
Accelerating Core Decomposition in Large
Temporal Networks Using GPUs

Heng Zhang1,2, Haibo Hou3, Libo Zhang1(B), Hongjun Zhang1,
and Yanjun Wu1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
zhangheng@nfs.iscas.ac.cn, zsmj@hotmail.com

2 University of Chinese Academy of Sciences, Beijing 100040, China
3 China Academy of Information and Communications Technology,

Beijing 100191, China

Abstract. In recent times, many real-world networks are naturally
modeled as temporal networks, such as neural connection in biological
networks over time, the interaction between friends at different time
in social networks, etc. To visualize and analysis these temporal net-
works, core decomposition is an efficient strategy to distinguish the
relative “importance” of nodes. Existing works mostly focus on core
decomposition in non-temporal networks and pursue efficient CPU-based
approaches. However, applying these works in temporal networks makes
core decomposition an already computationally expensive task. In this
paper, we propose two novel acceleration methods of core decomposition
in the large temporal networks using the high parallelism of GPU. From
the evaluation results, the proposed acceleration methods achieve maxi-
mum 4.1 billions TEPS (traversed edges per second), which corresponds
to up to 26.6× speedup compared to a single threaded CPU execution.

Keywords: Temporal network · Core decomposition · GPU

1 Introduction

Recently, complex networks are widely used to model relationships in many
fields, including protein networks in bio-informatics, Internet connection net-
works and real-world social friendship networks. Among these network struc-
tures, many real world networks are actually temporal networks, in which nodes
communicate with others at specific time instances [5,8]. For example, in bio-
logical networks, the neural connections can be modeled as temporal networks.
In Fig. 1(a) and (b), node N1 and N2 represent two individual sensors for Elec-
troencephalography (EEG) respectively, and temporal links between N1 and N2

represent the time dynamics of simultaneous brain area activations. When the
signal of extracranial magnetic fields is correlated at time points of 4, 12 and
16 (e.g., Hour 4, Hour 12, Hour 16), the three edges between N1 and N2 are
assigned at the time points of 4, 12 and 16. Moreover, N1 follows N2 at a point
in time in social networks, N1 spread informations to N2 at different times in
c© Springer International Publishing AG 2017
D. Liu et al. (Eds.): ICONIP 2017, Part I, LNCS 10634, pp. 893–903, 2017.
https://doi.org/10.1007/978-3-319-70087-8_91



894 H. Zhang et al.

Fig. 1. A sample temporal network ̂G and its non-temporal network G.

information dissemination networks, to name but a few. In general, these func-
tional connections between two nodes in temporal networks can be abstracted as
the temporal connectivity with time series association. Also, after discarding the
time information, the temporal networks can be transformed into non-temporal
networks (or static networks) by condensing the multiple edges between two
nodes into a single edge. We illustrate an example for the representation of a
sample temporal network and its non-temporal network in Fig. 1.

Meanwhile, there has been a proliferation of metrics and strategies to distin-
guish the relative “importance” of nodes within large network structures, such
as eigenvector [3], betweenness [1] and centrality indexes [7], etc. Among these
metrics, core decomposition has been studied as a well-established method to
identify a special group of cohesive subgraphs of a network, namely k-cores, or
k-shells [2,10,11]. For non-temporal network, the k-core for all possible inte-
ger k values is obtained by a maximal induced subgraph such that all nodes in
k-core have a degree of at least k [2]. Most strategies [2,4,9] are designed for
non-temporal network core composition. Batagelj and Zaversnik [2] first propose
a linear time algorithm (namely BZ algorithm), which recursively delete nodes
of degree less than k in the obtained subgraph. Dasari et al. [4] design ParK to
scale sequential BZ algorithm to multi-core machine. With respect to temporal
network, Wu et al. [13] first define k-core of temporal networks as formulation
((k, h)-core), where k controls the connectivity of nodes and h controls the inten-
sity of temporal activity between two nodes. Here, the ((k, h)-core) of a temporal
network is the largest subgraph such that every node in this network has at least
k neighbors, where each neighbor must be connected with at least h temporal
edges. This means there are at least h signals communicated with each other for
nodes in ((k, h)-core).

The quality of core decomposition in large temporal networks depends on many
factors such as the amount of input graph data, the time complexity of algorithm
and parallel scalability. As the size and complexity of networks increase, faster
processing of core decomposition implies larger amount of graph data in a given
runtime. With the popularity of SIMD (Single Instruction Multiple Data) archi-
tecture, Graphics Processing Unit (GPU) provides the processing of large network
structure not only massive parallelism (approximately 10 Ks threads) but also effi-
cient memory I/O (up to 100 GB/s memory bandwidth), which makes it an excel-
lent hardware platform for large network structure analytic [12].



Accelerating Core Decomposition in Large Temporal Networks Using GPUs 895

In this paper, we propose two novel acceleration algorithms of core decompo-
sition in the large temporal networks using the high parallelism of GPU. While
GPU offers massive parallelism, achieving high-performance core decomposition
in large temporal networks on GPU entails efficient scheduling of massive GPU
threads and effective utilization of GPU memory hierarchy. We first present an
algorithm following the definition of k-core in temporal networks. This algorithm,
namely TRCore, is designed to transform temporal network into non-temporal
and then traverse network using GPU-based bottom-up approach with recur-
sively distinguishing nodes by their degree and temporal edges. Since GPU-based
graph traversal phase would lead to amount of contention overhead from concur-
rent threads, the second algorithm, namely ESCore, is proposed as a non-trivial
algorithm based on the locality property [6] of k-core structure in temporal net-
works. In ESCore, each node estimates and updates its core number based on
their neighbors’ core values until convergence. By introducing the SIMD (Single
Instruction Multiple Data) architectural GPU accelerator, we implement these
two algorithms using CUDA C/C++ and achieve optimal performance speedup.
The results represent the two algorithms achieve 1.1–4.1 billions TEPS (tra-
versed edges per second) and a maximum speedup of 26.7× on the real-world
temporal networks compared to a single thread CPU execution.

The rest of the paper is organized as follows. In Sect. 2 we describe the formula
of core decomposition in large temporal networks. In Sect. 3 we present our
novel GPU-based parallel methodologies for GPU-based core decomposition and
the implementation details of our algorithms. Then, in Sect. 4 we evaluate and
analyze our methods in various real-world network datasets. And we conclude
our work and mention some future work in Sect. 5.

2 Core Decomposition

2.1 Notations

Let ̂G = (̂V , ̂E) be an undirected temporal network, where ̂V and ̂E is the set of
nodes and edges in ̂G. Each edge ê ∈ ̂E is expressed as a triple (ns, ne, t), where
ns, ne ∈ ̂V and t is the time point that ê is active (e.g., a signal is communi-
cated from ns to ne during t). In temporal network, one node can communicate
with others at multiple times. The multiple temporal edges between two nodes
ns, ne are denoted by Π(ns, ne), and Π(ns, ne) = {(ns, ne, t)|ns ∈ ̂V , ne ∈
̂V , (ns, ne, t) ∈ ̂E}. The number of temporal edges between two nodes is denoted
as π(ns, ne) = |Π(ns, ne)|.

After we remove the temporal information and condense the edges in each
Π, we obtain a non-temporal network of ̂G, denoted by G, and G = (V,E)
where V = ̂V and E = {(ns, ne)|(ns, ne, t) ∈ ̂E}. We define the number of
vertices in ̂G and G as n = |V | = |̂V |, the number of edges in ̂G as m̂ = | ̂E|
and in G as m = |E|. Furthermore, we define the neighbor set of node ns as
Γ (u,G) = Γ (u, ̂G) = {ne|(ns, ne, t) ∈ ̂E} = {ne|(ns, ne) ∈ E}. The degree of
one node ns is defined as deg(us, ̂G) = Σue∈Γ (us,G)π(us, ue) in temporal network
̂G and deg(us, G) = |Γ (us, G)| in non-temporal G.



896 H. Zhang et al.

We note a definition to the non-temporal subgraph at h time point for ̂G.
Specifically, given a specific time i, Gi = (Vi, Ei) is a subgraph of the non-
temporal graph G, where exists active edges after h time point, i.e. Vi = V and
Ei = {(ns, ne)|(ns, ne, t) ∈ ̂E, π(us, ue) ≥ h}.

2.2 Definition of Core Decomposition in Networks

The core decomposition of non-temporal network is to obtain every non-empty
k-core of the non-temporal G for k ≥ 1. Though maintaining the degree values of
nodes in G, k-core decomposition for non-temporal network is defined as follows.

Definition 1 (Non-Temporal k-Core). Given a non-temporal network G and
integer k, the k-core of G, denoted as Gk, is a maximal induced subgraph such
that all nodes in Gk have a degree of at least k, i.e., ∀n ∈ V, deg(n,Gk) ≥
k. Meanwhile, the largest value of k for node n is denoted core number, i.e.,
core(n,G) = max{k|n ∈ Vk}.

After adding the temporal information in temporal networks ̂G, the k-core
decomposition needs to consider the constrains of temporal edges. In this paper,
we follow the (k, h)-core definition in [13], and clearly define the core decom-
position for temporal networks on the top of the number of neighbors. In each
(k, h)-core ̂G(k,h) in ̂G, we enforce two limiting conditions, the k controls the
connectivity of nodes and h controls the intensity of temporal activity between
two nodes.

Definition 2 (Temporal (k, h)-Core). Given a temporal network ̂G and two
integers k, h, the (k, h)-core of ̂G, denoted as ̂G(k,h), is a maximal induced
subgraph such that all nodes in ̂G(k,h) have at least k neighbor nodes, and
the two nodes need to be connected with at least h temporal edges, i.e.,
∀ns ∈ V, |{ns|ns ∈ Γ (ne, ̂G(k,h)), π(ns, ne)}| ≥ k.

Figure 1(a) illustrates an example based on the above (k, h)-core definition.
Based on the above definition, N7, N8 are in the (1, 1)-core; N5, N6 are in the
(2, 2)-core; N3 and N4 are in the (3, 1)-core; and N1 is in the (3, 1)-core and
(3, 3)-core; and N2 is in (2, 2)-core, (3, 1)-core, as well as in the (3, 3)-core. Thus,
the (1, 1)-core, (3, 1)-core and (3, 3)-core in ̂G clearly distinguish the central
temporal relationship between N1 and N2, and central connected community
which consists of N1, N2, N3 and N4.

Since the neighbors of node us are the same vertex set in G and ̂G, we can
also obtain the ne by traversing the non-temporal G to simplify the process.
Further, we define the temporal core number for nodes in ̂G.

Definition 3 (Temporal Core Number). Given a temporal network ̂G and
a node n ∈ ̂V , the temporal core number of ̂G, denoted as core(n, ̂G), is the
maximal values (kmax, hmax) of k and h such that n is in the ̂G(kmax,hmax), i.e.,
core(n, ̂G) = max{(k, h)|n ∈ ̂V(k,h)} and ∀k′ ≥ k,∀h′ ≥ h, n /∈ ̂V(k′,h′).

In this paper, we focus on the computation core(n, ̂G) for each node n in ̂G.



Accelerating Core Decomposition in Large Temporal Networks Using GPUs 897

3 Proposed GPU-Based Parallel Methods for Temporal
Core Decomposition

The methodologies we propose here to accelerate core decomposition are based
on GPU. While GPU offers high parallelism, the irregular network structural
data would lead to high contention overhead when multiple threads update one
node concurrently. Thus achieving high-performance core composition on GPUs
entails efficient scheduling of massive GPU threads and effective utilization of
memory hierarchy. Here we present two efficient parallel algorithms for core
decomposition using a GPU. The first method TRCore is designed as a tra-
verse algorithm along the definition of temporal (k, h)-core, shown in Fig. 2(a).
The second method ESCore is proposed as an estimate algorithm based on the
locality property of temporal (k, h)-core in ̂G, shown in Fig. 2(d). Compared to
TRCore, ESCore method can benefit from the much less contention overhead
(multiple threads simultaneously write a same memory address, see Fig. 2(b)
and (c)) and represent a higher performance. We illustrate the pseudo code of
the main phase in Algorithm 1. The procedure first iteratively construct the
time point subgraph in each time point i in [1, πmax] and execute the above two
method to get the connectivity k for each node, and then merge the core number
value and time point pairs (i.e., <k, i>) of nodes.

Fig. 2. Execution flow for TRCore and ESCore methods.

3.1 Method 1: Traverse Method Based on Neighborhood

Based on the Definitions 2 and 3 for (k, h)-core, we obtain the number constrain
condition of neighbors for each node in the following theorem.

Theorem 1. Given temporal network ̂G, its non-temporal network G. In G,
a node n is in i-core of G if and only if n has at least i neighbors in i-core.
Meanwhile, in temporal network ̂G, let (k, h) ∈ core(n, ̂G), then core(n,G) = k
for n in Gh at h time point.

Based on the Theorem 1, the core number (k) of the node v in non-temporal
network can be easily obtained by starting from 1-core, recursively remove all
nodes with degree less than or equal to the current core number, along with their



898 H. Zhang et al.

Algorithm 1. Main Phase

Input: An input undirected temporal graph ̂G = (̂V , ̂E)

Output: The core number pair (k, h) of each node n ∈ ̂V
1 Allocate vertex property and state buffers in host memory and device memory;
2 Initialize (k, h) pair value set for |V | nodes ← ∅ ;
3 foreach i ∈ [1, πmax] do
4 if i = 1 then

5 Get non-temporal Gi: Obtain edge set Ei via condensing edges in ̂E ;
6 else
7 Get non-temporal Gi: Filter edge set Ei from Gi−1;
8 end
9 Call KTR to set core numbers of nodes in Gi for k ∈ [1, kmax];

10 or Call KES to update core number of nodes until statelist all inactive;
11 foreach node v ∈ Gi do
12 Let φ =core(v, Gi) be the core number value of v in non-temporal Gi

and add (φ, i) to core number pair value set of v;

13 end

14 end

Algorithm 2. Method 1: TRCore Kernel Function
Input: An input undirected Graph Gi, vertices’ degree vplist, remove state

rmlist, flag flaglist, core level integer kcore
Output: The core number pair (k, h) of each node n ∈ ̂V

1 Function KTR(Gi, kcore, vplist[], rmlist[], flaglist[]) begin
2 vid ← blockIdx.x * blockDim.x + threadIdx.x;
3 if flaglist[vid] = true then
4 foreach ui ∈ Γ (vid, Gi) of node vid do
5 if rmlist[ui] = false then
6 atomicSub(&(vplist[ui]), 1);
7 end

8 end
9 flaglist[vid] ← true;

10 end
11 if rmlist[vid] = false then
12 if vplist[vid] < kcore then
13 rmlsit[vid] ← true;
14 flaglist[vid] ← true;
15 atomicAdd(rmcnt, 1);

16 end

17 end

18 end

edges, from the network. Then, with the varying time point h in [1, πmax], core
number (k, h) of each node in temporal network can be iteratively merged after
processing non-temporal generated subgraphs in each time point 1 ≤ h ≤ πmax.



Accelerating Core Decomposition in Large Temporal Networks Using GPUs 899

The implementation of Method 1 is explained in Algorithm2. The graph
data for temporal network is stored in global memory in GPU while the flag
and removed state data are stored in shared memory. We allocate three size n of
arrays (vplist, rmlist and flaglist). The vplist[v] records the current degree of
v, the rmlist[v] indicates whether v has been fall into other core and flaglist[v]
labels the processed flag of v. We launch the KTR GPU kernel function to
do vertex-centric traverse based core decomposition, where each GPU thread
processes one node in one time. Given a vertex v and a specific kcore value,
when flaglist of v is set to true, the v incident edges are traversed to be deleted
and the degrees of neighbors also decrements by one (Line 3–10). Thus when the
rmlist of v is false and vplist[v] < kcore, we ensure v belongs to this k-core and
mark flaglist[v] to true. The procedure for each Gi require kmax iterations.

3.2 Method 2: Estimate Method Based on Locality

We introduce a locality property of non-temporal network in Method 2 to enhance
the performance [6]. In non-temporal network, the core number of an arbitrary
node n would be [0, deg(n)]. And if the node v is in the k-core subgraph, it has
at least k neighbors in this subgraph, where the degrees of these neighbors are in
[0, deg(n)]. Moreover, after we sort this neighbor nodes ui(1 ≤ i ≤ n ≤ deg(v))
by degree, i.e., core(ui+1) ≥ core(ui), the node v has at least deg(v) − (i − 1)
neighbors whose core number is larger or equal than core(ui). Thus, we obtain
the locality property of temporal network as following.

Theorem 2. Given a temporal network ̂G = {̂V , ̂E} and non-temporal G =
{V,E}(V = ̂V ), core(n, ̂G) = (k, h) values ∀n ∈ V, π(n, Γ (n, ̂G)) ≥ h if and
only if

– there exists a subset Vk ⊆ Γ (n,G) such that |Vk| = k and ∀n ∈ Vk :
core(n,G) ≥ k.

– there not exists a subset Vk+1 ⊆ Γ (n,G) such that |Vk+1| = k + 1 and
∀n ∈ Vk+1 : core(n,G) ≥ k + 1.

Moreover, let u1, u2, ..., un be the neighbors of node v ∈ Vk sorted by core
number and Gτ be a generated non-temporal subgraph at τ time point (τ ∈
[1, πmax]), the core number of v can be calculated using the following equation:

core(v,Gτ ) = max k s.t. |{∀ui ∈ nbr(v)|core(ui, Gτ ) ≥ k}| ≥ k (1)

Though merging the <k, τ> pair values of v in each Gτ and removing dupli-
cate values, the core number values of v in temporal network ̂G are obtained.

The implementation of Method 2 is explained in Algorithm3. Given a vertex
v and its current core number corecur, the eslit record the current core number
of all nodes in global memory. We use the count[1 : coremax] array to denote
the number of neighbors of v with their core number equals the index of count
(Line 5–8). Then we calculate sum, the number of neighbors of v with their core



900 H. Zhang et al.

Algorithm 3. Method 2: ESCore Method
Input: An input indirected graph Gi, vertices’ current core number eslist,

vertex state statelist
Output: The core number k of each node n ∈ ̂V eslist

1 Function KES(Gi, eslist[], statelist[]) begin
2 vid ← blockIdx.x * blockDim.x + threadIdx.x;
3 corecur ← eslist[vid];
4 count[1: corecur] ← 0;
5 foreach ui ∈ Γ (vid, Gi) of node vid do
6 j ← min(corecur, eslist[vid]);
7 count[j] ← count[j] + 1;

8 end
9 sum ← 0;

10 for k=corecur; k>2; k–– do
11 sum ← sum + count[k];
12 if sum ≥ k then
13 break;
14 end

15 end
16 if k < corecur then
17 eslist[vid] = k;
18 statelist[vid] = true;

19 end

20 end

number is larger than k (Line 9–15), i.e., sum = |{∀ui ∈ nbr(v)|core(ui, Gτ ) ≥
k}|. Once sum ≥ k, we obtain the maximum k for conclusive updated new core
number of v (Line 16–19). The procedure is convergent after state of nodes are
all inactive.

4 Experimental Result

Table 1 shows the real-world temporal graphs with a broad range of sized and fea-
tures from different origins, which are from Stanford Large Network Dataset Col-
lection (http://snap.stanford.edu/data/). Mathoverflow, Superuser and Stack-
overflow are the answer and comment graphs, where user u answered or com-
mented user v ’s question at time t. CollegeMsg is comprised of private mes-
sages sent on an online social network. Wiki-talk represents Wikipedia users
editing each other’s Talk page. We perform the experiments on a server with
NVIDIA GeForce GTX980 each having 16 Maxwell Streaming Multiprocessors
(128 Cores/MP) and 4 GB GDDR5 RAM. The host side of the node is consist
of two 10-core Intel Xeon E5-2650 v3, and 64 GB DDR4 main memory, running
with Ubuntu 16.04 (kernel v4.4.0-38) with CUDA 7.5.

We first show the effects of our two core decomposing methods on GPU-
based platform. The two comparison of core decomposition algorithms are

http://snap.stanford.edu/data/


Accelerating Core Decomposition in Large Temporal Networks Using GPUs 901

Table 1. Real-world and synthetic graph datasets used in this paper. ‘Temp.’ represents
edges in temporal graph, ‘NonT.’ represents non-temporal graph. And the preprocess-
ing time consist of edge list load, transformation and indexes building time.

Dataset Nodes Temp. NonT. Avg. deg MAX π Preprocess

|̂V | edges | ̂E| edges |E| degavg πmax T imepre

CollegeMsg 1, 899 59, 835 20, 296 31.5 98 0.8 s

Mathoverflow 24, 818 506, 550 239, 978 20.4 1944 1.2 s

Superuser 194, 085 1, 443, 339 924, 886 7.4 3626 6.8 s

Wiki-talk 1, 140, 149 7, 833, 140 3, 309, 592 6.9 31, 450 15.9 s

Stackoverflow 2, 601, 977 63, 497, 050 36, 233, 450 24.4 29, 919 109.2 s

Table 2. Elapsed time (in seconds) comparison between BZ algorithm, ParK algorithm
and TRCore, ESCore method. The ‘MT’ denote to the number of multiple threads.

Dataset BZ ParK (2MT) ParK (4MT) ParK (16MT) TRCore ESCore

CollegeMsg 185.43 61.85 64.20 52.44 27.81 17.30

Mathoverflow 321.75 194.62 122.05 43.86 25.13 23.62

Superuser 1352.20 956.19 581.00 198.56 114.89 132.57

Wiki-talk 4101.99 2626.18 1461.70 546.74 322.68 185.73

Stackoverflow 12970.50 7299.54 3762.14 2428.33 628.27 486.36

coming from the state-of-art, namely single-thread BZ algorithm [2] and multi-
core CPU based ParK algorithm [4]. These two non-temporal core decomposition
algorithms are integrated into detecting core number of non-temporal network
given a specific time point. BZ algorithm is configured to one single thread and
ParK algorithm to 2, 4, 16 threads in evaluation. Table 2 shows us the elapsed
time for our two methods (TRCore, ESCore) with GPU can achieve an optimal
performance compared to other execution (with overstriking marks).

Moreover, we illustrate the speedup ratio for TRCore and ESCore. Com-
pared to BZ algorithm, TRCore achieves 6.7–20.6 time of speedup and ESCore
achieves 10.7–26.6 time of speedup. With the size of temporal graph data increas-
ing, TRCore and ESCore with GPU represent better performance enhancement.
Meanwhile, with respect to ParK algorithm, TRCore and ESCore also achieve
3–7.8 time of speedup over 4-thread ParK and 1.8–5.0 time of speedup over
16-thread ParK. The reason that GPU-based TRCore and ESCore represent
excellent performance accelerating was that the optimized scalable algorithms
benefit from massive parallelism and high memory bandwidth. From the result,
we also conclude that ESCore achieve a better performance than TRCore, and
ESCore benefits from an efficient scheduling mechanism of massive GPU threads
(Fig. 3).

Figure 4(a) illustrates TEPS (traversed edges per second) metric compar-
ison for TRCore and ESCore, and shows the ESCore achieves maximum 4.1
billion TEPS in wiki-talk graph and almost enhances 2.4× TEPS than TRCore.



902 H. Zhang et al.

Fig. 3. Speedup for TRCore and ESCore comparison with BZ, ParK (4 Threads) and
ParK (16 Threads).

Fig. 4. Traversed edges per second in TRCore and ESCore, and vertex update ratio in
ESCore for ̂G at i = 1 time point.

Figure 4(b) summaries the updated vertex ratio in ESCore method for ̂G core
decomposition in i = 1 time point. From the results, the ratio of updated vertices
decreases sharply in the first 5 iterations, and then flattens, represents less than
5% after 50 iterations.

5 Conclusion and Future Work

In this paper, we proposed an efficient parallelization of core decomposition in
large temporal network using GPUs. By carefully considering the massive par-
allelism provided by GPU, two method are designed based on two core decom-
position theorems. The first TRCore method is designed to traverse network
using GPU-based bottom-up approach with recursively distinguishing nodes. In
the second ESCore method, each node estimates and updates its core number
according to current core values of their neighbors until convergence. By intro-
ducing GPU accelerator, two algorithms achieve a maximum speedup of 26.7×
on the real-world temporal networks. We work now on a method to maintain
the core decomposition extending temporal networks to dynamic networks.



Accelerating Core Decomposition in Large Temporal Networks Using GPUs 903

References

1. Attal, J.-P., Malek, M., Zolghadri, M.: Overlapping community detection using
core label propagation and belonging function. In: Hirose, A., Ozawa, S., Doya,
K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 165–174.
Springer, Cham (2016). doi:10.1007/978-3-319-46675-0 19

2. Batagelj, V., Zaveršnik, M.: Fast algorithms for determining (generalized) core
groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

3. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4),
555–564 (2007)

4. Dasari, N.S., Desh, R., Zubair, M.: Park: an efficient algorithm for k-core decom-
position on multicore processors. In: 2014 IEEE International Conference on Big
Data (Big Data), pp. 9–16. IEEE (2014)

5. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
6. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition.

IEEE Trans. Parallel Distrib. Syst. 24(2), 288–300 (2013)
7. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2),

167–256 (2003)
8. Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., Latora, V.: Graph met-

rics for temporal networks. In: Holme, P., Saramäki, J. (eds.) Temporal networks.
Understanding Complex Systems, pp. 15–40. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-36461-7 2

9. OBrien, M.P., Sullivan, B.D.: Locally estimating core numbers. In: 2014 IEEE
International Conference on Data Mining (ICDM), pp. 460–469. IEEE (2014)

10. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

11. Shin, K., Eliassi-Rad, T., Faloutsos, C.: CoreScope: graph mining using k-core
analysis-patterns, anomalies and algorithms. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 469–478. IEEE (2016)

12. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: A
high-performance graph processing library on the GPU. In: Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
p. 11. ACM (2016)

13. Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition
in large temporal graphs. In: 2015 IEEE International Conference on Big Data (Big
Data), pp. 649–658. IEEE (2015)

http://dx.doi.org/10.1007/978-3-319-46675-0_19
http://dx.doi.org/10.1007/978-3-642-36461-7_2
http://dx.doi.org/10.1007/978-3-642-36461-7_2

	Accelerating Core Decomposition in Large Temporal Networks Using GPUs
	1 Introduction
	2 Core Decomposition
	2.1 Notations
	2.2 Definition of Core Decomposition in Networks

	3 Proposed GPU-Based Parallel Methods for Temporal Core Decomposition
	3.1 Method 1: Traverse Method Based on Neighborhood
	3.2 Method 2: Estimate Method Based on Locality

	4 Experimental Result
	5 Conclusion and Future Work
	References


