
2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-5090-3050-7/17/$31.00 ©2017 IEEE 1607

EpCom: A Parallel Community Detection Approach
for Epidemic Diffusion over Social Networks

Heng Zhang∗‡, Libo Zhang∗, Da Cheng†‡, Yanjun Wu∗, Chen Zhao∗
∗Institute of Software, Chinese Academy of Sciences, No. 4 Zhongguancun South 4th Street, Beijing 100190, PR China

†Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, PR China
‡University of Chinese Academy of Sciences, No. 19 Yuquanlu, Beijing 100049, PR China

zhangheng@nfs.iscas.ac.cn, zmsj@hotmail.com, chengda@ibcas.ac.cn, {yanjun, zhaochen}@iscas.ac.cn

Abstract—Detecting community structure in epidemics net-
works is crucial for the assessment of epidemic dynamics and
effective control of disease spread by targeting at the individuals
bridging communities. Common community detection models
(e.g., cut-criteria and modularity-criteria based model) are ef-
ficient in optimal quality of network partitions. However, most
of the approaches fail to consider the dynamic infected possibility
in person-to-person interactions. In addition, they present high
computational complexity, which was limited by the scale of
networks and the performance of hardware platform. In this
paper, we propose a Jaccard distance based community detection
model by considering both the quality of network partitions
and the dynamics of infected interacts (i.e., edges) between
two individuals in epidemic diffusion. Then, we design a novel
parallel approach based on the high parallism of GPU, called
EpCom, for boosting the performance and scalability of parallel
community detection over large-scale epidemic networks. From
the evaluation results, the proposed GPU-based implementation
EpCom exhibits great performance and achieves maximum 604
million TEPS (traversed edges per second), which corresponds
to up to 54.2 times and 15.6 times than CPU-based NCut and
Louvain approaches separately.

I. INTRODUCTION

With an exponentially growing number of urbanized and

moving population, the likelihood of a worldwide pandemic

is increasing sharply. Since the epidemics (e.g., influenza,

HIV/AIDS, SARS, Ebola, etc.) are occurrences via person-

to-person transmission with characteristics of spreading fast

and involving widely, understanding their diffusion behav-

ior in populations is key to controlling them. Traditionally,

mathematical and computational simulations of dynamics of

epidemics [1]–[3] have provided a valuable equation tool

for completely mixing populations, which are represented

as networks or graphs. In such epidemic networks, persons

and their interactions among each other are represented by

nodes and edges. The effective methodologies to discover the

propagation rules and to mitigate or prevent the spreading of

infectious disease in the epidemic networks have been a hot

topic in the complex network literature.

In these methodologies, most works [4], [5] have been done

towards the directions to identify top-ranked influential spread-

ers for targeted immunization via vertex-centric paradigms,

such as degree centrality or betweenness centrality. Although

degree distributions and centrality are studied extensively in

effects on epidemic dynamics, they would not be suitable for

growing scale of networks, due to require a global knowledge

of the whole network. On the other hand, detecting community

structure in the spread of disease in epidemics networks

(e.g., CBF algorithm [6], community level influence measures

[7], [8]) have shown great potential in understanding the

epidemic dynamics and controlling the spreading by cutting
inter-community edges. They are based on a fact that human
contact networks exhibit strong community structure [9]–[11],

and eventually demonstrated community structure strongly

affects disease dynamics. Compared to the targeting of high-

centrality individuals in epidemic networks using a global

strategy, the community-based methods are more effective for

immunization interventions targeted at the individuals bridging

communities. For example, when the community structures

are cohesive, the epidemic can be trapped in community by

cutting only a few inter-community links. Meanwhile, the

effort to identify which communities have been contracted

can be avoided by monitoring the bridging individuals instead

of all members in these communities, and early community

detection is important for limiting new infections and taking

early care of the exposed individuals.

Within the state-of-the-art community detection approaches,

most common community detections introduce cut-criteria
based model in epidemic networks [12], [13]. Communities are

partitioned as disjointed subgraphs with minimized number of

cut edges. Another mainstream model is based on modularity-
criteria [14], in which incremental optimal quality of network

partitions are obtained via iteratively adjusting expected cut

edges. However, the challenges of applying these models in

epidemic networks lie in both models’ limitations and high

computational complexity on large-scale datasets: 1) fails to

consider the dynamic infected possibility in person-to-person

interactions and ignores to detect small-sized communities due

to resolution limit; 2) presents high computational complex-

ity, which was limited by the scale of networks. Moreover,

enhancing performance in the growing large-scale networks is

posing parallel detection technical challenge using limited size

of resources, for example, analyzing epidemic network dataset

which exceeds the GPU-resident memory size.

In this paper, we propose a novel parallel community

detection approach for the simulated epidemic diffusion. First,

based on the introduction of Jaccard distance between indi-

viduals [15], we present a dynamic distance view in epidemic

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1608

network, in which a weight of interaction is associated with

the dynamic interacts between two persons for the infected

chance of transmitting a disease. Instead of the global fashions

in cut and modularity based methods, we apply three local

interaction patterns to determine the affects among individuals,

and identify the communities via local dynamic interactions.

Second, we aim to boost the performance and scalability

of parallel community detection over large-scale epidemic

networks. Consider that GPU (Graphics Processing Unit)

platform provides large network analytic not only massive

parallelism (approximately 10Ks threads) but also efficient

memory I/O (up to 100GB/s memory bandwidth) [16]. We

design and implement a novel GPU-based approach, namely

EpCom, by utilizing the high parallelism of GPU platform.

Specifically, due to realistic networks tend to be skewed and

highly compressible, EpCom designs an optimal “shard” graph

partition for epidemic network representation which provides a

similar compression ratio and also omits the overhead from de-

coding edge set. Then, EpCom presents parallel asynchronized

processing ability via exploiting CUDA Stream Object feature

to enhance performance further. To the best of our knowledge,

EpCom is the first approach to exploit I/O efficiency in limited

GPU-resident memory to support GPU-accelerated community

detection over out-of-core networks, the size of which has

exceeded the GPU-resident memory.

The main contributions of this paper is as follows:

• A community-based early detection model based on Jac-

card distance definition is presented by considering three

affect pattern between two individuals. In this regrad, the

problem of community detection in epidemic diffusion is

formulated.

• An efficient parallel GPU-based approach, called EpCom,

is proposed for community detection. Two key optimiza-

tion strategies designed in EpCom are outlined: 1) design

a shard-based graph representation to support community

detection in billion-scale networks using limited GPU-

resident memory size; 2) exploit GPU-based asynchro-

nized data movement and computation to enhance parallel

procedure performance.

• Experiments are conducted on the realistic social network

datasets to evaluate the effectiveness and efficiency of

EpCom. The results show that distance-based model al-

lows effective community detection in epidemic networks

and EpiCom significantly outperforms other competitors

as well as representative parallel methods.

The rest of paper is orgnized as follows. Section II intro-

duces the background and challenges of community detection

in epidemic diffusion. Section III presents the Jaccard distance

based community detection model. The detailed design and

implementation of our proposed approach EpCom is discussed

in Section IV-C. We report our experimental results in Section

V. Section VI concludes the paper.

II. CHALLENGES AND MOTIVATION

Early detection for the epidemic diffusion is important for

taking early care of the individuals in exposed and limiting

new infections. To reduce the unaffordable running time,

simulation-based techniques have been employed to accelerate

the visualization of SER (susceptible, infectious, removed)

based spreading of contagious disease [2], [8]. Whereas the

approaches generally lack a comprehensive consideration on

community-based methodology for achieving the epidemic

early detection. By introducing constraining policies in com-

munities, the objective is to give more early targeted care to

infected communities and to limit disease in much smaller

areas progressively. Along with community structure based

epidemic diffusion, We mainly focus on addressing the fol-

lowing two challenges of the state-of-art approaches.

1) Challenge of flexible community detection. The two

most common computational methodologies for community

detection introduce cut-criteria and modularity-criteria based

model in epidemic networks. They seek to partition a graph

into disjoint subgraphs with minimized number of cut edges

across subgraphs and measure the quality of network divisions

[12]–[14], [17]. The methodologies yield network partitions

using a global fashion following the assumption that each

node has the equal chance to link any other node of the

network. However, applying such methodologies in epidemic

diffusion analysis fails to consider the dynamic infected

possibility in person-to-person interactions. Moreover, since

inherent “resolution limit” in such models, the above two

models cannot detect many small-sized communities. And

enhancing performance in the growing large-scale networks

is posing parallel detection challenge, in which communities

need to be detected in local.

2) Challenge of realistic social networks. Community detec-

tion is a NP-hard problem, which was confirmed in [18]. The

non-uniform nature of realistic epidemic networks represents

a rapidly growing large scale and an irregular distribution of

heavy-tailed degree. The quality of community detection in

large networks depends on many factors such as the amount

of input graph data, the time complexity of algorithm and

parallel scalability. As the size and complexity of networks

increase, faster community detection implies larger amount of

graph data in a given runtime. Therefore, an efficient parallel

processing strategy needs to be designed by considering both

the quality and the performance of scaling methodology to

parallel computing environment. Moreover, considering the

limited memory resource for residing datasets, when scaling

community detection to parallel environment over these net-

works, designing an optimal data partition and distribution

scheme is key to the scalability of approaches.

III. DISTANCE-BASED COMMUNITY DETECTION MODEL

FOR EPIDEMIC DIFFUSION

Epidemic diffussion have been performed on complex net-

works [2], which consist of spartially-explicit agents (individ-

uals) with interactions on household and community scale.

The most common epidemic diffusion model is introduced as

a susceptible, infectious, removed (SIR) model. As shown in

Figure 1(a), with periodic boundary conditions, indiduals in

SIR model can be in one of the following states:

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1609

Fig. 1. SIR model, community structures in a sample network and the three
contact patterns in EpCom.

• Susceptible: disease-free and never previously infected.

• Infectious: infected with symptoms.

• Removed: recovered or dead.

We format SIR model for spreading of contagious disease in

complex networks as following: each individual in the complex

networks represents a node, and the interactions between two

nodes represent an edges. Considering an infected possible rate

γ during a given interaction, whose value depends on several

factors (e.g., interaction number, spreading rate, etc.), we give

each edge a weight value to define a synthetical infected rate

between two individuals. For example, in Figure 1(b), there are

several interactions between two individuals u and v, the edge

(u, v) is assigned and associated with a weight w(u, v) = 0.8.

For the sake of efficient community-based early detection in

epidemic diffusion analysis, we introduce a dynamic distance-

based model over realistic social networks [15].

First, we format several necessary definitions for the pre-

sentation of our community detection methodology.

Definition 3.1 Epidemic Network (Graph): Let Ĝ =
(V̂ , Ê, Ŵ) be an undirected weighted epidemic network,

where V̂ and Ê is the set of nodes (individuals) and edges

(interactions) and the Ŵ is the corresponding set of infected

possibility (weights) in Ĝ. Each edge ê ∈ Ê is expressed

as (ns, ne, w), where ns, ne ∈ V̂ and w(ns, ne) is a weight

assigned to ê (e.g., an infected possibility after ns interacts

ne). We define the number of nodes in Ĝ as n = |V̂ |, the

number of edges in Ĝ as m = |Ê|.
Definition 3.2 Contacts (Interactions or Edges): Given a

node ns, the contact set of node ns is defined as Γ(ns, Ĝ) =
{ne|(ns, ne, w) ∈ Ê} ∪ ns. The number of contacts of one

node ns is defined as the degree of ns, i.e., deg(ns, Ĝ) =
|Γ(ns, Ĝ)|.

Then, we introduce a Jaccard distance dynamics based

community property for detection, which is proposed in [19],

The definition of Jaccard dis shown in the following definition:

Definition 3.3 Jaccard Distance: Given an undirected net-

work Ĝ = (V̂ , Ê, Ŵ) and two nodes ns, ne. The distance

value between two individuals is defined as d(ns, ne) =

1 − Γ(ns)∩Γ(ne)
Γ(ns)∪Γ(ne)

. Given the weights to whole edge set in Ĝ,

the Jaccard distance for ns, ne is further defined as:

d(ns, ne) = 1−
∑

x∈Γ(ns)∩Γ(ne)
(w(ns, x) + w(ne, x))∑

{x,y}∈ ̂E;x,y∈Γ(ns)∪Γ(ne)
w(x, y)

(1)

Three diffusion patterns for person-to-person interactions

are considered as following:

Pattern I (Affects from Directed Contacts.) Through muta-

ble interactions, the direct linked node ns and ne is obviously

all influenced (see Figure 1(d)). Thus, their cohesiveness tends

to be increased gradually. Based on the definition of Jaccard

distance between ns and ne, the affects from interactions of

directed linked nodes is defined as: IDC = −(1
deg(ns)

·sin(1−
d(ns, ne))+

1
deg(ne)

·sin(1−d(ns, ne))). Here the deg(·) term

indicates the degree of nodes and sin(·) math function is used

for coupling operator.

Pattern II (Affects from Common Contacts.) The second

affect is from the common contacts of the two nodes ns

and ne (see Figure 1(e)), where the common contacts is

defined Γ(ns) ∩ Γ(ne). Considering the common contacts

have both directed links to ns and ne, they interact with

ns and ne and thus result change their cohesiveness. We

define the affects from common contacted individuals as

ICC = −∑
x∈Γ(ns)∩Γ(ne)

(1
deg(ns)

· sin(1 − d(x, ns)) · (1 −
d(x, ne)) +

1
deg(ne)

· sin(1− d(x, ne)) · (1− d(x, ns))). Here

we quantify the affects from each common contact with its

relative distance (e.g., (1− d(x, ns))).
Pattern III (Affects from Exclusive Contacts.) The third

affect (see Figure 1(f)) happens when the two nodes ns and

ne have their exclusive contacts, i.e., (Γ(ns)−Γ(ns))∩Γ(ne)
and (Γ(ne) − Γ(ns)) ∩ Γ(ne). To determine the negative

or positive affect of the exclusive contacts, a similarity of

each exclusive contacts for ns and ne needs to be obtained.

Thus, we note a ρ(·) function indicates the similarity of

a node and its exclusive node (e.g, x and ns) to deter-

mine the positive or negative affect from exclusive nodes.

Given a cohesion parameter δ, if (1 − d(x, ns)) ≥ δ then

ρ(x, ns) = (1−d(x, ns)); others ρ(x, ns) = (1−d(x, ns))−δ.

Furthermore, similar to common contacts affect determination,

we define the affects from exclusive contacts for ns and ne as

IEC = −(∑x∈(Γ(ns)−Γ(ns)∩Γ(ne))
1

deg(ns)
·sin(1−d(x, ns)) ·

ρ(x, ns)+
∑

y∈(Γ(ne)−Γ(ns)∩Γ(ne))
1

deg(ne)
·sin(1−d(y, ne)) ·

ρ(y, ne)).
Based on the above three patterns, the community detection

can be obtained by the dynamic distance between each two

nodes in network. Given two node u and v and iteration step

τ , the iterative distance between u and v is calculated by:

d(u, v, τ +1) = d(u, v, τ)+ IDC(τ)+ ICC(τ)+ IEC(τ) (2)

Finally, Equation 2 is applied to update distances of whole

nodes in network iteratively until converge. The distance range

of two node is [0,1], the lower distances equate to the closer

two nodes are. During each iteration, we remove edges whose

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1610

distance equal (or larger than) 1, and obtain communities from

the connected component.

Discussion: We illustrate the steady state for incremental

changes of edges’ distances after iterations in Figure 1(c).

The advantages for distance based community dection model

suitable for epidemic diffusion can be concluded as the

following three-folds. First, epidemic diffusion is a dynamic

spreading activity for traceable interactions, in which the states

of nodes are monitored and changed temporally. The changes

of network are revealed adaptively in distance based model and

updated simultaneously of distance dynamics. Second, com-

pared to modularity gradually increment models, the dynamic

distance with local interaction model gives richer variation

descriptions for communities. For example, with adjustment of

cohesive parameter δ value, distance-based model allows the

detection of arbitrary-size communities. Third, when scaling

to large-scale networks, the distance-based model provide

community detection methodology an ability to reveal the

distance of nodes within adaptive subgraph partitions locally.

IV. PARALLEL COMMUNITY-BASED EARLY DETECTION

APPROACH FOR EPIDEMIC NETWORKS

Following the paradigm of Jaccard distance based commu-

nity detection, we design our EpCom approach in the analysis

of epidemic diffusion. As the size and complexity of epidemic

networks increase (Challenge 2 in Section II), pursuing faster

community detection in parallel computing environment is

emerging to be considered. To achieve optimal performance

of community detection, we choose the high parallelism of
GPU to build EpCom due to high computing and power

efficiency offered by GPU that promise to provide an excellent

hardware platform. The strategy we designed considers both

the quality and the performance of scaling methodology to

parallel computing environment. Moreover, considering the

limited GPU-resident memory resource for residing datasets,

we design an efficient data partition and distribution scheme

to schedule local kernel execution in GPU threads.

In this prototype, we support an out-of-core strategy for

large-scale realistic social network, in which the large-scale

epidemic contact networks have larger sizes than GPU’s device

memory. More specifically, these large-scale networks can be

processed efficiently on one single GPU-based machine by

employing compact partitions and effective data movement

and computation. Meanwhile, a pipeline of community de-

tection for epidemic diffusion is implemented, which consists

of two stages, graph partition and parallel processing (shown

in Figure 2(a)).

A. Approach Overview

The overview of EpCom is shown in Figure 2(a), in which

the two stages in gray blocks represent our main contribution

for optimization. Within EpCom approach, the workflow is

transformed to data partition stage and parallel computation

stage, along with a preliminary step to read the raw graph

data into host memory.

Fig. 2. EpCom Method Overview.

1) Graph Partition Stage: This stage is to partition the input

raw epidemic network graph reads to subgraph partitions (i.e.,

shards) to make them accessible to hold in GPU’s limited

device memory. In EpCom, we provide two choosable formats

for raw graph as edge list or Compressed Sparse Row (CSR).

For the paired reads and workload balance, the reads are

sequentially partitioned into shards (edge size fit into device

memory) in this stage to guarantee that each shard will be

resident in GPU and processed correctly (detailed in Sec.

IV-B).

2) Parallel Computation Stage: This stage covers whole

parallel procedures in CPU and GPU, in which GPU inde-

pendently processes each individual partitioned shard one by

one. After partition stage, each shard is then treated as a

single chunk with an assigned ID, loaded and processed into

GPU device memory as a whole. It should be noted that the

chunk-based data movement over PCIe is more efficient than

pageable transfer. When the processing on shards finishes,

the computation results are transformed to a collection of

key-value (i.e., <(Shard ID, Contact ID), Affects>) pairs. In

each collection, the key is generated from local computation,

which specifies the exactly mapped nodes in the local shards

and combined same key pairs into one. The result collections

are copied to host memory as data chunks. Meanwhile, we

leverage an data movement optimization in this stage by

introducing Stream Object provided by CUDA to overlap data

movement and GPU kernel execution [20], in which the op-

erations from multiple Streams are executed concurrently and

interleaved. As shown in Figure 2(b), we separate the distance-

based affect computation phase implemented in EpCom to

two sub-phases: Local phase and Global phase. Within local

phase, the shards and their corresponding node value vectors

are sequentially executed by GPU’s kernel functions. By

simulating the dynamic affects on edges (i.e., DC, CC, EC
contacts among individuals) in shards (cf. Eq. (2)), it yields the

transmission distances among nodes. Along with introducing

the three pattern affects in network topology, the transmission

distances among individuals in different communities increase

gradually while those sharing a same community tend to

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1611

decrease. After iterative loading and processing shards in GPU,

the distance result collections among individual are copied

to host memory. Then in global phase of CPU, the final

distances will be gathered and cohered to one set. Finally, all

distances for interactions will converge. After removing edges

with maximum distance (i.e., d(ns, ne) ≥ 1), communities can

be easily obtained from the connected component. Sec. IV-C

details the design for parallel computation stage.

B. Realistic Network Representation and Partition Stage

The input raw epidemic network formats in EpCom are

edge list or CSR matrix. In EpCom, we mainly consider the

realistic social network analytics via GPU is limited by the

fact that raw dataset cannot fit into GPUs’ limited device

memories. Thus, the partitioning or chunking not only needs

to fit into GPU memory but also has to deal with the irregular

nature of networks and I/O manner of input data. We designed

“shard” data structure to present epidemic network in EpCom,

inspired by the traditional CPU-based work [21]. As shown in

Figure 3(c), network partitioning is performed by segmenting

the node set V̂ of network Ĝ into disjoint intervals and for

each interval, allocating a shard, in which all the edges that

have a source node in that interval are maintained in the

corresponding shards.

Considering the non-uniform nature of realistic epidemic

networks (e.g., power-law degree distribution (shown in Figure

3(b))), EpCom focus on two key technical points about the

network partition: (1) the determination of intervals and (2)

the construction of shards. For (1), the number of interval |P |
is determined such that one entire shard (or multiple shards),

at least, can be resident completely into GPU device memory.

Meanwhile, the intervals are chosen in a load-balance fashion.

Thus each shard for processing contains an approximately

equal number of interactions (contacts) among nodes, then the

intervals consist of the whole source nodes from shards. For

(2), the edge list are maintained in CSR compressed sparse row

format (shown in Fig. 3(a)). In CSR format, NodeIdxs array

(|V̂ |) represents the starting index of a correspoding edge sub-

array in EdgeIndex. Then EdgeIndex array (|Ê|) represents the

destination node id of edges and the weight of edges are stored

in EdgeValue array (|Ê|) . The data-format transposition can be

benefit from the sequential disk I/O for partitioning edge list.

Therefore, EpiCom can enjoy the compressed storage space

and also greatly reduce the preprocessing overhead.

C. Parallel Processing Stage

In this section, we present the simplified procedure pseu-

docode of our EpCom approach. The illustration of parallel

computation stage is shown in Fig. 2(b). Algorithm 1 presents

the pseudo code of GPU-based parallel procedure of EpCom.

It performs four phases for the specific community detection

for epidemic diffusion, where the local phase is performed

using the high parallelism of GPU and other three phases are

in CPU. Before computation, EpCom allocates two buffers

in GPU device EDBuf, UVBuf, and loads network data set

Ĝ into memory (MMBuf), creates GPU Streams for GPU

Fig. 3. Network Representation in EpCom.

asynchronized I/O (Line 1-5). Then, the dynamic distance of

each interaction is initialized using the Equation (1) (Line 6-

10). We note that distance values of interactions are stored in

MMBuf and synchronized in UVBuf of GPU device.

After data and device initialization, based upon the proposed

interaction model (cf. Eq. (2)), the GPU-based community

detection in epidemic diffusion can be parallel simulated.

The while loop (Lines 11-34) takes charge of phase-by-phase

processing. It mainly involves the two following phases:

a) Local Phase (GPU): After loading one shard into

GPU EDBuf, the kernel function of GPU is triggered to

process the interactions’ affects. The value range of distance

for two nodes need to be in 0 < de < 1. Lines 13-26 are

performed in GPU for updating the distances of two nodes

by accumulating the affects from there patterns IDC , ICC

and IEC (discussed in Sec. III). The step number is noted

by t and the dynamic distances would converge until there are

no changes for distance values (i.e., de equals to 0 or 1). At

the end of each iteration, the updated distance values UVBuf
and states of interactions are copied back to MMBuf in main

memory, to be next processed.

b) Global Phase (CPU): The global phase performs in

Lines 29-33, in which we obtain the updated distances for

whole interactions. Finally, by removing the interactions with

maximal distances (de = 1), the distances will converge and

the community can be easily obtained from the connected

components (Line 35).

V. EXPERIMENTAL RESULTS

In this section, we present experimental results in three

categories. First, we evaluate the effectiveness of Jaccard

distance-based community detection model in epidemic dif-

fusion, by comparing with the most popular models, NCut
[12] and Louvain [22]. Second, we evaluate the performance

of EpCom compared with the state-of-art parallel community

detection processing methods, GPU-based Lourvain imple-

mentation [17], to show the superiority of our approach. For

reference, we also evaluate the performance of parallel meth-

ods using CPUs, including multi-core CPU-based Louvian
[22] and NCut implementation [12]. Third, we evaluate the

performance of EpCom while varying optimal strategies (graph

partition, asynchronized computation and I/O), the densities of

graphs to show the characteristics of EpCom.

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1612

Algorithm 1: Parallel Procedure of EpCom

Input: ̂G = (̂V , ̂E,̂W): Input network dataset
Input: Mh,Md: the size of host and device memory
Input: PLAN: Structure for stream objects and data in GPU

1 Create PLAN.stream for GPU ;
2 Allocate EDBuf, UVBuf in GPU device memory;
3 Allocate MMBuf in main memory;

4 P ← | ̂E|
Md

, obtain individual intervals;

5 ShardSet, V alueSet← ∪1≤i≤PTopoData from ̂G;
/* Initialization Phase */

6 for shard s ∈ ShardSet of ̂G do
7 for edge e = (ns, ne) ∈ s do
8 Compute initial distance d0nsne

using Eq. (1);
9 end

10 end
11 while all distance de are 0 do
12 Async-copy nextShard Si to EDBuf in GPU ;

/* Local Phase: GPU Kernel function */
13 for edge e = (ns, ne) ∈ nextShard do
14 if 0 < dt(ns,ne)

< 1 then
15 Compute ItDC(ns,ne)

, ItCC(ns,ne)
, ItEC(ns,ne)

affects from interactions;
16 Compute Eq. (2) obtain d(ns, ne, t+ 1) =

dt(ns,ne)
+ ItDC(ns,ne)

+ ItCC(ns,ne)
+ ItEC(ns,ne)

;

17 if d(ns, ne, t+ 1) > 1 then
18 d(ns, ne, t+ 1) = 1;
19 end
20 else if d(ns, ne, t+ 1) < 0 then
21 d(ns, ne, t+ 1) = 0;
22 end
23 Update d(ns, ne, t+ 1) value in UVBuf;
24 end
25 Async-copy UVBuf of GPU to MMBuf;
26 end
27 next shard← ShardSet;
28 Thread Synchronizatin;

/* Global Phase: Updating Distance */
29 for edge e = (ns, ne) ∈ ̂E do
30 if d(ns, ne, t+ 1)=1 then
31 Remove edge e from the network ̂E;
32 end
33 end
34 end
35 Obtaining the resulting components (communities) C;

A. Experimental Setup

Setup. The evaluations are conducted on five real-

istic networks with a broad range of sized and fea-

tures from dierent origins, including two small social net-

works and three large-scale epidemic network datasets,

which are from Stanford Large Network Dataset Collection

(http://snap.stanford.edu/data/). We illustrate the evaluation

datasets in Table I. More specifically, the KarateClub, Friend-
ship and LiveJournal are three social network graph data set,

where users actively interact with other members in the net-

works. ER16MV is generated by a Erdős-Rényi (ER) random

graph model, which contains 16 million agents or humans

and 134 million person-person social interactions or edges.

Then US41MV is a realistic social contact network spanning

TABLE I
DATASET OF EPIDEMIC NETWORKS FOR EVALUATION.

Dataset Nodes Edges Avg. Degree RAW Data
|V | |E| degavg size

KarateClub 34 78 4.58 3.39KB
Friendship 58,228 214,078 14.71 10.2MB

LiveJournal 4.8 million 68.9 million 28.46 2.6GB
ER16MV 16 million 134 million 16 12GB
US41MV 41.7 million 1.4 billion 47.68 54GB

the continental United States (US dataset), synthesized using

census and relevant data [23], which contains 41.7 million

agents and 1.4 billion interactions. The interactions or edges

are initially assigned weight values to represent the factor of

infected possible rate γ. The experiments are performed on

a system with NVIDIA GeForce GTX980 each having 16

Maxwell Streaming Multiprocessors (128 Cores/MP) and 4GB

GDDR5 RAM. The host side of the node is consist of two 10-

core Intel Xeon E5-2650 v3, and 64GB DDR4 main memory,

running with Ubuntu 16.04 (kernel v4.4.0-38) with CUDA 7.5.

Comparisons. Among competitions of our model and ap-

proach, we selected two representative methods, including

NCut [12] and Louvain [22]. Specifically, NCut method is

a well-known algorithm for graph clustering by achieving

the optimized cut criterion. Louvain is a popular community

detection algorithm based on modularity measure, which hier-

archical community detection. We specify the cluster number

in NCut to |C|, which is the true number of classes with

the available ground truth, and configure default value for

parameters in Louvain.

Metrics. We set the cohesion parameter δ = 0.5 for

EpiCom as default parameter. And three network metrics are

introduced for the community detection model comparison, as

following.

• Modularity Measurement [14]: measure the quality of the

partition of epidemic networks, defined as a score Q =∑
ci∈C [

|Ein
ci

|
|E| − (

2|Ein
ci

|+|Eout
ci

|
2|E|)2], where C is the set of

all communities, |Ein
ci | and |Eout

ci | are the number of in-

edges and out-edges of ci community.

• Normalized Cut (ncut) Measurement [12]: measure the

minimization of cut edges w.r.t. disease control.

• Similarity Measurement [24]: measure the similarity be-

tween two communities for subnetworks, F-measure=
1

|V |
∑

ci∈C |ci| · max
c′j∈C′

2|ci∩cj |
|ci|+|c′j | .

With the respect to performance comparison, we choose to a

GPU-based Louvain implementation (named Louvain-G) and

two parallel methods using CPUs, including multi-core based

Louvain (louvain-C and NCut implementation (NCut-C).

B. Effectiveness of Distance-Based Community Detection in
Epidemic Diffusion

The statistics of above realistic networks are summarized in

Table II. We report the external metrics Modularity, NCut and

Similarity for the comparison of NCut and Louvian models

with our proposed Jccard distance based model in EpCom.

Zachary karate club network: The network is frequently

used as a pedagogical illustration of community detection,

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1613

(a) Elapsed Time in Various Networks (b) Normalized Speedup Comparison (c) TEPS Comparison to Louvain-G (d) GPU Internal Processing Time

Fig. 4. The comparison results for elapsed time and detailed processing time of related methods and EpCom on different network inputs. Note that NCut-C
method cannot process US41MV due to running “out-of-memory”.

TABLE II
COMMUNITY DETECTION MODEL COMPARISON IN NETWORKS.

Dataset Metrics EpCom NCut Louvain

KarateClub

#community 3 3 4
modularity 0.40 0.427 0.415

ncut 0.92 2.41 2.03
similarity 0.9266 0.3521 0.7356

Friendship

#community 8045 7863 746
modularity 0.44 0.24 0.684

ncut 7325 41724 38.6
similarity 0.8961 0.6243 0.6839

LiveJournal

#community 976474 890482 56961
modularity 0.68 0.45 0.740

ncut 32408 165286 492.9
similarity 0.9145 0.4659 0.8067

and previously divided into two smaller clubs following a

conflict between its members. We plot the community structure

comparison of the network between ground truth communities

and detected by EpCom as shown in Figure 5. Specifically,

two communities are successfully detected in EpCom, and the

node 30 is found as anomaly. Although NCut and Louvain
also achieve the similar modularity and performance, many

individuals are wrongly clustered, which results in relatively

high values of ncut.
Brightkite friendship network: EpCom detects the maxi-

mum quantity of communities (8045) and shows an obvious

advantage over the other models. For NCut (7863 communi-

ties), many individuals are incorrectly clustered, leading to a

low value of modularity 0.24 and much large value of ncut.
Louvain tend to produce a small quantity of communities, due

to neglecting many small-sized communities.

Social Livejournal network: The network represents the

power law degree distribution and a data sparsity, as we illus-

trated in Figure 3(b). EpCom identifies 976474 communities

with modulartiy 0.68 and 32408 ncut. While NCut achieves

a comparable community number and a better modularity,

it entails a much larger number 165286 of ncut. Louvain
only find small number of 56961 equal-size communities.

Here, EpCom also achieve the best performance in similarity

between subnetworks among communities.

C. Performance Comparison with Other Approaches

We first show the performance effects of our EpCom ap-

proach on GPU-based platform. The three comparison of core

decomposition algorithms are coming from the state-of-art

approaches, including a GPU-based Louvain implementation

Fig. 5. Ground truth community and detected community structure on
KarateClub network. Colors of nodes indicate different communities.

(Lourvain-G), two multi-core CPU based methods for Lour-

vain and NCut implementation (Lourvain-C and NCut-C). The

Lourvain-C and NCut-C implementations are configured to use

16 threads in evaluation. Figure 4(a) shows us the elapsed

time for EpCom with GPU can achieve the best optimal

performance compared to other executions, since EpCom has

a linear time complex against to |E| and also utilizes the high

parallelism of GPU.

Then we illustrate the speedup ratio for EpCom. Com-

pared to CPU-based NCut-C and Lourvain-C methods, EpCom
achieves 10-54.2 times and 3.2-15.6 times of speedup sepa-

rately. With the size of temporal graph data increasing, EpCom
with GPU represent much better performance enhancement.

Meanwhile, with respect to Louvain-G algorithm, EpCom also

achieves 1.2-5.2 times of speedup over the same configuration

of GPU environment. The reason that GPU-based EpCom
represents excellent performance accelerating was that the

optimized scalable algorithms benefit from efficient massive

parallelism and effective data movement among large scale

networks.

Figure 4(c) illustrates TEPS (traversed edges per second)

metric comparison for GPU-based methods, Louvain-G and

EpCom. Results show EpCom achieves maximum 604 million

TEPS in wiki-talk graph and almost enhances 1.5× TEPS

than Louvain-G. Figure 4(d) summaries the memory copy time

and kernel exection time during GPU internal processing. It’s

obviously, the data copy overhead occupies a major proportion

in the total GPU processing time, and showing data movement

between CPU and GPU is worth to be optimized.

D. Optimization Characteristic of EpCom

We applied CUDA stream object to reorganize the execution

flow of data movement and kernel execution, expecting that the

data movement via PCI-E may increase in case storage IO is

not fully utilized. As shown in Figure 6, the original execution

(a) implies that a GPU is not fully utilized due to the idle

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

1614

Fig. 6. Overlapping Data Movement and Kernel Execution in EpCom.

(a) Improved Comparison (b) Optimized Speedup
Fig. 7. The comparison results for optimized data movement in EpCom.

waiting for shard read and result synchronization. Thus, by

introducing CUDA stream object to manage and organize the

execution flow, the performance gained from asynchronized

data movement have presented a sharply improved. And with

one stream, the idleness of GPU can be eliminated with a

little fraction. Figure 7 illustrates the evaluation for improved

data movement in EpCom, and shows that imporved EpCom
achieved almost 59.4% performance enhancement and shows

better improved ratio with larger dataset.

VI. CONCLUSION

In this paper, we propose a novel parallel community

detection approach for the simulated epidemic diffusion. First,

based on the introduction of Jaccard distance between in-

dividuals, we present a dynamic distance view in epidemic

network and apply three local interaction patterns to determine

the affects among individuals. Second, we design a GPU-

based approach for parallel community detection in large-scale

epidemic networks. The utilization of linear time complex

Jaccard distance based model and the high parallelism of GPU

make EpCom approach a great improvement for community

detection in large-scale social epidemic networks. Extensive

experiments demonstrate our Jaccard distance based commu-

nity detection model allows effectiveness finding communities

in epidemic networks with high quality, and also shows bene-

fits in detecting small communities and community similarity.

Our GPU-based EpCom implementation exhibits remarkable

improvements in runtime performance. The maximum speedup

is achieved 54.2 times and 15.6 times than CPU-based NCut
and Louvain approaches separately.

REFERENCES

[1] B. Shekh, E. De Doncker, and D. Prieto, “Hybrid multi-threaded
simulation of agent-based pandemic modeling using multiple gpus,”
in Bioinformatics and Biomedicine (BIBM), 2015 IEEE International
Conference on. IEEE, 2015, pp. 1478–1485.

[2] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V. Marathe,
“Episimdemics: an efficient algorithm for simulating the spread of
infectious disease over large realistic social networks,” in Proceedings
of the 2008 ACM/IEEE conference on Supercomputing. IEEE Press,
2008, p. 37.

[3] J.-S. Yeom, A. Bhatele, K. Bisset, E. Bohm, A. Gupta, L. V. Kale,
M. Marathe, D. S. Nikolopoulos, M. Schulz, and L. Wesolowski,
“Overcoming the scalability challenges of epidemic simulations on blue
waters,” in Parallel and Distributed Processing Symposium, 2014 IEEE
28th International. IEEE, 2014, pp. 755–764.

[4] P. C. Pinto, P. Thiran, and M. Vetterli, “Locating the source of diffusion
in large-scale networks,” Physical review letters, vol. 109, no. 6, p.
068702, 2012.

[5] K. Zhu, Z. Chen, and L. Ying, “Catch’em all: Locating multiple diffusion
sources in networks with partial observations.” in AAAI, 2017, pp. 1676–
1683.

[6] M. Salath and J. H. Jones, “Dynamics and control of diseases in
networks with community structure,” PLOS Computational Biology,
vol. 6, no. 4, pp. 1–11, 04 2010.

[7] N. Gupta, A. Singh, and H. Cherifi, “Community-based immunization
strategies for epidemic control,” in 2015 7th International Conference
on Communication Systems and Networks (COMSNETS), Jan 2015, pp.
1–6.

[8] V. Wong, D. Cooney, and Y. Bar-Yam, “Beyond contact tracing:
community-based early detection for ebola response,” PLoS currents,
vol. 8, 2016.

[9] C. Stegehuis, R. van der Hofstad, and J. S. van Leeuwaarden, “Epidemic
spreading on complex networks with community structures,” Scientific
reports, vol. 6, 2016.

[10] M. Salathé and J. H. Jones, “Dynamics and control of diseases in net-
works with community structure,” PLoS computational biology, vol. 6,
no. 4, p. e1000736, 2010.

[11] E. Aramaki, S. Maskawa, and M. Morita, “Twitter catches the flu: detect-
ing influenza epidemics using twitter,” in Proceedings of the conference
on empirical methods in natural language processing. Association for
Computational Linguistics, 2011, pp. 1568–1576.

[12] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22, no. 8,
pp. 888–905, 2000.

[13] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3, pp. 75–174, 2010.

[14] M. Chen, K. Kuzmin, and B. K. Szymanski, “Community detection
via maximization of modularity and its variants,” IEEE Transactions on
Computational Social Systems, vol. 1, no. 1, pp. 46–65, 2014.

[15] C. Hennig and B. Hausdorf, “Design of dissimilarity measures: A new
dissimilarity between species distribution areas,” in Data Science and
Classification. Springer, 2006, pp. 29–37.

[16] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,” in
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 2016, p. 11.

[17] G. Li, D. Zhang, K. Xie, T. Huang, and Y. Li, “A gpu based fast com-
munity detection implementation for social network,” in International
Conference on Algorithms and Architectures for Parallel Processing.
Springer, 2015, pp. 688–701.

[18] T. N. Dinh, N. P. Nguyen, and M. T. Thai, “An adaptive approximation
algorithm for community detection in dynamic scale-free networks,” in
INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 55–59.

[19] J. Shao, Z. Han, Q. Yang, and T. Zhou, “Community detection based
on distance dynamics,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2015, pp. 1075–1084.

[20] N. Wilt, The cuda handbook: A comprehensive guide to gpu program-
ming. Pearson Education, 2013.

[21] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a PC,” in 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12). Hollywood, CA:
USENIX, 2012, pp. 31–46.

[22] X. Liu and T. Murata, “Advanced modularity-specialized label propa-
gation algorithm for detecting communities in networks,” Physica A:
Statistical Mechanics and its Applications, vol. 389, no. 7, pp. 1493–
1500, 2010.

[23] C. L. Barrett, R. J. Beckman, M. Khan, V. A. Kumar, M. V. Marathe,
P. E. Stretz, T. Dutta, and B. Lewis, “Generation and analysis of large
synthetic social contact networks,” in Simulation Conference (WSC),
Proceedings of the 2009 Winter. IEEE, 2009, pp. 1003–1014.

[24] S. Wagner and D. Wagner, Comparing clusterings: an overview. Uni-
versität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007.

Authorized licensed use limited to: Institute of Software. Downloaded on July 15,2020 at 08:16:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

