networks-based encoder–
decoder models are used in the sequence-to-sequence tasks,

Manuscript received January 23, 2018; revised June 24, 2018 and
September 17, 2018; accepted October 2, 2018. This work was supported
by the National Natural Science Foundation of China under Grant 61807033.
This paper was recommended by Associate Editor M. Last. (Corresponding
author: Libo Zhang.)

K. Yao, D. Du, and T. Luo are with the School of Computer Control
Engineering, University of Chinese Academy of Sciences, Beijing 100049,
China.

L. Zhang and Y. Wu are with the Institute of Software Chinese Academy of
Sciences, State Key Laboratory of Computer Science, Beijing 100190, China
(e-mail: libo@iscas.ac.cn).

L. Tao is with the Department Engineering, Design and Mathematics,
University of the West of England, Bristol BS16 1QY, U.K.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2018.2876317

such as neural machine translation [2], [3], speech recogni-
tion [4], [5], image captioning [6], conversational system [7],
and text summarization [8]–[11]. Within text summarization
tasks, the encoder reads the whole input sequence and gener-
ates a fixed dimensional feature vector, and then the decoder
uses the feature representation to produce desired output
sequence. For example, the summarization model employs a
convolutional neural network (CNN) as an encoder and a feed-
forward neural network language model as a decoder [8]. An
extension to this framework is to add attention mechanism by
considering context cues in hidden states of the encoder, which
facilitates to decode the target sequence [12].

Although the above encoder–decoder models are promis-
ing, some problems still remain. In these works, a decoder
uses a fixed target vocabulary to output the corresponding
probability distribution at each timestep. This may lead to the
incapable to handle rare or out-of-vocabulary (OOV) words.
Increasing the size of the target vocabulary could alleviate
this problem, but this increases the computational complex-
ity in decoding as a softmax function needs to calculate over
all possible words. This can be improved by applying a copy
mechanism that dynamically copies the words from the input
sequence when decoding without enlarging the size of the
vocabulary [10], [13]–[16].

Another problem with encoder–decoder models is that
they often generate unnatural summaries consisting of
repeated phrases, especially evident for long text summariza-
tion generation. On a long sentence summarization dataset
(e.g., CNN/DailyMail dataset containing multisentence sum-
maries of up to 56 tokens on average), a coverage mechanism
is used to avoid the repetition problem. It records past atten-
tional weights in the decoder and dampens the decoder from
attending to the same parts of the input text when decoding in
future [13]. Different from this mechanism, an intra-attention
mechanism takes the attention at the decoder into account,
which is prominently effective for eliminating repetition [17].
However, they consider little about the relations between the
input tokens in the encoder and the already generated words
by decoder.

To solve these problems, we propose a novel dual encod-
ing for abstractive text summarization (DEATS) that extends
the existing sequence-to-sequence framework. Specifically, our
dual encoding model consists of a primary encoder, a sec-
ondary encoder, and a decoder. It conducts the primary encoder
and the decoder as the standard attentional encoder–decoder
model. The secondary encoder is based on the input and
the previously produced output, and generates a new context
vector as an additional input of the decoder. The context vec-
tor makes the decoder obtain more meaningful information
and generate better output. Besides, we conduct a multistep

2168-2267 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7153-6465
https://orcid.org/0000-0001-9404-524X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

decoding operation in the decoder, and model the decoded con-
tent at each stage as a semantic feature vector. This makes the
decoder “remember” the content produced in the earlier time-
steps in order to avoid the repetition. The main contributions
of this paper are summarized as follows.

1) We propose a dual encoding mechanism (DEM) to
extend the traditional sequence-to-sequence model to
make full use of the document text information by
adding an additional encoder.

2) We consider the importance of words in the input to
make the secondary encoder reweigh “remembered” and
“forgotten” parts in the input sequence.

3) We introduce an enhanced repetition avoidance mecha-
nism (RAM). It combines an existing coverage mech-
anism and the previously decoded content produced in
the earlier time-steps to improve the repetition problem
in sequence generation tasks.

4) We conduct experiments on two challenging datasets
(i.e., the CNN/DailyMail dataset and the DUC 2004
dataset), which shows that our dual encoding model
outperforms existing models.

The remainder of this paper is organized as follows. Related
work on text summarization is reviewed in Section II. The
proposed approach is presented in Section III. Experimental
evaluations and discussions are given in Sections IV and V,
respectively. Concluding remarks are given in Section VI.

II. RELATED WORK

A. Text Summarization

A large majority of work in the past few years has been
focused on extractive summarization [18]–[26], where a sum-
mary consists of key words or sentences from the source
text. Different from extractive methods copying units from the
source article directly, abstractive summarization uses the read-
able language for human to summarize the key information of
the original text. Therefore, abstractive approaches can pro-
duce much more diverse and richer summaries. Abstractive
summarization task has been standardized by the DUC2003
and DUC2004 competitions [27]. Hence, there emerge a series
of notable methods without neural networks on this task,
e.g., the best performer TOPIARY system [28].

Recently, the emergence of the generative neural mod-
els [12] for text has inspired new work in abstractive summa-
rization. A neural network model uses a convolutional encoder
to encode the source and attentional feed-forward network to
produce a summary [8]. It achieves the state-of-the-art results
on the DUC-20041 and Gigaword datasets. An extension of
this paper uses a similar encoder but replaces the decoder with
a recurrent neural network (RNN) [9], and achieves better per-
formance on the both above datasets. Apart from English text
summarization, a large dataset for Chinese short text sum-
marization is introduced. The context is used as input of the
decoder which is computed as a sum of all hidden states from
the encoder [29].

1http://duc.nist.gov/duc2004/tasks.html

B. Rare or OOV Words Problem

Rare and OOV words prevent models from learning repre-
sentations for new words during training. This may result in a
poor readability for the generated summaries. Although RNN-
based encoder–decoder models with attention have shown
good performance on many datasets, it is challenging to model
rare or OOV words effectively. To handle this problem, a
pointer mechanism (PM) is proposed to use a new decoder
network to point back to OOV words and phrases in the
input text and copy them into the output [30]. Furthermore, an
approach combining the PM and the original word generation
layer in the decoder considers either of them at each decoding
step [13], [27]. Different from the work in [13] and [27], the
model with encoder–decoder structure integrates the copying
mechanism with word generation in the decoder [15]. Another
copying mechanism derives the representations of OOV words
from their corresponding context in the input text [16].

C. Repetition Problem

A common issue of neural networks-based encoder–decoder
models is that they tend to generate repetitive and incoher-
ent phrases in longer summaries. To avoid this, a coverage
mechanism eliminates the repetition by discouraging it from
attending to the same part in the input sequence when decod-
ing [14]. The method is adapted from statistical machine
translation tasks [31], [32]. A distraction mechanism can be
incorporated into the neural networks-based summarization
model [33]. All these approaches are devoted to the different
forms of information encoding and acquisition at the encoder.
On the contrary, the decoded information at the decoder can
also be used to avoid the repetition [17]. Our dual encoding
model is similar to [16] at the encoder, but conducts a differ-
ent secondary encoding every several decoding steps. At the
same time, at the decoder, the decoded content is modeled as
a feature representation and then the secondary encoder uses
it to fulfil a secondary encoding.

The repetition problem happens more often in long sequence
generation tasks. However, researchers pay little attention to
large-scale datasets for summarization of longer text. In [10],
the RNN-based encoder–decoder model with hierarchical
attention is proposed for abstractive summarization task and
evaluated on the CNN/DailyMail dataset [34]. Later, another
hierarchical RNN model is developed and achieves signifi-
cantly better abstractive result with respect to the ROUGE
metric [35]. Our dual encoding model is mainly designed for
long sequence generation tasks, therefore, we also use the
CNN/DailyMail dataset to evaluate the proposed method.

III. DUAL ENCODING MODEL

Abstractive text summarization can be formulated as a
generation task that a “output sequence” is generated from
a “input sequence.” The input is a source text sequence
X = [x1, x2, . . . , xj, . . . , xm], where j and m are the index and
the number of the words in source text, respectively. The out-
put is a shorter summary sequence Y = [y1, y2, . . . , yi, . . . , yn]
of that text, where i and n are the index and the number of
the words in summary text, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAO et al.: DEATS 3

Fig. 1. Overview of our dual encoding model.

In this section, we describe the dual encoding model in
detail. As depicted in Fig. 1, our dual encoding model consists
of a primary encoder, a secondary encoder, and a decoder
equipped with an attention mechanism.

1) The primary encoder calculates the semantic vectors for
each word in input sequence.

2) The secondary encoder first calculates the importance
weight for each word in input sequence and then
recalculates the corresponding semantic vectors.

3) The decoder with attention mechanism decodes by
stages and generates a partial fixed-length output
sequence at each stage.

Notably, all the above three modules employ the gated recur-
rent unit (GRU) [36].

For each iteration, the primary encoder first reads each word
in the input sequence, and produces the corresponding hidden
representation (i.e., hp

j in Fig. 1) and the content representation
(i.e., Cp in Fig. 1) for the whole source text.

Second, the decoder generates the partial fixed-length
sequence for every K decoding steps which is modeled as
the current decoded content representation (i.e., Cd in Fig. 1),
where K is defined in (9). Based on the above representations
(hp

j , Cp, and Cd), the importance weight (i.e., αj in Fig. 1) is
calculated with (4).

Third, the secondary encoder fulfils more fine encoding on
the input sequence for every K decoding steps. Specially, we
put the αj on the secondary encoder in the form of skip-
connections. Then, the secondary encoding is conducted on
the source text followed in (5). It is worth mentioning that the
new encoding generates a new semantic context vector (i.e., hs

m
in Fig. 1) to facilitate the decoder to output more accurate tar-
get sequence. When the decoder finishes decoding the next
fixed-length (K decoding steps) subsequence, the secondary
encoder conducts the secondary encoding once again.

In our dual encoding model, the secondary encoder conducts
an encoding operation based on the input and already output
at each stage. Therefore, it is of great significance for the
quality of the previously texts generated by the decoder. The
better previous output would significantly facilitate the latter
text generation. We use the PM and the coverage mechanism

to guarantee the decoder to obtain a better partial output. A
combination of the DEM, the PM and the coverage mechanism
could make them benefit from each other.

The details of the primary and the secondary encoder are
described in Sections III-A and III-B, respectively. Different
from the general decoder, our decoder conducts the decoding
operation by stages, which is described in Section III-C. We
use the PM to handle rare or OOV words and an enhanced
RAM to discourage the repetition problem, which are given
in Sections III-D and III-E, respectively. Besides, the training
process for our dual encoding model is given in Algorithm 1.

A. Primary Encoder

RNN has achieved promising performance in sequence
processing tasks, especially in handling a variable-length
sequence [37]. Moreover, RNN with the gating units is more
easily trained than vanilla RNN with better performance in
many tasks [38]. Therefore, we employ the primary encoder
to generate coarse encoding using a GRU-based RNN [38].
A GRU can adaptively capture dependencies of different time
scales, which is defined as the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

ut = σ
(
Wu
[
xt, ht−1

])

rt = σ
(
Wr
[
xt, ht−1

])

h′
t = tanh

(
Wh
[
xt, rt � ht−1)

])

ht = (1 − ut) � ht−1 + ut � h′
t

(1)

where Wu, Wr, and Wh are parameter matrices. xt and ht indi-
cate the corresponding input embedding vector and the hidden
state vector at the time step t, and � is an element-wise
multiplication operator.

The purpose of the primary encoder is to construct the fea-
ture representation of the input sentence. Here, we employ
a bidirectional GRU (Bi-GRU) as the recurrent unit of the
primary encoder, as shown in the bottom-left of Fig. 1. The
Bi-GRU consists of a forward and a backward GRU. Given a
sequence of the input word embeddings [i.e., (x1, x2, xj, xm)

in Fig. 1], the forward GRU computes hidden state rep-
resentations (�hp

1,
�hp

2, . . . ,
�hp

j , . . .
�hp

m) at each word position
sequentially according to the current word embedding and the
previous hidden state. The backward GRU generates hidden

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1 Training Process for Dual Encoding Model
1: Given training set < X, Y >

2: for epsiode = 0, M do
3: Sample (x,y) from source text X and gold summary Y
4: Compute the hidden state of primary encoder hp

t for each word in x Eq. (1) and Eq. (2)
5: Compute the content representation Cp for x using Eq. (3)
6: for decoding time-step i = 0, len(Y) do
7: Compute the hidden state of decoder hd

i using Eq. (7)
8: if i%K == 0 then
9: if i == 0 then

10: Set the content representation of partial generated sequence Cd to zero
11: else
12: Compute Cd using Eq. (8)
13: end if
14: Compute the importance weight αt using Eq. (4)
15: Compute the hidden state of secondary encoder hs

t using Eq. (5)
16: Compute the hidden state of decoder hd

i based on hd
i−1 and hs

m in Eq. (9)
17: end if
18: Compute the vocabulary distribution Pw using Eq. (12)
19: Update network parameters based on the overall loss L in Eq. (16)
20: end for
21: end for

state representations (�h
p
1,

�h
p
2, . . . ,

�h
p
j , . . . ,

�h
p
m) for each word in

reversed sequence (i.e., from the last word to the first). The
two kinds of hidden states are defined as

⎧
⎨

⎩

�hp
t = GRUp

(
xt, �hp

t−1

)

�h
p
t = GRUp

(
xt, �h

p
t−1

)
.

(2)

We set the initial states of the Bi-GRU to zero vectors,
i.e., �hp

1 = 0 and �h
p
m = 0. After the input sequence is read by

the primary encoder, each word in the sequence can be rep-
resented as a concatenated hidden state of forward GRU and
backward GRU, denoted as hp

t = [�hp
t , �h

p
t] (i.e., hp

1, hp
2, hp

j , hp
m

in Fig. 1). Then, we can model the representation of the whole
input text sequence as a nonlinear transformation of the aver-
age pooling of the concatenated hidden states of Bi-GRU. The
representation Cp is calculated as

Cp = tanh

(

Wp
1

N

N∑

t=1

hp
t + bp

)

(3)

where Wp and bp are parameters, and N represents the length
of the input sequence.

B. Secondary Encoder

The secondary encoder is depicted in the top of Fig. 1. As
discussed above, the primary encoder reads the input sequence
only once to create the hidden state representations. It com-
putes the context with attention mechanism at each decoding
time step adaptively. Different from the primary encoder, the
secondary encoder is built with unidirectional GRU RNN, and
reads the input sequence every K decoding steps according to
the decoded information at each stage. At the same time, the
importance weight αt is computed based on the feature repre-
sentation of each word hp

t in the input sequence, the content of

entire input text sequence Cp and the content representation of
output sequence Cd generated by decoder at the current stage.
We have

αt = σ
(

W2

(
tanh

(
W1

[
hp

t , Cp, Cd
]

+ b1

))
+ hp

t
T

WsC
p

+ hp
t

T
WsC

d − CpTWrCd + b2 (4)

where W1, W2, Ws, Wr, b1, and b2 are the learning parameters.
The importance weight αt signifies how much attention should
be paid to the current input word xt. For the summarization
task, the saliency between every word and the entire content of
source text is modeled as hp

t
T

WsCp and hp
t

T
WsCd in (4). The

redundancy between the content of source text and the decoded
content in current stage is modeled as CpTWrCd in (4). Finally,
αt is computed for each word in the input sequence based on
the information itself, its saliency and the redundancy.

As shown in Fig. 1, we put the importance weight αt on the
skip-connections to bias the two information flows. That is, if
the current input word xt has a very small weight αt, then
the hidden state hs

t encoded by the secondary encoder will
take the majority of information directly from the previous
hidden state hs

t−1, neglecting the effect of the current word. If
αt approximates to 1, it is similar to a standard GRU, which
is only influenced from the current word. Thus, the secondary
encoder has the following update rule:

hs
t = (1 − αt)�hs

t−1 + αt�GRUs(xt, hs
t−1

)
. (5)

Notably, the final hidden state hs
m is the complementary

information to help decoder generate target summary. Thus,
both the secondary encoder and the primary encoder together
complete our dual encoding process.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAO et al.: DEATS 5

C. Decoding by Stages

As shown in the right of Fig. 1, we also use GRU as
the decoder to generate the output summary. The decoder
and primary encoder constitute a basic sequence-to-sequence
model. Moreover, some advanced techniques, such as attention
mechanism [12]; copy mechanism [15], [16]; pointer-generator
network [10], [13], [14]; and coverage mechanism [14], [31]
can be applied in the basic sequence-to-sequence model to
achieve better performance. In the sequence generation task,
the secondary encoder is used as a complementary and inde-
pendent encoder to improve the performance of our basic
model. In this paper, we use a decoder with attention mech-
anism to compute the context vector according to the hidden
states (hp

1, hp
2, . . . , hp

j , . . . , hp
m) of the primary encoder. The

context vector ci is computed as a weighted sum of these
hidden states as

ci =
n∑

j=1

aijh
p
j (6)

where the weight aij of each hidden state hp
j is computed by

⎧
⎪⎪⎨

⎪⎪⎩

aij = exp(eij)∑n
k=1 exp(eik)

eij = vT
a tanh

(
Wahd

i−1 + Uahp
j

)

hd
i = GRUd

(
yi, hd

i−1

)
.

(7)

Score eij represents how well the inputs around position j
match the output at position i, and hd

i is the hidden state gen-
erated by the decoder that is based on its last hidden state hd

i−1
and the ith target yi in the output sequence.

Our dual encoding model does not decode the whole out-
put sequence at one time but decodes the partial fixed-length
sequence by stages. We decode the partial sequence for the
fixed length K at each stage and model the whole decoded
sequence as

Cd = tanh

(

Wd
1

L

L∑

i=1

hp
i + bd

)

(8)

where Wd and bd are parameters, and L denotes the length
of the current decoded sequence. Cd is the current content
produced by the decoder, which is used to adjust the attention
weight of the secondary encoder to each word in the input
sequence, and we set Cd to a zero vector at the beginning
of decoding. After every fixed-length decoding, the secondary
encoder generate a new final state hs

m, and our decoder is
rewritten as follows:

hd
i =

{
GRUd

(
yi,
[
hd

i−1, hs
m

])
if L % K == 0

GRUd
(
yi, hd

i−1

)
otherwise.

(9)

The initial state of the decoder is set to the final state of the
primary encoder, namely hd

0 = hp
m. We compute the decoded

content and the secondary encoding at every K decoding steps.
Then, we concatenate the current context vector ci acquired
from the primary encoder and the decoder hidden state hd

i ,
and feed through one linear layer to produce the vocabulary
distribution as

Pv = P(yi|y1, . . . , yi−1; x) = softmax
(

Wv

[
hd

i , ci

]
+ bv

)

(10)

where P(yi|y1, . . . , yi−1; x) is the conditional probability dis-
tribution for the target word yi over all words in the vocabulary
at time-step i. Wv and bv are the learning parameters.

D. Pointer Mechanism

Some rare words or OOV words such as named-entities are
central to the summary, but they prevent models from learning
representations for new words when training. It is commonly
dealt with the use of an universal “UNK” token for words
representation, but resulting in a poor readability for the gen-
erated summaries. In summarization tasks, an intuitive way to
handle such OOV words is to simply point to their location
in the source document. Inspired by [14] and [30], we use
a PM between the primary encoder and the decoder in our
dual encoding model. We allow copying words via pointing,
along with generating words from a fixed vocabulary. A soft
switch Pp is used to choose between generating a word from
the fixed vocabulary by sampling from Pv, and copying a word
from the input sequence by sampling from the attention distri-
bution ai. Pp is a generation probability for time-step i, which
is calculated as

Pp = σ
(

wT
c ci + wT

h hd
i + wT

y yi + wT
d Cd + bg

)
(11)

where wc, wh, wy, wd, and bg are the learning parameters.
ci is the context vector, hd

i is the decoder hidden state, yi

is the decoder input, and Cd is the content representation of
partial decoded sequence. σ is the sigmoid function, hence,
Pp ∈ [0, 1].

For each document, we use an extended vocabulary to
denote the union of the fixed vocabulary and all words appear-
ing in the source document. The probability distribution over
the extended vocabulary is calculated as

Pw = PpPv(w) + (
1 − Pp

) ∑

j:wj=w

aij. (12)

Note that if w is an OOV word, then Pv(w) is zero. Similarly,
if w does not appear in the source document, then

∑
j:wj=w aij

is also zero. The PM is more robust in dealing with rare words
as it uses the hidden-state representation of rare words from
the encoder to decide which word from the source document
to point to. The model is still able to accurately point to unseen
words which do not appear in the target vocabulary, because
the hidden state depends on the entire context of the word.

During training, the loss for time-step i is the negative
log likelihood of the target word wi, i.e., Li = − log P(wi).
Therefore, the overall loss for the whole sequence is

L = 1

T

T∑

i=0

Li (13)

where T denotes the target sequence length.

E. Repetition Avoidance

For sequence-to-sequence models, repetition is a common
problem in sequence generation tasks, especially notable in
generating multisentence text. In our dual encoding model, an
enhanced mechanism is used to solve this problem. On one

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

hand, the secondary encoder generates an encoding feature
vector every K steps, which makes the decoder remembers
the content produced in the earlier time-steps to avoid the
repetition. On the other hand, we use the coverage mech-
anism [14], in which the coverage vector cv is defined to
the sum of attention distributions over all previous decoder
time-steps

cv
i =

i−1∑

i′=0

ai′ . (14)

Note that cv
0 is a zero vector, because none of the source

document has been covered on the first decoding time-step.
Next, the coverage vector is also used as extra input to the
attention mechanism in (7). Hence, the formula for attention
mechanism is updated to

eij = vT
a tanh

(
Wahd

i−1 + Uahp
j + Wchcv

i

)
. (15)

At the same time, an additional coverage loss is defined
to penalize repeatedly attending to the same locations.
Combining (13), the primary loss function is rewritten as

L = 1

T

T∑

i=0

⎛

⎝Li + λ
∑

j

min
(

aij, cv
ij

)
⎞

⎠ (16)

where λ is a hyper parameter. i and j denote the decoding
time-step and the position in input sequence, respectively. The
coverage mechanism aims to deal with the repetition problems
from the encoder by discouraging the decoder from attending
to the same part on the input sequence according to the past
attentional weights. Combined the coverage mechanism with
the content produced in the earlier time-steps by the decoder,
the enhanced mechanism in this paper can be regarded as
avoiding the repetition from both the encoder and the decoder.

IV. EXPERIMENTAL RESULTS

In this section, the datasets for evaluation and the eval-
uation metric are introduced first, and then the proposed
method is compared against with the state-of-the-art meth-
ods in the challenging datasets. The experimental results of
other state-of-the-art methods are provided from the authors
or reproduced from the available source codes. The proposed
method is implemented using Tensorflow.2 It takes about two
weeks to train our model until the model converges on a
machine with a 3.4 GHz Intel i7 processor, 32 GB memory,
and a NVIDIA GTX 1080 GPU card with 8 GB memory.

A. Datasets

For our experiments, we train and test our dual encoding
model on the joint CNN/DailyMail dataset, namely a multiple
sentences summarization dataset. The dataset is originally con-
structed for the question answering task [34], and remodified
for abstractive summarization task [10]. On average, there are
28 sentences per document in the training set, and an average
of 3 ∼ 4 sentences in the reference summaries. Overall, the
dataset contains 286 817 in training set, 13 368 in validation
set, and 11 487 examples in testing set. Besides, there are on

2https://www.tensorflow.org/

average 781 and 56 tokens in the input articles and the output
summaries, respectively.

We also use the DUC 2004 corpus as a testing dataset to
evaluate our model. It contains 500 documents and their corre-
sponding summaries, where each document has four different
human-written reference summaries. In this paper, we test our
dual encoding model on this dataset which is trained on the
CNN/DailyMail dataset, and we limit the length of every sum-
mary to 30 words since the official evaluation on it is based
on limited-length Rouge recall.

B. Experimental Settings

In our experiments, the batch size is set to 32 when train-
ing our model. We set the dimension of hidden states of both
encoders and decoder to 256. We limit the size of vocabu-
lary to 50 000 by selecting the most frequent tokens in the
training set. OOV words are represented as token <UNK>.
Similar to the settings in the work [14], we do not pretrain
the word embeddings, but learn themselves from scratch dur-
ing training. The dimension of word embeddings are set to
128. The network parameters are randomly initialized over a
uniform distribution within [−0.05, 0.05], and optimized using
Adagrad [39] algorithm. The learning rate and an initial accu-
mulator value is set to 0.15 and 0.1, respectively. We clip
gradient with the maximum gradient norm of 5. In addition, we
set the decoding length to 20 for the CNN/DailyMail dataset
with long summary, and 10 for the DUC 2004 dataset with
relatively short summary.

For speeding up training, we truncate the input sequences to
400 tokens and restrict the length of summaries to 100 tokens
on the CNN/DailyMail dataset. At the testing time, we also
use the same length settings, and decode the output summaries
using beam search with beam size 4.

C. Compared Methods

In this section, we compare the proposed dual encoding
model (DEATS) method with the following state-of-the-art
methods on the CNN/DailyMail dataset and the DUC 2004
test dataset.

1) DUC 2004 Dataset: We compare the performance of
our dual encoding model with the following models on the
DUC 2004 dataset.

1) TOPIARY [28] using a combination of linguistically
motivated compression methods and an unsupervised
topic detection algorithm, which is the best performer
on the dataset.

2) ABS [8] with a local attention-based mechanism to gen-
erate each word of the summary conditioned on the input
sentence.

3) ABS+ [8] combining conventional ABS combined and
an additional log-linear extractive summarization model
with hand-crafted features.

4) RAS-Elman [9] using an attentive encoder and RNN-
based decoder.

5) words-lvt5k-lsent [10] is an attentional encoder–decoder
model with the large vocabulary trick.

6) SEASS [40] is a selective encoding model with a selec-
tive gate network to construct a second level sentence

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAO et al.: DEATS 7

representation by controlling the information flow from
encoder to decoder.

2) CNN/DailyMail Dataset: On this joint dataset, we com-
pare the performance of our dual encoding model with the
following approaches.

1) seq2seq+atten [12] is a standard sequence-to-sequence
model with attention mechanism employed for abstrac-
tive text summarization.

2) words-lvt2k-temp-att [10] is an abstractive encoder–
decoder-based model using the temporal attention mech-
anism from [41] that keeps track of past attentional
weights of the decoder and restrains the repetitive parts
in the later sequence.

3) SummaRuNNer-abs [25] is an RNN-based sequence
model for abstractive summarization and is converted
from an extractive model by using a novel training
mechanism.

4) pointer-generator [14] is a standard sequence-
to-sequence attentional model-based hybrid
pointer-generator network to deal with rare or OOV
words problem.

5) pointer-generator+coverage [14] is improved from
“pointer-generator” model by adding a coverage mech-
anism to discourage the repetition, denoted as “pg+cg”
in Table I.

6) RL+ML [17] is a neural network model with intra-
attention and a new training approach for abstractive
summarization.

Notably, “RL+ML” approach [17] combines maximum-
likelihood training and reinforcement training. Likewise, the
PM, similar to pointer-generator, is also used in their model.
Different from the hybrid training method in their work,
all above approaches including ours are the standard super-
vised sequence prediction model using maximum-likelihood
training.

D. Evaluation

We evaluate our model using ROUGE metric [42]. ROUGE
measures the quality of summary by computing the number of
overlapping lexical units. In this paper, we use the scores from
Rouge-1, Rouge-2, and Rouge-L, which, respectively, measure
the matches of unigrams, bigrams, and longest common sub-
sequences between the generated summaries and the reference
summaries. In our experiments, we randomly select 100 test
examples to evaluate the summary quality. The ROUGE scores
are obtained using the pyrouge package.3

E. Results on CNN/DailyMail Corpus

We report the experimental results of various models on the
CNN/DailyMail testing set in Table I. From the results shown
in Table I, our dual encoding model achieves the state-of-the-
art performance. This is attributed to the following factors.
First, compared with the pg+cg approach only using a cov-
erage mechanism to discourage the repetition, “DEATS” uses
an enhanced repetition avoid mechanism which combines the
coverage mechanism and the previously generated output by

3http://pypi.python.org/pypi/pyrouge/0.1.3

TABLE I
PERFORMANCE COMPARISON OF VARIOUS MODELS ON THE

CNN/DAILYMAIL TESTING SET USING ROUGE F1 SCORE

TABLE II
PERFORMANCE COMPARISON OF VARIOUS MODELS ON THE DUC 2004

TESTING SET USING ROUGE RECALL SCORE

TABLE III
PERFORMANCE COMPARISON OF OUR DUAL ENCODING MODELS FOR

DIFFERENT DECODING LENGTHS ON THE CNN/DAILYMAIL

TESTING SET USING ROUGE F1 SCORE

decoder to improve the quality of the generated summary.
Second, the compared methods generate the complete target
summary at once and just conduct one encoding process on
the input sequence; while our DEATS method adopts a DEM
and multisteps decoding operation. Specifically, the secondary
encoding in DEM is more likely to fulfil a fine and selective
encoding based on the input and the previous output that tends
to help decoder produce better summary.

F. Results on DUC 2004 Corpus

We also test DEATS on the out-of-domain DUC 2004
dataset which is trained on the CNN/DailyMail dataset.
Evaluation of our DEATS method uses the limited-length
Rouge Recall at 75 bytes. According to the results in Table II,
our method achieves the best performance. It is worth mention-
ing that DEATS just achieves slightly better performance than
“SEASS” (e.g., 29.91 versus 29.21 for Rouge-1). On the other
hand, in terms of the CNN/DailyMail dataset with relatively

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

TABLE IV
EXAMPLES GENERATED FROM THE DEATS METHOD ON THE CNN/DAILYMAIL TESTING SET UNDER THE DIFFERENT DECODING

LENGTHS AND THE ROUGE SCORES CORRESPOND TO THE SPECIFIC EXAMPLE AND K DENOTES THE DECODING LENGTH

long summary, our method achieves more improvement in per-
formance (e.g., 40.85 versus 39.87 for Rouge-1 in Table I).
The potential reason may be that the DEM in our model is
more suitable for long sequence generation tasks while the
summary in the DUC 2004 dataset is relatively short.

V. DISCUSSION

We further perform experiments to study the effect of dif-
ferent aspects of our DEATS method on the performance. We
use the CNN/DailyMail dataset to conduct the experiments.

A. Influence of Decoding Length

In our dual encoding model, we conduct a multistep sec-
ondary decoding process for one iteration. To evaluate the
influence of different decoding lengths on the performance, we
set the decoding length K = {10, 15, 20, 25, 30, 40, 50, 100}.
When the decoding length is set to 100, it means that we
decode the whole output sequence at one time.

As shown in Fig. 2, we can see that higher precision and
lower recall are obtained when the decoding length is set to
a smaller value, while setting a larger value results in the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAO et al.: DEATS 9

Fig. 2. Rouge recall and precision scores on the CNN/DailyMail testing set.

opposite result. We can obtain a good tradeoff between recall
and precision when the decoding length is set to 20–25. In
this paper, we fix the decoding length as 20 when decoding
this dataset. Selecting a variable decoding length automati-
cally may improve our model performance further, but it is
a discrete action and needs to incorporate the reinforcement
learning method in the model training.

We also report the ROUGE F1 score for our DEATS under
different decoding lengths in Table III on this dataset. From
Table III, we can see that the performance decreases notably
for too small decoding length, and we obtain better results
when the decoding length is set to 20–40. That is, because
smaller decoding length gives rise to the increase of preci-
sion and the decrease of recall in ROUGE metric while bigger
decoding length results in the opposite result. We need to bal-
ance recall and precision by setting a proper decoding length.
In Table IV, we show the examples generated by our DEATS
approach based on the different decoding lengths. To summa-
rize, too large decoding length makes the secondary encoder
out of function, while too small decoding length is not able to
capture enough information and increases computational cost
due to more secondary encoding operation.

Notably, the first two examples in Table IV show the
generated summaries are directly extracted from the source
documents. This is because the words in source text are more
likely generated with higher probability. However, some words
not existing in source text are still able to be generated, such
as the third example in Table IV. The same phenomenon is
also found in two other classic abstractive text summarization
methods [14], [17].

B. Effectiveness of Dual Encoding Mechanism

We investigate the influence of different modules in our
method in Table V. Specifically, we remove one or two of
the three modules (i.e., PM, DEM, and RAM) from DEATS
each time. Notably, our dual encoding model without the
DEM and all three modules degenerates into pg+cg model and
“seq2seq+atten” model in Table I, respectively. It degenerates

TABLE V
PERFORMANCE COMPARISON OF DEATS VARIANTS ON THE

CNN/DAILYMAIL TESTING SET USING ROUGE F1 SCORE

into pointer-generator model when without the DEM and the
RAM.

As presented in Table V, DEATS considering all the com-
ponents shows a significant improvement of the performance
over its variants. If the RAM is excluded, the Rouge scores
decrease the most, indicating that the repetition phenomenon
affects the performance of the generated summaries, and RAM
in our model is able to restrain the repetition phenomenon
well. Without the DEM, Rouge-1, Rouge-2, and Rouge-L are
reduced by 1.32, 0.80, and 0.75, respectively, which is still a
big decrease in summarization tasks. This indicates the sec-
ondary encoder in our model conducts a more fine encoding
to help the model consider richer and more accurate informa-
tion. If there is no the PM, the performance is also degraded.
That is, because some OOV words are more easier to appear
in the generated summaries. Using all the three components
is critical to the performance of DEATS.

C. Effectiveness of Repetition Avoidance Mechanism

Our dual encoding model uses an enhanced RAM which
combines the existing coverage mechanism with the already
produced output by the decoder. To verify the capability of
eliminating the repetition phenomenon in the generated sum-
maries without coverage mechanism, we set the decoding
length to a smaller value to make the decoder better remember
the decoded information in the earlier time-steps. We show
some examples generated by our DEATS approach without
using coverage mechanism in Table VI. The results indicate
that our dual encoding model without coverage mechanism is
still capable of dampening the repetition when the decoding
length is set to a small value.

D. Importance Weight Visualization

The secondary encoder in our model reads each word in
input sequence in the form of skip-connections as shown in
Fig. 1. This makes the secondary encoder different from the
ordinary encoder. Our secondary encoder will read the input
sequence more than once in one training iteration. That is to
say, it conducts a secondary encoding every K decoding steps
based on the input text and the previous output. Moreover,
every secondary encoding will pay attention to the differ-
ent part of the input sequence. We model the importance of
each word as αt. Therefore, we can visualize the importance
weight of each word to observe whether the secondary encoder

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

TABLE VI
EXAMPLES FROM THE CNN/DAILYMAIL TESTING DATASET GENERATED BY OUR DEATS APPROACH

Fig. 3. Importance weight visualization on the partial input text.

assigns different weights to different words in every secondary
encoding. As shown in Fig. 3, the secondary encoding is
shown for three times and it pays attention to the different part
every time. Specifically, the encoder assigns different weights
to each word in the input sequence at one same encoding.
Meanwhile, the encoder also assigns different weights to the
same words at every different encoding. Notably, for clarity,
we only show the importance weight visualization for each
secondary encoding on the partial input sequence.

VI. CONCLUSION

In this paper, we present a dual encoding model which
extends the sequence-to-sequence framework for abstractive
text summarization. Our model is built on a basic encoder–
decoder model with attention mechanism, the PM and the

RAM. Different from the standard encoder–decoder model, the
dual encoding model decodes the whole output sequence by
stages and produces the partial fixed-length sequence at each
stage. A combination of the DEM and the basic approaches
could make them benefit from each other. The extensive exper-
iments on the CNN/DailyMail and DUC 2004 datsets show
that our dual encoding model achieves the state-of-the-art
results compared to existing methods.

In our future work, we plan to focus on how to bal-
ance precision and recall to further boost F1 performance
by selecting dynamic decoding length automatically based on
reinforcement learning. Meanwhile, in order to achieve bet-
ter performance, we also attempt to train our dual encoding
model by using a hybrid training objective with reinforcement
learning training and maximum-likelihood training.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YAO et al.: DEATS 11

ACKNOWLEDGMENT

The authors would like to thank Z. Peng and F. Zhang
for helpful discussions about model training and network
parameters tuning tricks. They would also like to thank the
anonymous reviewers for their help in improving this paper.

REFERENCES

[1] R. Collobert et al., “Natural language processing (almost) from scratch,”
J. Mach. Learn. Res., vol. 12, pp. 2493–2537, Jan. 2011.

[2] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. Conf. Empir.
Methods Nat. Lang. Process. (EMNLP), Oct. 2014, pp. 1724–1734.

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Adv. Neural Inf. Process. Syst. Annu.
Conf. Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2014,
pp. 3104–3112.

[4] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-
to-end attention-based large vocabulary speech recognition,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Shanghai,
China, Mar. 2016, pp. 4945–4949.

[5] G. Biagetti, P. Crippa, L. Falaschetti, S. Orcioni, and C. Turchetti,
“An investigation on the accuracy of truncated DKLT representation
for speaker identification with short sequences of speech frames,” IEEE
Trans. Cybern., vol. 47, no. 12, pp. 4235–4249, Dec. 2017.

[6] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural
image caption generator,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Boston, MA, USA, Jun. 2015, pp. 3156–3164.

[7] O. Vinyals and Q. V. Le, “A neural conversational model,”
CoRR, vol. abs/1506.05869, 2015. [Online]. Available:
http://arxiv.org/abs/1506.05869

[8] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” in Proc. Conf. Empir. Methods Nat.
Lang. Process. (EMNLP), Lisbon, Portugal, Sep. 2015, pp. 379–389.

[9] S. Chopra, M. Auli, and A. M. Rush, “Abstractive sentence summa-
rization with attentive recurrent neural networks,” in Proc. Conf. North
Amer. Assoc. Comput. Linguist. Human Lang. Technol., San Diego CA,
USA, Jun. 2016, pp. 93–98.

[10] R. Nallapati, B. Zhou, C. N. dos Santos, Ç Gülçehre, and B. Xiang,
“Abstractive text summarization using sequence-to-sequence RNNs and
beyond,” in Proc. 20th SIGNLL Conf. Comput. Nat. Lang. Learn.
(CoNLL), Berlin, Germany, Aug. 2016, pp. 280–290.

[11] K. Filippova, E. Alfonseca, C. A. Colmenares, L. Kaiser, and O. Vinyals,
“Sentence compression by deletion with LSTMs,” in Proc. Conf. Empir.
Methods Nat. Lang. Process., 2015, pp. 360–368.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.
[Online]. Available: http://arxiv.org/abs/1409.0473

[13] Ç. Gülçehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the
unknown words,” in Proc. 54th Annu. Meeting Assoc. Comput. Linguist.
(ACL), vol. 1. Berlin, Germany, Aug. 2016, pp. 140–149.

[14] A. See, P. J. Liu, and C. D. Manning, “Get to the point:
Summarization with pointer-generator networks,” in Proc. 55th Annu.
Meeting Assoc. Comput. Linguist. (ACL), vol. 1. Vancouver, BC, Canada,
Jul./Aug. 2017, pp. 1073–1083.

[15] J. Gu, Z. Lu, H. Li, and V. O. K. Li, “Incorporating copying mecha-
nism in sequence-to-sequence learning,” in Proc. 54th Annu. Meeting
Assoc. Comput. Linguist. (ACL), vol. 1. Berlin, Germany, Aug. 2016,
pp. 1631–1640.

[16] W. Zeng, W. Luo, S. Fidler, and R. Urtasun, “Efficient summariza-
tion with read-again and copy mechanism,” CoRR, vol. abs/1611.03382,
2016. [Online]. Available: http://arxiv.org/abs/1611.03382

[17] R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for
abstractive summarization,” CoRR, vol. abs/1705.04304, 2017. [Online].
Available: http://arxiv.org/abs/1705.04304

[18] J. L. Neto, A. A. Freitas, and C. A. A. Kaestner, “Automatic text summa-
rization using a machine learning approach,” in Proc. Adv. Artif. Intell.
16th Braz. Symp. Artif. Intell. (SBIA), Nov. 2002, pp. 205–215.

[19] G. Erkan and D. R. Radev, “LexRank: Graph-based lexical centrality
as salience in text summarization,” CoRR, vol. abs/1109.2128, 2011.
[Online]. Available: http://arxiv.org/abs/1109.2128

[20] K. Wong, M. Wu, and W. Li, “Extractive summarization using
supervised and semi-supervised learning,” in Proc. Conf. 22nd Int.
Conf. Comput. Linguist. (COLING), Manchester, U.K., Aug. 2008,
pp. 985–992.

[21] K. Filippova and Y. Altun, “Overcoming the lack of parallel data in sen-
tence compression,” in Proc. Conf. Empir. Methods Nat. Lang. Process.
(EMNLP), Oct. 2013, pp. 1481–1491.

[22] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Proc. 27th Annu. Conf. Neural Inf. Process. Syst. Adv.
Neural Inf. Process. Syst., Dec. 2013, pp. 3111–3119.

[23] C. A. Colmenares, M. Litvak, A. Mantrach, and F. Silvestri, “HEADS:
Headline generation as sequence prediction using an abstract feature-rich
space,” in Proc. Conf. North Amer. Assoc. Comput. Linguist. Human
Lang. Technol. (NAACL HLT), Denver, CO, USA, May/Jun. 2015,
pp. 133–142.

[24] J. Cheng and M. Lapata, “Neural summarization by extracting sen-
tences and words,” in Proc. 54th Annu. Meeting Assoc. Comput. Linguist.
(ACL), vol. 1. Berlin, Germany, Aug. 2016, pp. 484–494.

[25] R. Nallapati, F. Zhai, and B. Zhou, “SummaRuNNer: A recurrent neural
network based sequence model for extractive summarization of docu-
ments,” in Proc. 31st AAAI Conf. Artif. Intell., San Francisco, CA, USA,
Feb. 2017, pp. 3075–3081.

[26] Z. Yong, J. E. Meng, Z. Rui, and M. Pratama, “Multiview convolu-
tional neural networks for multidocument extractive summarization,”
IEEE Trans. Cybern., vol. 47, no. 10, pp. 3230–3242, Oct. 2016.

[27] P. D. Over, H. T. Dang, and D. K. Harman, “DUC in context,” Inf.
Process. Manag., vol. 43, no. 6, pp. 1506–1520, 2007.

[28] D. Zajic, B. Dorr, and R. Schwartz, “Bbn/umd at DUC-2004: Topiary,”
in Proc. Doc. Understanding Conf. NLT/NAACL, 2004, pp. 112–119.

[29] B. Hu, Q. Chen, and F. Zhu, “LCSTS: A large scale Chinese short
text summarization dataset,” in Proc. Conf. Empir. Methods Nat. Lang.
Process. (EMNLP), Lisbon, Portugal, Sep. 2015, pp. 1967–1972.

[30] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
Adv. Neural Inf. Process. Syst. Annu. Conf. Neural Inf. Process. Syst.,
Montreal, QC, Canada, Dec. 2015, pp. 2692–2700.

[31] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li, “Modeling coverage for neu-
ral machine translation,” in Proc. 54th Annu. Meeting Assoc. Comput.
Linguist. (ACL), vol. 1. Berlin, Germany, Aug. 2016, pp. 76–85.

[32] H. Mi, B. Sankaran, Z. Wang, and A. Ittycheriah, “Coverage embed-
ding models for neural machine translation,” in Proc. Conf. Empir.
Methods Nat. Lang. Process. (EMNLP), Austin, TX, USA, Nov. 2016,
pp. 955–960.

[33] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, and H. Jiang,
“Distraction-based neural networks for document summariza-
tion,” CoRR, vol. abs/1610.08462, 2016. [Online]. Available:
http://arxiv.org/abs/1610.08462

[34] K. M. Hermann et al., “Teaching machines to read and comprehend,” in
Proc. Adv. Neural Inf. Process. Syst. Annu. Conf. Neural Inf. Process.
Syst., Montreal, QC, Canada, Dec. 2015, pp. 1693–1701.

[35] R. Nallapati, F. Zhai, and B. Zhou, “SummaRuNNer: A recurrent neural
network based sequence model for extractive summarization of doc-
uments,” in Proc. 31st AAAI Conf. Artif. Intell., San Francisco,
CA, USA, Feb. 2017, pp. 3075–3081. [Online]. Available:
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14636

[36] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. Conf. Empir.
Methods Nat. Lang. Process. (EMNLP), Oct. 2014, pp. 1724–1734.

[37] A. Graves, “Supervised sequence labelling with recurrent
neural networks,” in Studies in Computational Intelligence,
vol. 385. New York, NY, USA: Springer, 2012, pp. 1–131,
[Online]. Available: https://doi.org/10.1007/978-3-642-24797-2,
doi: 10.1007/978-3-642-24797-2.

[38] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence mod-
eling,” CoRR, vol. abs/1412.3555, 2014. [Online]. Available:
http://arxiv.org/abs/1412.3555

[39] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Jul. 2011.

[40] Q. Zhou, N. Yang, F. Wei, and M. Zhou, “Selective encoding for
abstractive sentence summarization,” in Proc. Meeting Assoc. Comput.
Linguist., 2017, pp. 1095–1104.

[41] B. Sankaran, H. Mi, Y. Al-Onaizan, and A. Ittycheriah, “Temporal atten-
tion model for neural machine translation,” CoRR, vol. abs/1608.02927,
2016. [Online]. Available: http://arxiv.org/abs/1608.02927

[42] C. Flick, “ROUGE: A package for automatic evaluation of sum-
maries,” in Proc. Workshop Text Summarization Branches Out, 2004,
p. 10.

http://dx.doi.org/10.1007/978-3-642-24797-2

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

Kaichun Yao is currently pursuing the Ph.D. degree
in computer software and theory with the School
of Computer and Control Engineering, University of
Chinese Academy of Sciences, Beijing, China.

His current research interests include natural lan-
guage processing, knowledge graph, deep learning,
and reinforcement learning.

Libo Zhang received the bachelor’s degree in micro-
electronics from Anhui University, Hefei, China, the
master’s degree in electrical engineering from the
University of Electronic Science and Technology of
China, Chengdu, China, and the Doctoral degree in
computer software and theory from the University
of Chinese Academy of Sciences, Beijing, China.

He is currently an Assistant Professor with the
Institute of Software, Chinese Academy of Sciences,
Beijing. His current research interests include image
processing, pattern recognition, knowledge graph,
and deep learning.

Dawei Du received the B.Eng. degree in automa-
tion and the M.S. degree in detection technol-
ogy and automatic engineering from the University
of Electronic Science and Technology of China,
Chengdu, China, in 2010 and 2013, respectively.
He is currently pursuing the Ph.D. degree with
the School of Computer and Control Engineering,
University of Chinese Academy of Sciences,
Beijing, China.

His current research interests include visual track-
ing, video segmentation, and deep learning.

Tiejian Luo received the B.Eng. degree in com-
puter science from Guangxi University, Guangxi,
China, in 1984, the M.S. degree in computer appli-
cation technology from the Institute of Computer
Systems Engineering, China, in 1991, and the
Ph.D. degree in computer software and theory from
the Graduate University of Chinese Academy of
Sciences, Beijing, China, in 2001.

He is currently a Professor with the School
of Computer and Control Engineering, University
of Chinese Academy of Sciences, Beijing, China,

where he is also the Director of the Information Dynamic and Engineering
Applications Laboratory.

His current research interests include Web mining, large scale Web
performance optimization, and distributed storage systems.

Lili Tao received the Ph.D. degree in computer
vision from the University of Central Lancashire,
Preston, U.K., in 2014.

She is currently a Senior Lecturer with
the Department of Engineering, Design and
Mathematics, University of the West of England,
Bristol, U.K. She is also an Honorary Researcher
with the University of Bristol, Bristol. Her current
research interests include computer vision and
robotics with a particular interest in developing
methods for estimating and analyzing deformable

and articulated objects, such as human motion modeling and analysis,
physical activity monitoring, and facial articulated assessment.

Yanjun Wu received the Ph.D. degree in com-
puter science from the Institute of Software, Chinese
Academy of Sciences (ISCAS), Beijing, China.

He is currently a Research Professor with ISCAS.
His current research interests include operating sys-
tems and system security.

