
Learning to Communicate via Supervised Attentional Message
Processing

Zhaoqing Peng
University of Chinese Academy of

Sciences
pengzhaoqing16@mails.ucas.ac.cn

Libo Zhang∗
Institute of Software Chinese

Academy of Sciences
zsmj@hotmail.com

Tiejian Luo
University of Chinese Academy of

Sciences
tjluo@ucas.ac.cn

ABSTRACT
Many tasks in AI require the collaboration of multiple agents.
Generally, these agents cooperate with each other by message-
passing communication. However, agents may suffer from being
overwhelmed by massive received messages and have difficulties in
obtaining useful information. To this end, we use an attention-based
message processing (AMP) method to model agents’ interactions
by considering the relevance of each received message. To improve
the efficiency of learning correct interactions, a supervised variant
SAMP is then proposed to directly optimize the attentional weights
in AMP with a target auxiliary interaction matrix from the environ-
ment. The empirical results demonstrate our proposal outperforms
other competing multi-agent methods in “predator-prey-toxin” do-
main, and prove the superiority of SAMP in correctly guiding the
optimization of attentional weights in AMP.

CCS CONCEPTS
• Computing methodologies → Multi-agent reinforcement
learning; Multi-agent systems; Intelligent agents;

KEYWORDS
multi-agent communication, message-passing, attention mecha-
nism, deep reinforcement learning, supervised learning

ACM Reference Format:
Zhaoqing Peng, Libo Zhang, and Tiejian Luo. 2018. Learning to Commu-
nicate via Supervised Attentional Message Processing. In CASA 2018: 31st
International Conference on Computer Animation and Social Agents, May
21–23, 2018, Beijing, China. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3205326.3205346

1 INTRODUCTION
Many real-world problems involve multiple agents with partial ob-
servability and limited communication [19], but learning is difficult
in these settings due to the partial observability and local view
points of agents, which perceive the environment as non-stationary

∗Libo Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CASA 2018, May 21–23, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6376-1/18/05. . . $15.00
https://doi.org/10.1145/3205326.3205346

due to teammates’ actions [16]. Therefore, the communication be-
tween agents is essential for them to extract useful information
from others to model the environment.

To learn the communication protocol by agents themselves, most
of works apply the reinforcement learning (RL) approach to the
multi-agent domain. They embrace deep learning techniques and
adopt the message-passing to transmit necessary information be-
tween agents. Among them, different methods are used to process
the received messages: reference [6] simply concatenates all re-
ceived messages together and feed to the target network (e.g.policy
network). This concatenated method suffers from a problem that
agents will be overwhelmed by massive received messages if the
agent number is large. CommNet [20] tries to obtain an integrated
communication vector m̃ for each agent by averagely pooling over
all N messages:

m̃ =
1

N − 1

∑
j,i

mj , (1)

wheremj denotes the message broadcast from agent j. However, a
significant drawback of this representation is not explicitly model-
ing the interactions and putting the whole communication burden
on themessage extractor [7]. Tomodel distinct interactions between
agents, VAIN [7] introduces an attentional vector ai to measure the
communication strength of agent i , and the interaction between
agent i and agent j is modulated by kernel function e |ai−aj |

2
. Thus,

the communication vector m̃i for agent i is given by:

m̃i =
∑
j,i

So f tmax(|ai − aj |
2) ×mj , (2)

Although the interactions are able to be modulated, VAIN is less
suitable for the case that interactions are not sparse such that the
K most important interactions [7].

In this work, we also focus on modeling multi-agent distinct
interactions for solving cooperative tasks. To this end, we adopt
an attentional message processing (AMP) method that is capable of
directly modeling the relevance between each received message,
and based on AMP, we propose a supervised attentional message pro-
cessing (SAMP) method, which applies supervised learning on the
attentional weights in AMP by constructing a target auxiliary inter-
action matrix from the environment. An end-to-end training with
deep RL approaches can be performed on AMP to learn coordinated
policies, and SAMP is not only compatible with RL approaches but
also can be jointly trained with supervised learning approaches.

The benefits of our SAMP are: 1) the interactions are modulated
more straightforward by considering the relevance of received
messages, which enables each agent to paymore attentions to useful
information w.r.t its current observation, 2) the learning efficiency
of correct interactions among agents can be dramatically improved

https://doi.org/10.1145/3205326.3205346
https://doi.org/10.1145/3205326.3205346
https://doi.org/10.1145/3205326.3205346

CASA 2018, May 21–23, 2018, Beijing, China Z. Peng et al.

through supervised target auxiliary matrix, which is constructed
according to the priori knowledge from the environment 3) each
agent is able to integrate more comprehensive information for its
decision making by learning theK most relevant received messages.

We test our proposal on a new “predator-prey-toxin” environ-
ment and compare it with the prior works in standard environmen-
tal settings. The empirical results also demonstrate the superiority
of SAMP in coordinating agents’ behaviors for solving coopera-
tive tasks. To further interpret the well behaviors of agents in our
proposals, we then visualize their attentional weights under a few
example states. The result highlights the fact that: agents in AMP
are able to extract effective interaction information through giving
more attention to useful messages, and the supervised signals in
SAMP can correctly guide agents to coordinate more efficiently.
These learned interaction patterns illustrate a well established com-
munication protocol by agents themselves. Our proposal has been
fully proved and well evaluated to provide as a new solution to the
multi-agent communication method for cooperative tasks.

2 RELATEDWORKS
Serval works in deep RL have been applied to multi-agent domain
such as [5, 10] where multiple independent learners (IL) are applied
to control each agent with its own unique learning process. How-
ever, those independent learners inevitably face the challenge of
not being able to tackle the non-stationary environments since the
environment will keep changing for each agent [16]. A recent work
[4] addresses this problem by using importance sampling on the
experience replay memory to naturally decay obsolete data.

A few notable approaches [11, 18] involve learning the implicit
communication of agents by utilizing the actor-critic architecture
in RL: COMA [3] also uses a centralised critic to estimate the Q-
function but they focus on solving multi-agent credit assignment
issues by a counterfactual baseline. BiCNet [18] takes advantage
of the bi-directional recurrent neural network (RNN) to unroll
the recurrent cell across multiple agents, and the communication
information is passed with the hidden states of each recurrent cell.

External communication examples include blackboard, signal-
ing, and message-passing [17]. Some attempts [15] are made to
allow sending and receiving signals among agents to coordinate
their behaviors, but the signals are hand-craft and pre-determined
according to the specific task. In contrast, the recent work DIAL
[2] adopts the insights of reinforcing agents to learn communi-
cation messages by themselves. Each individual agent learns its
policy based on the generated messages of other agents in previous
time-step. However, these messages are delayed for one time-step,
the environment will keep changing before action is made [11].
Another work [14] has been done to further investigate in learning
communication with streams of abstract discrete symbols uttered
by agents over time.

The most close work CommNet [20] uses a single network in the
multi-agent setting through passing the averaged message over the
agent modules between layers. However, since all the agents share
almost the same message information, it may lack the ability of han-
dling heterogeneous agent types [7]. By contrast, VAIN [7] extends
the attentional mechanism to CommNet by allowing the different
strength of interactions among agents. In this work, we also adopts

the same attentional settings but we introduce a target interaction
matrix to guide the optimization of learning communication.

2.1 Preliminaries
We briefly review the standard single-agent RL, which is formu-
lated as a finite Markov Decision Process (MDP) over a number of
discrete time steps. Specifically, the MDP is defined as a four-tuple
⟨S,A,T ,R⟩, where S is a set of environment states and A is a set of
agent actions. The transition function T (s,a) : S ×A → S indicates
that the environment transmits from state s ∈ S to a new state
s ′ = T (s,a) ∈ S after an agent taking action a ∈ A according to
the agent’s policy π (a |s). The reward function R(s,a) : S ×A → R
returns the immediate reward R(s,a) ∈ R to the agent after per-
forming action a in state s .

In RL, the goal of agent is to maximize, at each time-step t , the
accumulated discounted return Rt for each state s and action a :

Rt =
∞∑
k=0

γkR(st+k ,at+k)|st ,at = s,a, (3)

where γ ∈ [0, 1) is the discount factor. The action value Qπ (s,a) =
Eπ [Rt |st ,at = s,a] is the expected return for selecting action a in
state s according to policy π . Similarly, the value of state s under
the policy π is defined as V (s) = Eπ [Rt |st = s].

Notably, there exists at least one optimal policy π∗ that gives the
optimal action value Qπ ∗

(s,a) = maxπQπ (s,a). In practice, it is
not feasible to directly mapping from state-action pairs to the cor-
responding Q-value due to the huge searching space of large states
and actions. In model-free RL methods, the recent deep Q-networks
(DQN) [13] introduces the neural network to approximate optimal
action-value functionQ(s,a;θ) with parameter configuration θ , i.e.,
Qπ ∗

(s,a) ≈ Q(s,a;θ). At each time step t , the parameters θ are
optimized by minimizing the loss function:

Lt (θt) = E(y −Q(s,a;θt))2, (4)

where y = Rt (s,a) + γ max
a′

Q(s ′,a′;θt−1), s ′ is the next state trans-

mitted from state s , and a′ is the action of the next state.
The policy gradient [21] method in RL directly parameterizes

the policy π (a |s;θ) and updates the parameters θ in the direction
of ∇θ logπ (at |st ;θ)Rt . To reduce the variance of the estimated
direction, we usually subtract a relative baseline bt (st) to obtain the
advantage of action at in the current state st . In [12], the advantage
of action at in state st can be defined asA(at , st) = Q(at , st)−V (st)
and the resulting gradient becomes ∇θ logπ (at |st ;θ)A(st ,at). This
approach can be achieved by actor-critic methods in RL where
the policy π is produced by the actor and the baseline bt (st) is
generated by the critic.

3 METHOD
We consider a partially observable and fully cooperative game with
N agents as Figure 1(b) shows: each agent i observes its local state
oti at the time-step t and produces a message mt

i by its message
extractormt

i =Mi (o
t
i ;ϕi)with parameters ϕi . The communication

occurs when each agent shares its message with the others, and we
denote the set of all generated messages as mt = {mt

1,m
t
2, ...,m

t
N }

where eachmt
i ∈ R

l consists of l continuous values. Letmt
−i be the

received message set for agent i , which is a subset of mt except for

Learning to Communicate via Supervised Attentional Message Processing CASA 2018, May 21–23, 2018, Beijing, China

Policy1 Policy2 Policyj PolicyN

AMP1

Environment

1c

1N1j11

2m jm Nm
1m

AMP2 AMPj AMPN

 1 2 j N

m

1o 2o
jo No

1a 2a ja Nar1 r2 rj rN

(a) (b)

......

im

Figure 1: AMP method for agent 1 (a) and multi-agent com-
munication framework (b).

mt
i . Each agent chooses the action ati with its own policy according

to its observation and received messages. After agents perform
their actions to the environment, each agent receives a local reward
r ti ∈ R. The objective for each agent is to maximize its own expected
return Ri = E[

∑∞
t=0 γ

t r ti] where γ ∈ [0, 1) is the discount factor.
The key to cooperative tasks is that: agents should learn to obtain

more information from the received messages to know about the
other agents’ states, and then coordinate their behaviors to earn the
rewards. Since not all received messages are useful for an agent’s
decision making under its observation, learning to extract useful
and relevant messages is essential while agents communicating.

In this paper, we first use an attention-based message processing
method (AMP) to reinforce each agent to find the relevant received
messages w.r.t its current observation. Based on AMP, we then pro-
vide a supervised variant SAMP to enable agents learn interactions
more efficiently by providing a target auxiliary interaction matrix
from the environment.

3.1 Attention-based Message Processing
For each agent, AMP transforms the received messages mt

−i to an
integrated message vector cti , which represents the state informa-
tion of other agents. Our goal is to make cti contain as much as
relevant and useful message from mt

−i under the observation oi .
To measure the relevance of messages, we introduce an additive
attention weight αi j [1] for each received messagemj , and as Figure
1(a) illustrates, our cti then becomes the weighted sum of all these
received messages. In principle, each messagemi can be somehow
regarded as a hidden representation of observation oi , thus we use
mi to indirectly describe the current observation oi .

In specific, an energy score ei j is modeled by an alignment func-
tion ai to evaluate how relevant between its own messagemi and
received messagemj :

ei j = ai (mi ,mj) = vi tanh(Wimi +Uimj), (5)

where theWi ,Ui , vi are actually learned parameters of AMP. Then,
the attentional weight αi j of eachmj can be measured by the sig-
moid non-linear activation of ei j :

αi j = σ (ei j), (6)

Note that sigmoid activation is identical to our method since it
can release the normalisation restriction compared with Softamax
operation in traditional attention mechanism. In this case, agents

are free to learn K most relevant received message w.r.t its own pro-
duced message. Our integrated message vector ci is then computed
by the weighted sum of all received messages:

ci =
∑
j,i

αi jmj (7)

The simple way of optimizing the attentional weights α is to
jointly train themwith all the other components, and get updated by
the gradients derived from RL. But in order to learn the attentional
weights more efficiently and accurately, an auxiliary supervised sig-
nal from the environment can be constructed for directly learning
attentional weights in the next section.

3.2 Supervised Learning with Target Auxiliary
Interaction Matrix

Based on AMP, we propose a supervised variant SAMP that directly
learns attentional weights through supervised signals. In this sec-
tion, the attentional weights are described in form of an interaction
matrix I with a graph structure, and a target auxiliary interaction
matrix I ′ is constructed to optimize I .

We model the interaction relationship of all agents by a graph
neural network (GNN) [8] G = (V, E). Each agent is denoted as
a node vi ∈ V and a directed edge ei j = (vi ,vj) represents the
interaction of vi → vj . In our case, the directed edge ei j is actually
the attention weight αi j , which represents the interaction strength
of agent i w.r.t to agent j. A global representation of all attention
weights can be described in a form of interaction matrix I ∈ Rn×n
(similar to an adjacency matrix):

I =

0 α12 . . . α1n
α21 0 . . . α2n
...

...
. . .

...

αn1 αn2 . . . 0

where the diagonal element is set to zero since there is no interaction
with itself. The feature for each nodevi is described by its produced
messagemi , thus the feature description of all nodes is summarized
as a matrix M ∈ Rn×l . Actually, our ci is the i-th row vector of a
matrix C where C = IM .

Note that graph G is dynamic since both I andM rely on each
agent’s observation, which changes with the environment transit-
ing from one state to another. Thus it may not be very easy to learn
both I andM efficiently with only reinforcement signals. To address
this, we use the target interaction matrix I ′ from the environment
to directly optimize I . Generally, the I ′ can be any representative
information about a graph structure in the matrix form, which is
helpful to improve the agents’ interactions. For instance, consider-
ing a game where the rewards are given under the collaboration
of agents, the simplest case of I ′ may be a symmetric joint reward
matrix:

I ′ =

0 r12 . . . r1n
r21 0 . . . r2n
...

...
. . .

...

rn1 rn2 . . . 0

where ri j is a 0/1 binary value representing whether agent i and
agent j simultaneously get rewards in current time-step. The idea

CASA 2018, May 21–23, 2018, Beijing, China Z. Peng et al.

behind this I ′ is very straightforward that we want to strengthen
the interaction αi j when agent i and agent j get reward.

Notably, there is no limitation to construct I ′ as long as it can
guide the optimization of communication by using the priori knowl-
edge of the environment. Essentially, this auxiliary information can
be regarded as a form of intrinsic rewards in [9], which is task-
specific and needs appropriately construction according to the task
scenario. We update the parameters of AMP of each agent i by
minimizing the objective function Li , which is the row sum of
point-wise entropy-cross losses between I and I ′:

Li =
n∑
j=1

−ri j log(αi j) − (1 − ri j) log(1 − αi j), (8)

Although I ′ can help the agent learn to correctly pay more attention
to useful messages, the final cooperative performance also depends
on each agent’ learned policy updated by RL.

3.3 Actor Critic Reinforcement Learning

Actori

AMPi

 1

Critici

...

 j

Reinforcement
Learning rewards

 Supervised Loss
function

Agent i

iL

Figure 2: The learning process in SAMP

We use actor-critic architecture of RL to make each agent learn
its action policy. For each agent i , the actor outputs the action
policy π (ai |mi , ci ;θi) while the critic approximates value function
V (mi , ci ;ωi) with paramters ωi . The actor and critic are updated
according to asynchronous advantage actor-critic (A3C) [12]. At
the time-step t , the actor is optimized through policy gradients as
∇θ logπ (ati |m

t
i , c

t
i ;θi)A

t
i where the advantage function A

t
i is given

by Rti − V (mt
i , c

t
i ;ωi), and the critic is optimized with gradients

∂(Rti −V (mt
i , c

t
i ;ωi))

2/∂ωi . The policy and the value function are
updated after every action until when a terminal state is reached,
thus Rti can be computed by Rti = r ti + γV (mt+1

i , c
t+1
i ;ωi) where

mt+1
i and ct+1i are the producedmessage and the integratedmessage

of next time step. The critic shares all the non-output layers with
the actor and outputs one linear value Vi

Since all the functions and operations are continuous and differ-
entiable, an end-to-end training is allowed to apply for the whole
model. Figure 2 shows the learning process of SAMP: the red lines
denote RL derived gradients, while blue lines indicate the gradients
derived from supervised loss function Li . The learning process of
AMP is similar with SAMP except for the gradients from Li , which
are replaced by the gradients from actor denoted as the red dot
line. The message extractor Mi (o

t
i ,ϕi) is optimized by the gra-

dients passed down from each communicating module through
backpropagation.

4 EXPERIMENT
In this section, we compare our SAMP and AMP with DIAL, IL,
CommNet, VAIN in a fully cooperative, partially observable, multi-
agent benchmark task. The SAMP and AMP share the same indi-
vidual model architecture. For brevity, we describe only the AMP
here: the messages extractor uses one hidden MLP that generates
message with length l = 255, and the sizes ofW ,U ,v are set to
255 × 255, 255 × 255, 255 × 1 respectively. The actor is implemented
by one stack layer LSTM with hidden size of 255, unrolled in two
steps where the first feeding is ci and then follows agent’s own
produced messagemi . We execute 32 actor-learner threads running
on 32 environment instances and the parameters are optimized by
Adam with default hyperparameters and a learning rate of 2× 10−4.

4.1 Environment Setup
We consider a typical predator-prey pursuit problem, which has
been known as one of the benchmark problems for multi-agent
RL [15]. However, previous pursuit problems are in a grid-world
where the agent moves only one grid each step in four directions,
i.e. up, down, left, right or holding still within the grid boundary.
The limitation of these grid-world settings is restricted and discrete
state-action space, which is hard to extend in the real-world appli-
cations. To better distinguish the performance of each method and
simulate a more realistic case, we implemented a partially observed
predator-prey environment with continuous state-action space,
which increases the complexity of learning coordinated behavior
of agents.

Predator k+1Public
predation

area: T

Observation
Range d

Predation
range r

Toxin m

Prey n

Predator k

Figure 3: Predator-prey domain with toxin role

Specifically, as Figure 3 (Right) shows, there are n predators
(blue), m toxins (red) and k preys (green) in total moving in the
environment. The scenario is that we control predators, also called
agents, to catch preys and avoid toxins. Each predator has limited
visual observation ranged and predation range r as in Figure 3 (Left).
The overlap of predation circles represents the public predation
area T and the prey is caught only when it is fully covered by the
public predation area. Each agent is awarded with a positive reward
when it catches a prey with the coordination of fellow agents and
a negative reward is given if it collides against any toxin.

The optimal strategy of agents is trying to maintain the maxi-
mum of public predation areaT while cruising around and avoiding
the contacts of any toxin at the same time. Each agent has k eye
sensors observing the distance to the wall, the prey, the toxin and
the fellow agent, and there are 4 actions available for each agent to
control the velocity.

Learning to Communicate via Supervised Attentional Message Processing CASA 2018, May 21–23, 2018, Beijing, China

Since agents get rewards only when they are close enough to
form public predation areas, the ri j in target auxiliary interaction
matrix I ′ is set to the 0/1 binary value representing whether agent j
is in observation range of agent i . We consider a standard predator-
prey pursuit scenario of 5 predators, 20 preys and 10 toxins (5-20-10)
and we carried out the experiment with 40 epochs and one epoch
contains 100,000 steps.

4.2 Training Performance
We first focus on a direct comparison between CommNet, VAIN,
IL, DIAL and our AMP, SAMP. The performance of each approach
is evaluated by the sum of the rewards (also called score) of all
the agents in each episode. As Figure 4 depicts, both our SAMP
and AMP outperform all the other methods in score and reaches
roughly 150% of the score obtained by CommNet and VIAN, and
300% of the DIAL and IL. This result indicates our method has a
better learning ability in coordinating the agents to catch preys.

0 5 10 15 20 25 30 35 40
Running epochs

50

0

50

100

150

200

Sc
or

es

CommNet
IL
VAIN
DIAL
AMP
SAMP

Figure 4: Training Performance

In addition to the score, the introduced toxin role promotes an
extra evaluation indicator: the scoring rate (SR), which is the ratio
of the score to the collision times of toxins. The scoring rate is
proposed to reflect the ability for agents to earn the rewards per
collision. We investigate the average performance of each approach
and the random policies in the last 20 epoches, and show the sta-
tistical results presented in Table 1. The scoring rate in Table 1
shows that both our SAMP and AMP have a strong ability to earn
the rewards per collision, which means that the agents in SAMP
and AMP could handle massive received messages more efficiently
under these environment settings.

Only when two or more agents form the public predation area,
do they allow to get rewards, thus the key to this cooperative task
is to maintain the distance between agents while they moving, and
to avoid getting separated when they encounter toxins. Compared
with VAIN, DIAL and CommNet, our AMP indirectly reinforces each
agent to give more attention to closer fellow agents by increasing
the weights of their sending messages, therefore agents are more
likely to group and gather together to earn rewards. This interaction
pattern is strengthened in the SAMP since the optimization of
attentional weights is directly guided by our target interaction
matrix, which accounts for its superiority over AMP.

4.3 Attention visualization
Let’s further visualizate the attentional weights generated by AMP
and SAMP to understand the nature of interactions between the

Table 1: Statistical performance

Approach Scores Collisions SR

Random -38.1±11.9 53.3±7.6 -0.71
IL 40.7±18.8 16.3±4.3 2.5

DIAL 35.0±18.7 17.6±4.6 2.0
VAIN 69.8±26.5 15.5±4.3 4.5

commNet 82.5±33.0 16.5±4.3 5.0
AMP 110.3±33.8 14.6±3.8 7.6
SAMP 133.1±36.8 13.6±3.8 9.8

agents. We randomly sample several states from the environment
in the last training epoch and draw corresponding heatmaps of the
interaction matrix I in AMP and SAMP respectively in Figure 5.

Before we dig into the details, we first give an analysis on the
useful interaction pattern: 1) if agents have view of each other, their
interactions are effective and transmitted messages are useful to
coordinate their actions, such as moving closer to form the public
predation area or moving to the same direction to search the preys;
2) in contrast, if an agent is completely isolated from the others,
the messages from others are just like noisy information, so it
should ignore all the received message and only focus on its own
observation to avoid the toxins.

Figure 5 explains four states in a column order. The first column
describes a state where agent 1 and agent 4 are in observation range
of each other but others are completely isolated. Under this state,
the ideal interaction pattern is that: the agent 1 and agent 4 only
care about the message sent from each other while the others only
care about its own observation. This pattern is correctly learned
in SAMP, and also in AMP, but there exist some distractions of the
attentions for the isolated agents in AMP. The noisy attentions may
account for the reason of the better performance in SAMP with
supervised signals compared to that with only RL signals.

The second column depicts a situation where all the agents are
separated from each other, and in this case, each agent i should
filter all received message (αi j ≈ 0) and focus only on its own
observation, which is correctly learned in SAMP but some noisy
attentions are still assigned in AMP. The third column can be simi-
larly explained as the first column. The fourth column shows a case
where three agents are holding a public predation area, and the
result in SAMP proves that each agent can simultaneously pay the
K most attentions on received messages, such as agent 2 gives full
attentions on messages from agent 1 and agent 3 (α21 ≈ α23 ≈ 1),
but AMP does not learn this effective pattern (α21 ≈ 1, α23 ≪ 1)

5 CONCLUSION
This paper provides a supervised attention-based message pro-
cessing method SAMP to directly model the relevance of received
messages through the target auxiliary information, which bene-
fits agents in learning correct interactions more efficiently. Serval
experiments are conducted to verify the effectiveness of our meth-
ods in a benchmark environment, and the results show that our
methods outperform existing methods in such environments.

CASA 2018, May 21–23, 2018, Beijing, China Z. Peng et al.

Figure 5: Four sampled screenshot of the environment (the first row). Four corresponding heatmaps of matrix I generated by
SAMP (the second row) and AMP (the third row). For each heatmap, the color block at i-th row and j-th column represents the
interaction strength of agent i w.r.t agent j, whose value is the attentional weight αi j .

Further investigation includes surveys on more representations
of I ′ and the performance of our methods in more environments
such as more toxins and less preys, and so on.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-
son. 2016. Learning to communicate with deep multi-agent reinforcement learn-
ing. In Advances in Neural Information Processing Systems. 2137–2145.

[3] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2017. Counterfactual multi-agent policy gradients. arXiv
preprint arXiv:1705.08926 (2017).

[4] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Philip Torr, Pushmeet Kohli,
Shimon Whiteson, et al. 2017. Stabilising experience replay for deep multi-agent
reinforcement learning. arXiv preprint arXiv:1702.08887 (2017).

[5] Jayesh KGupta,Maxim Egorov, andMykel Kochenderfer. 2017. Cooperativemulti-
agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems. Springer, 66–83.

[6] Matthew Hausknecht and Peter Stone. 2016. Grounded Semantic Networks
for Learning Shared Communication Protocols. In International Conference on
Machine Learning (Workshop).

[7] Yedid Hoshen. 2017. Vain: Attentional multi-agent predictive modeling. In Ad-
vances in Neural Information Processing Systems. 2698–2708.

[8] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[9] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. In Advances in neural information processing systems.
3675–3683.

[10] Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, JanuszMarecki, and Thore Graepel.
2017. Multi-agent reinforcement learning in sequential social dilemmas. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.

International Foundation for Autonomous Agents and Multiagent Systems, 464–
473.

[11] Hangyu Mao, Yan Ni, Zhibo Gong, Weichen Ke, Chao Ma, Yang Xiao, Yuan
Wang, Jiakang Wang, Quanbin Wang, Xiangyu Liu, et al. 2017. ACCNet: Actor-
Coordinator-Critic Net for" Learning-to-Communicate" with Deep Multi-agent
Reinforcement Learning. arXiv preprint arXiv:1706.03235 (2017).

[12] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In International Conference on
Machine Learning. 1928–1937.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[14] Igor Mordatch and Pieter Abbeel. 2017. Emergence of grounded compositional
language in multi-agent populations. arXiv preprint arXiv:1703.04908 (2017).

[15] Kozue Noro, Hiroshi Tenmoto, and Akimoto Kamiya. 2014. Signal learning with
messages by reinforcement learning in multi-agent pursuit problem. Procedia
Computer Science 35 (2014), 233–240.

[16] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and
John Vian. 2017. Deep Decentralized Multi-task Multi-Agent RL under Partial
Observability, In International Conference on Machine Learning. arXiv preprint
arXiv:1703.06182, 2681–2690.

[17] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of
the art. Autonomous agents and multi-agent systems 11, 3 (2005), 387–434.

[18] Peng Peng, Quan Yuan, Ying Wen, Yaodong Yang, Zhenkun Tang, Haitao Long,
and Jun Wang. 2017. Multiagent Bidirectionally-Coordinated nets for learning to
play StarCraft combat games. arXiv preprint arXiv:1703.10069 (2017).

[19] Zhaoqing Peng, Takumi Kato, Hideyuki Takahashi, and Tetsuo Kinoshita. 2015.
Intelligent home security system using agent-based IoT Devices. In Consumer
Electronics (GCCE), 2015 IEEE 4th Global Conference on. IEEE, 313–314.

[20] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-
tion with backpropagation. In Advances in Neural Information Processing Systems.
2244–2252.

[21] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057–1063.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Preliminaries

	3 Method
	3.1 Attention-based Message Processing
	3.2 Supervised Learning with Target Auxiliary Interaction Matrix
	3.3 Actor Critic Reinforcement Learning

	4 Experiment
	4.1 Environment Setup
	4.2 Training Performance
	4.3 Attention visualization

	5 Conclusion
	References

